
SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

CrossTalk—November/December 2014 33

software, much like building quality into products from the start,
can improve the overall security of software and move from a
reactionary to a proactive approach to secure software [2,3]. In or-
der to build secure software, processes and tools are needed that
address software security in the early stages of development as
a part of the normal software engineering process. Regardless of
the type of software development life cycle model (waterfall, agile,
spiral, etc.) used, all include a requirements phase in the earli-
est stage of development. During development, functional and
non-functional requirements are elicited, analyzed and developed
into software requirements with the key goal being that these
requirements are as final as possible. Requirements changes
during development are the bane of software project managers
due to the amount of effort needed to address these changes
(particularly if changed during the late stages of development).
It is highly desirable to develop stable requirements as early as
possible to reduce the detrimental impact on cost and time as a
project progresses.

One type of software requirement that can be overlooked is
security requirements. Even the most casual of software users
may expect a minimum level of software security even if they
have a hard time defining security expectations. Defining security
requirements can be difficult due to a lack of common ground
among stakeholders in terms of security knowledge, skill, and
even vocabulary. If stakeholders cannot define and understand
security needs, then it is unlikely that security requirements
will be properly elicited, captured and defined. Even if security
requirements are defined, they are often seen as constraints on
functional requirements and can be at odds with the goals of
stakeholders. The cost of developing and implementing security
requirements may also be a difficult sell to those signing off on
the cost of the project. This leaves members of the software
development team in a position in which they must anticipate
the security goals of client and develop the appropriate security
requirements as early as possible in development. Finally, security
requirements must be justified based on a risk-reward analysis.

Security requirements engineering must become a prioritized
part of the software development process and tools must be
developed to aid in developing security requirements.

Best practices, enumerations, methodologies, models and
elicitation techniques have been proposed that are intended to
improve the integration of security requirements into early phases
of development. A key factor in each of these is the focus on the
first stage of software development or requirements development.
Software developers who have previously not emphasized the
development of security requirements must start including them
in their software development processes. However, jump-starting
an SRE initiative can be daunting and if initially unsuccessful,
can be a detriment to future inclusion of security requirements.
An alternative method, particularly for a small software develop-
ment team, is to capture security requirements during the normal
requirements process and build to a comprehensive security
requirements engineering process. Stakeholders often have
difficulty expressing security related needs but use terminology
that implies a security need. By capturing these implied security
needs, further elicitation activities can be undertaken to refine
security needs into security requirements.

Hossein Saiedian, University of Kansas
Annette Tetmeyer, University of Kansas

Abstract. While expressing software requirements and needs, many
clients, especially the non-technical ones, will indirectly imply concerns and
expectations that are security related. One way to capture such implied
concerns (i.e., security requirements that are not explicitly stated) is to use
a parsing tool and look for terminology and keywords that indirectly (and
perhaps sometime very directly) imply security requirements, constraints, or
expectation. Such keywords will be tagged and further refined into formally
specified software requirements and incorporated into the final require-
ments document. We introduce such a tool and a mini process for utilizing it.
Our approach has the advantage of steadily incorporating security require-
ments engineering into existing software development processes with mini-
mal disruption while adding value to the software development process.

A Software Requirement
Tool for Capturing Implied
Security Requirements

Introduction
Scan and carefully review any software requirements speci-

fication artifact for security related terms such as “password”,
“encryption”, “authorization”, “integrity”, “hacking”, “accountability”,
“monitoring”, “controlling”, “event log”, or even “security”. Are these
terms likely to be found within the artifact? Yes. Are these terms
associated with a security specific requirement? Possibly. What
does this imply? In many cases, security is implied within software
requirements but may not be specifically considered a security
requirement. In addition, the requirement that contains security
terms may be vague and open to interpretation depending on
the viewpoint of the reader. Implied security requirements may be
creeping into software requirements due to increasing awareness
of security needs from novice end-users to security experts alike.
Data breaches, privacy issues and security concerns related to
software are increasingly headline news and are raising the se-
curity awareness of a broad spectrum of the population. Software
users increasingly expect security even if they cannot clearly de-
fine what security means. Software developers are responding by
implementing security features to mitigate risk, but often this is on
an ad hoc basis. Legislators at the state and federal level are also
enacting regulation in response to security events. All of these
responses are primarily reactionary in nature. The question is what
should be done to improve the integration of security into require-
ments engineering from the start rather than reacting later?

Security requirements engineering (SRE) [1] is receiving
more attention as a not only a valid, but increasingly necessary
part of the software development process. Building security into

34 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

A Requirements Tool for Capturing Security
Requirements

How can security requirements be inferred from general soft-
ware requirements? One method is to parse the natural language
that stakeholders use when defining requirements to extract
security implied terms. During requirements elicitation, security
related terms may even be included in general requirements with-
out identifying them as security specific requirements. Identifying
and extracting phrases based on these terms is the first step
to understanding security goals. During elicitation activities, the
requirements engineer can further extract security needs from
stakeholders and lead prioritization activities in order to convert
security goals into security requirements. A tool to identify, cat-
egorize, understand and prioritize security goals that is integrated
into requirements elicitation activities can be the starting point for
a security requirements engineering initiative. Figure 1 illustrates
the software requirements artifacts input and output, stakeholder
roles and the processes defined by the security requirements
capturing tool.

Recognizing and Identifying Potential Security
Requirements Keywords

The requirements engineer starts by identifying potential
security goals based on security terms and phrases appearing
in preliminary requirements artifacts. Preliminary requirements
artifacts can be formal software requirements specifications,
user stories, business process documents, or other documents
related to requirements specifications. The type of requirements
artifacts and software life cycle model used is not a constraining
factor; the point is to identify implied security requirements based
on terminology. The identification of these terms and location
within the requirements artifacts are the starting point for security
requirements elicitation.

Scanning can be manual for small artifact sets, but an automat-
ed scanning tool is desirable for larger artifact sets. An automated
scanning tool can be easily implemented for common types docu-
ments (such as Word or text documents) and should identify the
frequency and tag the location of security terminology passages
in artifacts for further analysis. Prior to scanning, the requirements
engineer would define a set of security terms or phrases in a
security terminology repository. The starting set of terms can be
based on the security knowledge of the requirements engineer
or by using a common dictionary of security terms. Over time,
the security terms and phrases would be refined by the require-
ments engineer for reuse on other projects. After initial scanning,
the requirements engineer with review the tagged terminology
to determine an initial set of candidate security goals for further
requirements elicitation.

Categorizing and Associating Security Principles
Categorizing security goals and associating security common

security principles will aid in gaining a deeper understanding of
the stakeholders security requirements. The requirements engi-
neer should be knowledgeable about general security and key
security principles such as confidentiality, integrity, and availability
principles (also referred to as CIA). A starting set of security prin-
ciples will be defined and used to categorize and associate with

	

	

	

	

	

	

	
	

	

	

	

	

	

	

	

	

	
	

	

	
	

	

	
	

	

	

Figure 1: A Tool for Capturing Security Requirements

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

CrossTalk—November/December 2014 35

each candidate security goal. Working with business stakehold-
ers, the requirements engineer will be able to extract a deeper
understanding of needs while also building a common ground of
security understanding with the business stakeholders. Tagged
security passages should be refined from general or vague to
more exacting language that clearly defines the security need.
Categorizing based on a common set of security principles and
including this language within the security goals will also aid in
understanding. After an initial review among all stakeholders, any
tagged passages containing security terms that are not deemed
as candidate security requirements should be discarded from
further review.

Understanding and Developing Preliminary
Security Requirements

Using the refined security goals as input, the requirements
engineer will continue elicitation activities with business stake-
holders to develop preliminary security requirements. Structured
or unstructured elicitation activities such as face-to-face meetings
or review sessions will aid in communication and yield further
understanding of the stakeholder’s needs. Activities specifically
related to developing security requirements such as modeling
activities, developing misuse/abuse cases, or building attack trees
can be undertaken at this time. Business artifacts such as policies
and regulations should be used as input at this time. The goal of
these elicitation activities is to gain a deeper understanding of the
implied security goals and develop them into preliminary security
requirements.

Prioritizing Preliminary Security Requirements
Next, candidate security requirements should be prioritized.

There is always a trade-off to be made when determining which
requirements are feasible to be implemented regardless of the
type of requirement. Functional requirements are often cut from
consideration if they are deemed too costly or do not meet a
return on investment (ROI) threshold. Security requirements are
not immune to analysis to determine if they are feasible. Attaining
100% secure software is not feasible. The software develop-
ment team and business stakeholders should perform ROI or
risk analysis to determine which candidate security requirements
should be implemented. These activities will further enhance com-
munication and foster familiarity with software security among all
stakeholders. In the absence of a preferred analysis technique,
Failure Modes and Effects Analysis (FMEA) can be utilized.

FMEA is an analysis and decision-making tool often associ-
ated with quality and Six Sigma methodologies [4]. A failure mode
is the manner in which something might fail. Effects analysis is
the study of the consequences of these failures. FMEA is used
to identify, estimate, prioritize, and reduce the risk of failure. As
a software engineering tool, FMEA is not widely used, but has
advantages over other analysis tools in that it is easy to imple-
ment and can be used by a broad audience. A requirements
engineer can use FMEA to elicit security related information from
stakeholders, prioritize the data, and present an analysis of the
risks associated. The prioritized risks allow for informed decision
making to choose which actions to consider.

This approach is very useful to communicate and clarify the

impact of technical materials in an easy to understand format.
Analysis requires creating severity, occurrence and detection

rankings in order to determine a risk priority number (RPN). A
standard scale for severity, occurrence and detection can be
adopted as a starting point for FMEA analysis but experienced
FMEA users may wish to develop more refined rankings scales.
A standard scale ranges from a low of 1 for unlikely to a high of
10 for very high. The RPN is calculated as the product of the risk
rankings:

RPN = (severity ranking)(occurrence ranking)(detection rank-
ing)

The requirements engineer could generate a preliminary
ranking of candidate security requirements and follow-up with
business stakeholder or all stakeholders could be involved at the
start of analysis. Rankings for severity, occurrence and detection
are determined by the stakeholders and the RPN is calculated.
The resulting RPN generates a prioritized list of potential security
requirements. Using the FMEA results, requirements engineer
and business stakeholders will refine the preliminary security
requirements until a list of final security requirements has been
generated.

Scenario to Demonstrate the Capturing Security
Requirements Tool

The following scenario demonstrates the capturing security
requirements tool. A software developer has been contracted
to develop a software application for a small organization. The
software developer embraces agile software development meth-
odologies (face-to-face customer interaction, lean techniques
and minimal documentation) and is accustomed to fast-paced
project schedules. Preliminary requirements artifacts have been
developed using standard word processing tools and the software
developer’s requirements document template. Scanning and tag-
ging of the preliminary requirements artifacts have revealed an
implied security need to limit the impact of “unauthorized” users.
Working with business stakeholders, the elicitation activities asso-
ciate the security principles of confidentiality and integrity with the
use of the term “unauthorized” in the requirements artifacts. In this
case, requested data needs to be protected against unauthorized
disclosure (confidentiality) and as well as against unauthorized
modification or destruction (integrity). The refined security goals
are further understood and developed by reviewing relevant
regulation as well as by developing misuse and abuse cases with
the business stakeholders. Both the requirements engineer and
business stakeholders are beginning to fully appreciate the need
to refine these security goals into preliminary security require-
ments. A new set of preliminary security requirements is added
to the requirements artifact document to address the impact of
data requests by unauthorized users. The final step is to prioritize
the preliminary security requirements use FMEA analysis. The
requirements engineer and business stakeholders identify three
failure modes and effects for analysis (see Table 1). Severity,
occurrence and detection rankings are agreed upon and RPN’s
are calculated. The resulting FMEA analysis reveals that both
data being viewed or stolen by an unauthorized user represents
a strong risk to the business and need to be represented in the
security requirements. Data corruption by an unauthorized user

36 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

compulsory and activities are integrated into existing processes.
Existing requirements artifacts are used as the basis for SRE
activities. An automated scanning tool to tag security terms is de-
sirable, but can be built or acquired at minimal cost. Minor training
may be required to implement FMEA or other analysis activities.
In general, all of these activities can be implemented at any scale
and can grow and mature with the needs of the organization.
Other security frameworks, best practices and models can coexist
side-by-side with these activities with minimal disruption. There-
fore, the proposed approach is a feasible alternative to beginning
and building a SRE initiative for any organization.

Summary
SRE is one part of a solution for secure software development.

Security requirements can be captured by scanning and tagging
security terminology within requirements artifacts to identify secu-
rity goals. Elicitation activities further refine the goals into security
requirements by associating each with security principles and
developing a deeper understanding of stakeholders needs. Risk
analysis prioritizes preliminary security requirements to determine
a final list of security specific requirements. These newly identi-
fied security requirements are integrated into the final software
requirements document. The development of security require-
ments is integrated into existing software development processes
in order to build a SRE initiative.

Further efforts can be continually refined to build the basis for
secure software development.

represents a lower risk and the business determines that this
requirement does not need to be represented in the security
requirements. Therefore, a new security requirement is written to
address the impact of data requests by unauthorized users and is
included in the final software requirements artifact.

A Brief Analysis of the Security Requirements
Capturing Tool

In order to be successful, the overall approach (process and
tools) must be both measurable and feasible. Measurability is a
key to determining the success of any process or tool. Scanning
and tagging of security terms and phrases provides the basis for
benchmarking the use and importance to security requirements
within existing documents. Over time, statistics can be gathered
to refine the process of determining the importance of implied
security terms within requirements artifacts. Risk analysis activi-
ties, such as FMEA, also provide the ability to analyze security
requirements activities. Implementing an SRE process can quickly
become overwhelming due to the complexity of software security,
resources required and need for security expertise. All projects
need to balance cost and resources in order to deliver on time
and on budget. This approach combines both process and tools
to feasibly meet project goals. The process of integrating security
requirements into an existing requirements engineering process
of capturing implied security needs by tagging security terms can
be a feasible addition to existing processes. Additional resources
from the development team (such as a security expert) are not

Table 1: FMEA Analysis of Security Requirements

Failure Effect Severity Occurrence Detection RPN

data request by an

unauthorized user
data viewed 3 7 9 189

data request by an

unauthorized user
data stolen 9 4 9 324

data request by an

unauthorized user
data corrupted 5 4 4 80

Standard Impact and Rating Scale for Severity, Occurrence or Detection Very High

(9-10), High (8-7), Moderate (4-6), Low (3-2), Unlikely (1)

CrossTalk—November/December 2014 37

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Hossein Saiedian (Ph.D., Kansas State University, 1989) is currently an
associate chair, director of IT degree programs, and a professor of comput-
ing and information technology at the Department of Electrical Engineering
and Computer Science at the University of Kansas (KU) and a member of the
KU Information and Telecommunication Technology Center (ITTC). Professor
Saiedian has over 150 publications in a variety of topics in software engineer-
ing, computer science, information security, and information technology. His
research in the past has been supported by the NSF as well as other national
and regional foundations.

Phone: 785-864-8812
E-mail: saiedian@ku.edu

Annette Tetmeyer is a Ph.D. candidate in computer science at the University
of Kansas. Her research interests include security requirements engineering,
HCI, and engineering education. In addition to experience in private industry,
she has taught a variety of undergraduate and graduate engineering courses at
the University of Kansas. She received her MS in Computer Science from the
University of Kansas (2013) and BS in Mechanical Engineering from Iowa State
University (1993).

Phone: 785-864-8812
E-mail: tetmeyer@ku.edu

ABOUT THE AUTHORS

REFERENCES
1. J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead, Software Security Engineering: A Guide for Project Managers: Addison-Wesley, 2008.
2. G. McGraw, S. Migues, and J. West. (2012). The Building Security In Maturity Model.
Available: <http://www.bsimm.com/>
3. G. McGraw, “The Security Lifecycle-The 7 Touchpoints of Secure Software-Just as you can’t test quality into software, you can’t bolt security features onto
code and expect it to become hack-proof Security,” Software Development, vol. 13, pp. 42-43, 2005.
4. ASQ. Failure Mode Effects Analysis (FMEA). Retrieved 11/21/13, from <http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html>

mailto:saiedian@ku.edu
mailto:tetmeyer@ku.edu
http://www.bsimm.com/
http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html

