
A streamlined, cost-effective database approach
to manage requirements traceability

Hossein Saiedian • Andrew Kannenberg • Serhiy Morozov

Published online: 5 October 2011
� Springer Science+Business Media, LLC 2011

Abstract Requirements traceability offers many benefits to software projects, and it has

been identified as critical for successful development. However, numerous challenges exist

in the implementation of traceability in the software engineering industry. Some of these

challenges can be overcome through organizational policy and procedure changes, but the

lack of cost-effective traceability models and tools remains an open problem. A novel,

cost-effective solution for the traceability tool problem is proposed, prototyped, and tested

in a case study using an actual software project. Metrics from the case study are presented

to demonstrate the viability of the proposed solution for the traceability tool problem. The

results show that the proposed method offers significant advantages over implementing

traceability manually or using existing commercial traceability approaches.

Keywords Requirements traceability � Software requirements management �
Requirement engineering � Software requirements � Traceability tools

1 Introduction

The importance of requirements traceability has been well-established throughout the

software engineering industry. Young (2006) identified traceability as one of twelve

requirements basics that is important for project success. Common guidelines for software

development such as the Software Engineering Institute’s Capability Maturity Model

Integration (CMMI), ISO’s 9001:2000 for software development, and IEEE’s J-STD-016

H. Saiedian (&)
Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66049, USA
e-mail: saiedian@eecs.ku.edu
URL: http://saiedian.com

A. Kannenberg
Innovative Systems, Mitchell, SD 57301, USA

S. Morozov
Department of Computer Science and Software Engineering, University of Detroit Mercy, Detroit,
MI 48221, USA

123

Software Qual J (2013) 21:23–38
DOI 10.1007/s11219-011-9166-3

all include requirements traceability practices. Even the United States government has

recognized the importance of traceability by including it in governmental standards for

software development such as DOD-STD-2167A (superseded by MIL-STD-498) for

government contractors and DO-178B for aviation products.

Because of this, one would expect quality traceability practices to be firmly ingrained

throughout the software engineering industry. Unfortunately, this is not the case. Research

has shown that numerous organizations are struggling with implementing traceability

practices (Jarke 1998; Ramesh 1998; Ramesh and Jarke 2001; Egyed and Grunbacher

2002). Many organizations do not even attempt to implement traceability, while others

only do so in a haphazard manner.

Why is this? Perhaps, it is because manual methods for implementing traceability are

time-consuming and error-prone. However, this cannot be the only reason because alter-

natives to manual traceability methods exist. The International Council on Systems

Engineering (2008) has identified 31 different tools that claim to provide full traceability

support. In spite of the large number of available traceability tools, the adoption rate

throughout industry is surprisingly low. A general study of the software engineering

industry performed by Gills (2005) found that less than half of the organizations utilized

any tools to assist with requirements traceability. Even an aviation software-specific study,

a field where traceability is mandated by governmental regulations, discovered that only

half of the organizations surveyed use specialized tools to assist with traceability (Lempia

and Miller 2006).

If there are 31 tools that provide full support for traceability, then why are they not more

widely deployed throughout industry and why are quality traceability practices not more

prevalent? Research has indicated that poor support for traceability in existing tools is the

root cause for its lack of implementation (Spanoudakis et al. 2004) and that traceability

practices will only improve when tools are deployed that reduce the effort required to

implement and maintain traceability information (Munson and Nguyen 2005). It follows

that if currently existing traceability tools were adequate for the needs of the industry, then

it would be reasonable to expect that their adoption rate would be much closer to 100%,

especially in the area of aviation software due to its mandates for traceability practices.

2 The traceability tool problem

Poor tool support is perhaps the biggest challenge to the implementation of traceability

today. Spanoudakis et al. (2004) argues that currently existing traceability methods and

tools are inadequate for the needs of the software engineering industry. Neither manual

traceability methods nor existing commercial traceability tools provide a streamlined, cost-

effective approach to managing requirements traceability.

2.1 Problems with manual traceability methods

Cleland-Huang et al. (2003) found that the number of traceability links that need to be

captured grows exponentially with the size and complexity of the software system. This

means that manually capturing traceability data for large software projects require an

extreme amount of time and effort.

Manual traceability methods are vulnerable to changes in the system. If changes occur

to any elements captured in the traceability data, the affected portions of the traceability

data must be updated manually. This requires discipline and a significant amount of time

24 Software Qual J (2013) 21:23–38

123

and effort spent on link checking throughout the traceability data. Because of this, it is easy

for manually created traceability data to become out of sync with the current set of

requirements, design, code, and test cases.

Manual traceability methods are also prone to errors, which are not easy to catch. Errors

can arise from simple typographic mistakes, from inadvertently overlooking a portion of

the traceability data such as an individual requirement or from carelessness by the indi-

vidual capturing the traceability data. Because traceability artifacts for large projects are

often hundreds or even thousands of pages in length, such errors are difficult to detect when

depending on manual methods for error checking.

Due to these disadvantages, manual traceability methods are not suitable for anything

other than small software projects. Young (2006) stated ‘‘in my judgment, an automated

requirements tool is required for any project except tiny ones.’’ Similarly, Cleland-Huang

(2006) found that traceability is error-prone, time-consuming, and arduous without the use

of automated tools. In spite of this, two recent surveys of software companies found that

approximately 50% of software companies are using manual traceability methods (Gills

2005; Lempia and Miller 2006). In 1994, Gotel and Finkelstein found that manual trace-

ability methods were preferred in industry due to shortcomings in available traceability

tools. It is apparent that this problem still exists today because manual traceability methods

are still preferred by a significant percentage of software organizations (Gills 2005; Lempia

and Miller 2006).

2.2 Problems with commercial off the shelf (COTS) traceability tools

Regrettably, currently existing COTS traceability tools are not adequate for the needs of

the software engineering industry either. Research has indicated that the simplistic support

for traceability provided in existing traceability tools is the root cause for the lack of

implementation of traceability (Spanoudakis et al. 2004).

COTS tools are typically marketed as complete requirements management packages,

which means that traceability is only one added feature. The traceability features usually

only work if the project methodology is based around the tool itself. Unless the project is

developed from the ground up using a particular tool, the tool is unable to provide much

benefit without significant rework.

Although some COTS traceability tools do support the identification of impacted arti-

facts when changes occur, they typically do not provide assistance with updating the

traceability links or ensuring that the links and affected artifacts are updated in a timely

manner (Cleland-Huang et al. 2003). This means that even when tools are used, the

traceability information is not always maintained, nor can it always be trusted to be up to

date and accurate.

COTS traceability tools often suffer problems with poor integration and inflexibility.

This has led one researcher to conclude that existing traceability tools have been developed

mostly for research purposes, and that many projects are still waiting for tools that do not

require a particular development or testing methodology (Gills 2005).

Cost is another major disadvantage. Although the licensing fees vary per tool, the price

tends to be thousands of dollars up-front per license in addition to yearly maintenance fees.

Because of this, the cost of using COTS tools is often prohibitive, even for fairly small

teams. Such tools are also decoupled from the development environment, meaning that

important traceability information such as code modules that implement requirements may

not be available (Naslavsky et al. 2005). This is a significant problem with popular

commercial traceability tools such as Telelogic’s DOORS and Requisite Pro.

Software Qual J (2013) 21:23–38 25

123

Few solutions are available for the problem of poor tool support for traceability. The

adoption of COTS tools is hampered by shortcomings such as inflexibility and poor

integration (Lungu and Muvuti 2004), which leads organizations to instead utilize manual

methods such as traceability matrices (Gills 2005; Lempia and Miller 2006). Some

organizations concerned with high-quality traceability information develop their own

in-house tools and utilities to implement traceability (Lempia and Miller 2006). Unfor-

tunately, this approach is not always feasible because many organizations do not have the

manpower or the knowledge necessary to develop such tools. Therefore, poor tool support

for traceability remains an open problem at this time.

3 A proposed solution for the traceability tool problem

The development of improved tools for implementing traceability is not an insurmountable

problem. The solution is simply the creation of traceability tools usable for software

projects that do not share the limitations of currently available tools and that are available

for a reasonable cost. To accomplish this, a proposal for a novel, cost-effective traceability

tool that improves upon the capabilities of existing tools is presented.

3.1 A proposal for a database-based approach to traceability

The main idea behind the proposal is to use a database to store all traceability information

and to include a mechanism supporting the generation of a set of complete traceability

artifacts. Identifiers for each traceability element such as requirement identifiers, code

module names, and test cases would need to be stored within the database, but the elements

themselves could be maintained outside of the database to reduce the impact on existing

project artifacts.

Identifiers for requirements and other project artifacts would need to be imported

into the database for it to be used with an already existing project. A software wrapper

around the database would be included to parse existing requirements documents and

other project artifacts. After the initial set of records containing identifiers in the

database was created, it could be kept up-to-date by regular usage of the importation

features of the tool. Depending on the needs of the project, this process could occur

automatically at periodic intervals or it could require human intervention to trigger the

updates.

Traceability would be maintained through the use of link fields for each requirement

record. These fields would specify other requirements, design, source code modules, and

test cases that each requirement traces to. This allows the tool to provide complete

traceability for all project artifacts, a feature that is lacking in many popular traceability

tools (Naslavsky et al. 2005).

Filling out the link fields would be where the human interaction in this traceability

method would take place. Requiring human interaction to create traceability links is a

reasonable decision because it is impossible to completely remove human interaction from

the traceability process (Hayes and Dekhtyar 2005) and because the reason for adding a

traceability element is nearly always known by the person adding that element.

Depending on the format of the project, portions of the link creation could be

automated. For example, test cases typically identify the requirements and source code

that they test. The software wrapper for the database tool could parse this information

from test cases and use it to create links between the test case and the requirements

26 Software Qual J (2013) 21:23–38

123

and source code identified in the test case. The database would then be capable of

generating a complete traceability artifact based on the stored identifiers and the link

fields for each element.

The database would make use of referential integrity to ensure that all links stored

within the database are valid. If a requirement or other data element is deleted, the database

would be able to detect and flag any traceability links that become invalid. Flagged links

would need to be corrected to satisfy the constraints of referential integrity, thereby

ensuring that any invalid links are corrected before the traceability artifact can be gener-

ated. Similarly, the database would be able to detect and prevent any attempts to create

links between invalid project elements using referential integrity.

3.2 Prototyping the database-based approach to traceability

Developing a prototype for the proposed database-based traceability approach required

three main activities: identifying the necessary traceability data, designing the database,

and creating a software wrapper around the database to provide the user interface, auto-

mation, and error-checking capabilities.

3.2.1 Identifying the necessary traceability data

The first step toward creating an improved traceability tool was to identify the data that

needed to be traced. Because the database-based traceability tool was planned for use in a

case study in the aviation software industry, it needed to be able to meet the governmental

traceability mandates for aviation software projects specified by DO-178B. These man-

dates include the following:

• Traceability between system requirements and software design data

• Traceability between system requirements and software requirements

• Traceability between software requirements and source code

• Traceability between software requirements and test cases

• Traceability between source code and test cases

To fulfill these requirements, the traceability tool needed to track links for all of the

mandated traceability data.

3.2.2 Designing the database

The next step was to design a database capable of storing traceability information for

the identified traceability elements. The database design began with an entity-rela-

tionship diagram relating the entities that needed to be traced to fulfill the DO-178B

traceability mandates. For other applications, the database design could easily be

adapted to include other traceability information by customizing the elements included

in the entity-relationship diagram. The resulting entity-relationship diagram is shown in

Fig. 1. It should be noted that according to DO-178B, unary relationships between

system requirements or software requirements are optional depending on how the

requirements are broken down into high- and low-level requirements. We have chosen

to show such unary relationships.

The next step was to create an efficient database schema based on the entity-relationship

diagram. The database schema was normalized into Boyce–Codd Normal Form (BCNF) to

provide protection from redundancy and logical anomalies.

Software Qual J (2013) 21:23–38 27

123

3.2.3 Creating the software wrapper for the database

After the database design was complete, software mechanisms for automatically popu-

lating the database relations needed to be written. A software wrapper for the database was

written to automatically populate the system requirements, design data, software

requirements, source code, and test cases relations in the database. This involved writing

code to parse the requirements and design documents for requirements and design iden-

tifiers and to store them in the appropriate relations in the database. Although this does

require project artifacts to be stored in a text-parsable manner, since the majority of

projects using manual traceability methods use text-parsable artifacts (Lempia and Miller

2006), this approach is effective for most projects. For the source code and test cases, the

importation software was set up to simply read the directories where all of the source code

and test cases for the project were stored and to enter the name of each source code module

and test case into the database.

Traceability links need to be recorded by entering them into the database. This is where

the human interaction in the traceability process occurs. Requiring human interaction to

Fig. 1 Entity-relationship diagram for the database

28 Software Qual J (2013) 21:23–38

123

create traceability links is a reasonable decision because it is impossible to completely

remove human interaction from the traceability process (Hayes and Dekhtyar 2005) and

because the reason for adding a traceability element is nearly always known by the person

adding that element.

Test cases are an exception to this process because test cases already identify the

requirements and source code that they test. Therefore, traceability links involving test

cases can be automatically populated by code written to parse each test case for the

requirement identifiers and source code modules that they identify. This leaves only the

traces between requirements, design elements, and source code as items requiring human

interaction.

Validity of the traceability links is enforced through referential integrity. Only links

between valid elements are allowed because the use of referential integrity disallows the

ability to create links to non-existent items. Each attribute in the link relations in the

database is a foreign key that references the key attribute in the relation maintaining data

for that particular traceability element. This reduces the potential for human error through

typographical mistakes. The tool also includes a reporting feature that detects any missing

traceability information.

To make the database tool easy to use, a custom menu was created to appear when the

database tool is started. Buttons on the menu simplify traceability tasks. There are buttons

to update the system requirements, design data, software requirements, source code, and

test cases relations. There are also buttons to automate the test case traces and to manually

enter traces between requirements, design, and source code elements. A button for

detecting missing traceability links is also included as well as a button for generating a

complete traceability artifact in a traditional traceability matrix format.

4 A practical case study

After the proposed database-based traceability tool was prototyped, it was tested in a case

study using an actual software project in the aviation software industry. A description of

this case study is provided, and metrics are presented to demonstrate the viability of the

database-based traceability approach.

4.1 Software project background

The software project used for the case study is an iterative, incremental project, where

versioned builds of the software are delivered periodically. Each succeeding build of the

software is based upon the previous build, but it adds significant new functionality. The

project is used in the aviation industry and is therefore subject to the governmental

mandates specified by DO-178B. The initial build of the project took place in 2002, and the

project has continued to grow in size and complexity since that date. Today, the devel-

opment team for the project includes 45 software engineers.

Little thought was given to traceability prior to the completion of the first build of the

software project. The lack of planning for traceability meant that it was difficult to

implement, making it a time-consuming activity that provided little benefit to the project

apart from meeting governmental mandates.

Traceability information was recorded in a traceability matrix contained in a single

spreadsheet shared among the software engineers working on the project. This was not a

very efficient mechanism because all of the traceability data were gathered manually, and it

Software Qual J (2013) 21:23–38 29

123

needed to be entered into the spreadsheet manually by each software engineer. Having

multiple engineers work in parallel was a challenge because only one person could enter

data into the spreadsheet at a time. Multiple individuals could work in parallel using a

temporary copy of the spreadsheet on their own computer, but there was no foolproof

method to ensure that work was not duplicated, and merging each person’s changes into the

spreadsheet was a time-consuming and potentially error-prone process.

The information recorded in the spreadsheet traced system requirements to software

design data, system requirements to software requirements, software requirements to

source code, software requirements to test cases, and source code to test cases in order to

meet the traceability mandates of DO-178B. The source of this information was special

knowledge either recollected or researched by specific engineers working on the trace-

ability artifact since most of the information had not been previously documented. This

meant that finding traceability data for items that none of the engineers had a clear

recollection of was difficult and time-consuming.

Overall, the creation of the traceability artifact required input from 23 software engi-

neers and took 5 weeks to create. When the initial version of the traceability matrix was

subjected to a review, it took another full day to correct all of the problems found during

that review. In the end, the lack of forethought regarding traceability meant that the initial

delivery of the software was delayed by nearly 6 weeks after the software build itself was

complete. The significant delays introduced by the creation of the traceability artifact after

the completion of the first software build made it obvious that better methods were nec-

essary for implementing traceability in the future, which made the project an ideal

candidate for a case study for the database-based traceability tool.

The database-based traceability tool was introduced as a replacement for the manually

created traceability matrix, which had been used to document traceability information for

the project in the past. The conversion occurred right after the release of a build of the

software so that it would not cause a disruption right in the middle of a software release.

From that point on, the engineers working on the project used the database tool to record

traceability information for the project. Instead of waiting until the end of the software

release to document traceability links, use of the tool to capture traceability links for

project elements when they were created was added to the process of adding new elements

to the project. Because the requirements for aviation software mandated by DO-178B

necessitate reviews for all project elements, this was easily accomplished by including

checks for appropriate traceability in the review forms for each project element.

4.2 Metrics

Metrics were collected throughout the duration of the case study in order to determine

whether the database-based traceability method provides a viable alternative to existing

traceability methods. Quantitative metrics from the case study are presented, and a cost

comparison with alternative traceability methods is performed.

4.2.1 Comparison with past project results using manual methods

This section quantitatively compares the results of using the database-based traceability

tool with the manual traceability methods used on the case study project in the past. Bar

graphs are used to detail the number of man-hours required for activities such as prepa-

ration for use (Fig. 2), time spent while working on a software release (Fig. 3), and time

spent at the end of a software release (Fig. 4) for each method. The number of errors found

30 Software Qual J (2013) 21:23–38

123

after the initial release of the traceability data for each method is also compared (Fig. 5).

These results are reasonable to compare because, for each method, the results were col-

lected using software releases that added similar amounts of functionality to the system and

because the database-based traceability tool utilized a completely different methodology

for recording traceability information, thus minimizing the impact of organizational

learning.

The database method of implementing traceability required significantly more devel-

opment and preparation time than the manual method. This is because the database tool

required a significant amount of complex custom code to be written for the automation,

error-checking, and data output capabilities. By comparison, manual traceability methods

Development and Preparation Time

0

20

40

60

80

100

120

140

160

Prototyped Database MethodManual Method

P
er

so
n

-H
o

u
rs

Fig. 2 Development time required for traceability methods

Time Spent During a Software Release

0
2
4
6
8

10
12
14
16
18
20

Prototyped Database MethodManual Method

P
er

so
n

-H
o

u
rs

Fig. 3 Amount of time spent on traceability activities during a release

Time Spent at the End of a Software Release

0

50

100

150

200

250

Prototyped Database MethodManual Method

P
er

so
n

-H
o

u
rs

Fig. 4 Time spent on traceability activities at the end of a software release

Software Qual J (2013) 21:23–38 31

123

require very little preparation time. The creation of a spreadsheet or a document with tables

to record the data is sufficient. However, the extra development time required for the

automated database traceability method pays off later through improved quality of the

results (see Fig. 5) and time saved later on in the process (see Fig. 4). Because the

development time is a one-time cost, it can be viewed as an up-front sacrifice resulting in

faster, higher-quality results later. In addition, if the tool was reused for other projects, the

development time would not need to be repeated for each project, thereby making it a start-

up cost only.

Use of the database traceability method did require more time than manual methods

while working on a software release due to the need to create traceability links as elements

were added to the project. However, the extra amount of time required for the database

method was a small price to pay for the time savings later as shown in Fig. 4 and better

quality of the results as shown in Fig. 5.

Figure 4 clearly shows that the payoff for using the database traceability method comes

at the end of a software release. Although some time is still required to generate the data

and have the traceability information reviewed, the total time required is insignificant

compared with the amount of time required to gather traceability data manually. In fact, it

would be virtually impossible to reduce the amount of time required for traceability

activities at the end of a software release because of the need for reviews.

The significant time savings at the end of a software release provided by the database-

based tool is important because it meant that the software could be released to market

approximately 4.5 weeks sooner than it could in the past when manual traceability methods

were used. An earlier time to market results in additional sales which means that higher

profits are realized.

Using the database method of implementing traceability greatly reduced the number of

errors that were later detected in the released traceability artifact. Due to the robust error-

checking features built into the database tool, only two errors were found after the release

of the traceability data generated by the tool. These errors were human errors where

incorrect links between requirements were manually entered into the database. The reason

that so many errors were detected in the results from the manual method was because many

requirements were overlooked in the manually created traceability matrix due to human

error. While it is true that the amount of human error can vary based on staff experience

and other factors, research has shown that human error can be expected wherever the

opportunity exists in technical systems (Brown 2004). Since the manually created trace-

ability matrix offered many more opportunities for human error than the database-based

tool, it is not surprising that the number of human errors was much larger.

Errors Detected After the Release

0

50

100

150

200

250

Prototyped Database MethodManual Method

E
rr

o
rs

Fig. 5 Number of errors detected in the traceability data

32 Software Qual J (2013) 21:23–38

123

Fewer errors in the traceability results are significant because not only does it prevent

the possibility of errors propagating later, but it also reduces the potential for errors to be

uncovered during a Federal Aviation Administration (FAA) audit. The last time that errors

were uncovered during an FAA audit on the project used for the case study resulted in two

extra months of effort on the next software release to correct the errors and to put addi-

tional processes in place to prevent similar errors in the future.

4.2.2 Cost comparison with existing traceability tool alternatives

This section compares the cost of using the database-based traceability tool with the cost of

using other traceability alternatives including manual methods and Telelogic’s DOORS,

which is the most popular COTS traceability tool used in the aviation software industry

(Lempia and Miller 2006). Figure 6 compares the start-up costs for each traceability

method, and Fig. 7 compares the cost of using each method for each software release.

The development and other necessary start-up efforts required for using the prototype

for the database-based tool required approximately 995 man-hours of effort. Assuming an

average salary of $75,000.00, this translates into a start-up cost of approximately

$35,877.40. If Telelogic’s DOORS (2008) had been selected for use on the project, the

licensing cost for the 45 software engineers assigned to the project would have been

$180,000.00 in addition to a $36,000.00 yearly maintenance fee. Converting to DOORS

Start-up Cost

$0.00
$20,000.00
$40,000.00
$60,000.00
$80,000.00

$100,000.00
$120,000.00
$140,000.00
$160,000.00
$180,000.00
$200,000.00

Manual Method Prototyped Database Method Telelogic's DOORS

Fig. 6 Start-up cost comparison

Cost Per Software Release

$0.00

$1,000.00
$2,000.00

$3,000.00
$4,000.00

$5,000.00

$6,000.00
$7,000.00

$8,000.00
$9,000.00

$10,000.00

Manual Method Prototyped Database Method Telelogic's DOORS

Fig. 7 Cost comparison per software release

Software Qual J (2013) 21:23–38 33

123

would also incur a signification start-up cost in addition to the licensing fees because it

would require both time and resources to convert the project over to the DOORS system.

It should be noted that DOORS does provide requirements management features in

addition to traceability; thus, if an organization is able to make use of these features, the

cost comparison may not be appropriate. However, many organizations are not able to

utilize these features as they may need to maintain their project artifacts using standalone

documents (Armbrust and Soto 2005). In these cases, the cost comparison is appropriate

since only the traceability features of the tool are needed.

Manual methods require very little in terms of start-up costs because they can make use

of a simple spreadsheet or table in a document. However, manual methods become more

costly after a project is started due to the amount of time required to use them. This is

shown in Fig. 7.

The high cost of using manual traceability methods is clearly shown in Fig. 7. Due to

the large amount of time and effort required to implement traceability manually for each

software release, manual methods incurred a cost of $7,500.00 per software release. In

comparison, the prototyped database method only cost $793.27 because most traceability

tasks were automated and did not require significant human interaction. The cost estimate

of $9,000.00 for Telelogic’s DOORS came from dividing the yearly maintenance fee of

$36,000.00 by the average number of software releases per year (four) for the software

project. In practice, the actual costs would be higher because time would need to be spent

on traceability activities within the DOORS system for each software release.

Overall, use of the database-based tool for traceability is favorable in terms of cost in

comparison with both Telelogic’s DOORS and manual methods. Because implementing

traceability using manual methods required 186 additional man-hours of work per software

release, this translates into an extra cost of approximately $6,706.73 per software release.

At that rate, only six software releases would be required to completely offset the initial

development cost of the database-based tool. Because the software project used for the case

study averages four software releases per year, the initial cost of development for the

database-based tool would be offset in only 1.5 years. In addition, the estimate of the extra

cost for using manual methods is a very conservative one, as neither the potential for extra

sales resulting from releasing the product to market sooner nor the benefits from the

higher-quality results provided by the database-based tool were taken into account. If the

tool were used for additional projects, the overall costs would be even lower because

the initial development costs could be spread among multiple projects.

Use of the database-based tool is also favorable in terms of cost when compared with

using Telelogic’s DOORS. The initial costs for developing the database-based tool were

$144,122.60 less than licensing Telelogic’s DOORS, and the cost per software release was

$8,206.73 less because the database tool did not have yearly maintenance fees. This is a

conservative estimate as the cost per software release for Telelogic’s DOORS does not

include the cost of the time that would need to be spent on traceability activities using the

DOORS interface because these data were not available for the project for which the case

study was performed.

5 Conclusions

Traceability offers many benefits to software projects, and it has been identified as being

critical for their success (Young 2006). Unfortunately, many organizations struggle to

understand and implement traceability which means that these benefits can go unrealized.

34 Software Qual J (2013) 21:23–38

123

Many methodologies exist for implementing traceability; however, each existing meth-

odology has important weaknesses that hinder the implementation of traceability. Most of

these methods require a significant amount of manual work to create and maintain.

Commercial tools exist that attempt to automate some aspects of the traceability process,

but they are expensive and have their own set of limitations. Because of this, quality tool

support for traceability activities in the software engineering industry has remained an

open problem.

For this reason, this article proposed a streamlined, cost-effective method of automating

traceability activities using a database-based tool. The proposed method was described,

prototyped, and tested in a case study using an actual software project. Metrics from the

case study were presented, and the results serve to demonstrate the viability of the pro-

posed method for implementing traceability for software projects. Not only did the new

method save time in comparison with manual methods of implementing traceability, but

the resulting output also contained far fewer errors.

Existing commercial traceability tools such as Telelogic’s DOORS and Requisite Pro

have limitations including the lack of traceability information for source code (Naslavsky

et al. 2005), a requirement that project artifact methodology be based around the tool itself

(Gills 2005), which may not be feasible for some projects (Armbrust and Soto 2005), and,

in many cases, high licensing fees. The new method did not share in these weaknesses. Not

only was source code traceability information included, but the tool was also able to

integrate with external project artifacts, thereby not requiring the project methodology to

be based around the tool itself. As demonstrated through a case study, for projects in need

of a standalone traceability tool, the new method was considerably more cost-effective

than licensing a commercial tool like DOORS.

Traditional solutions focus on wide range of requirements management features, with

traceability being far from the focal point of the system. Our proposed system has a simple,

open architecture that allows easy customization to satisfy many traceability needs. It is a

suitable solution for the requirements traceability problem because it provides automatic

referential integrity assurance, supports customization, and reduces time to market at a

fraction of the cost of the traditional solutions.

Furthermore, since the data are kept separate from the user interface, it may be accessed

independently. This allows custom reports that would be difficult to implement in a pro-

prietary system. Additionally, the data separation allows custom import/automation soft-

ware to be integrated into our system. Data separation may enhance and simplify user

experience, eliminating many human errors that were previously inevitable. Finally, our

system keeps track of software artifacts that are managed outside of it. This makes our

system language independent, so it may be used in any environment without interfering

with the development process.

5.1 Opportunities for future research

It is worth noting that since the database tool was intended for projects currently using

either manual traceability methods or no traceability at all, it does expect project artifacts

to be stored in a text-parsable format. Since the majority of manual traceability methods

utilize text-parsable formats for project artifacts (Lempia and Miller 2006), this method-

ology should be viable for most projects, but it may not be effective for projects using

proprietary methods for artifact storage. Also, since the tool development was performed

alongside the project for which it was tested in the case study, there is a potential that some

project-specific customization may have occurred. An interesting area of further research

Software Qual J (2013) 21:23–38 35

123

and development would be to perform additional case studies with other projects and

identify challenges and complexities in adapting the tool for other types of projects.

The proposed system is applicable to a great number of software development domains

as well as methodologies. Even though it was originally built to meet the requirements of

the DO-178B standard, it offers much of the traceability capabilities necessary for a typical

software project. In the industries where tracking of additional artifacts is necessary, our

solution may be easily customized with minor changes to the database. For instance, if a

company needs to keep track of the software engineers responsible for implementing a

piece of code, a table for people and an intersection table for people-code relationship may

be added. Future research into useful customizations for software projects in other

industries and additional work toward simplifying tool customization as much as possible

would be beneficial.

Our proposed traceability tool as well as many of the existing traceability tools focus

primarily on requirements traceability or traceability among the various artifacts of a

software product. But many organizations invest a great deal on their processes and

maintain and improve it independently from their product development. End-to-end

traceability refers to efforts in streamlining and combining process and product traceability

activities. A major research area is to (1) consider how to analyze the challenges and

problems in end-to-end traceability and (2) enhance the proposed tool to provide for this

kind of traceability.

References

Armbrust, O., Ocampo A., & Soto, M. (2005). Tracing process model evaluation: A semi-formal process
modeling approach. In ECMDA traceability workshop (ECMDA-TW) 2005 proceedings (pp. 57–66).
Nuremberg, Germany.

Brown, A. (2004). Oops! Coping with human error in IT systems. Queue, 2(8), 34–41.
Cleland-Huang, J. (2006), Just enough requirements traceability. In Proceedings of the 30th annual inter-

national computer software and applications conference (COMPSAC’06) (pp. 41–42).
Cleland-Huang, J., Chang, C., & Christensen, M. (2003). Event-based traceability for managing evolu-

tionary change. IEEE Transactions on Software Engineering, 29(9), 796–810.
Egyed, A., & Grunbacher, P. (2002). Automating requirements traceability: beyond the record and replay

paradigm. In Proceedings of the 17th IEEE international conference on automated software engi-
neering (pp. 163–171). Edinburgh, United Kingdom.

Gills, M. (2005). Software Testing and Traceability. University of Latvia. http://www3.acadlib.lv/greydoc/
Gilla_disertacija/MGills_ang.doc.

Gotel, O., & Finkelstein, A. (1994). An analysis of the requirements traceability problem. In Proceedings of
the first international conference on requirements engineering (pp. 94–101). Colorado Springs, CO.

Hayes, J., & Dekhtyar, A. (2005). Humans in the traceability loop: Can’t live with ‘Em, can’t live without
‘Em. In Proceedings of the 3rd international workshop on traceability in emerging forms of software
engineering, (pp. 20–23). Long Beach, CA.

International Council on Systems Engineering. (2008). INCOSE requirements management tools survey.
http://www.paper-review.com/tools/rms/read.php.

Jarke, M. (1998). Requirements tracing. Communications of the ACM, 41(12), 32–36.
Lempia, D., & Miller, S. (2006). Requirements engineering management, presented at the 2006 National

Software and Complex Electronic Hardware Standardization Conference, Atlanta, GA.
Lungu, N., & Muvuti, F. (2004).Service oriented architecture for a software traceability system. Technical

Report CS04-14-00, Department of Computer Science, University of Cape Town.
Munson, E., & Nguyen, T. (2005). Concordance, conformance, versions, and traceability. In Proceedings

of the third international workshop on traceability in emerging forms of software engineering
(pp. 62–66). Long Beach, CA.

Naslavsky, L., Alspaugh, T., Richardson, D., & Ziv, H. (2005). Using scenarios to support traceability.
In Proceedings of the third international workshop on traceability in emerging forms of software
engineering (pp. 25–30). Long Beach, CA.

36 Software Qual J (2013) 21:23–38

123

http://www3.acadlib.lv/greydoc/Gilla_disertacija/MGills_ang.doc
http://www3.acadlib.lv/greydoc/Gilla_disertacija/MGills_ang.doc
http://www.paper-review.com/tools/rms/read.php

Ramesh, B. (1998). Factors influencing requirements traceability practice. Communications of the ACM,
41(12), 37–44.

Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements traceability. IEEE Transactions
on Software Engineering, 27(1), 58–93.

Spanoudakis, G., Zisman, A., Perez-Minana, E., & Krause, P. (2004). Rule-based generation of requirements
traceability relations. Journal of Systems and Software, 72(2), 105–127.

Telelogic. (2008). Telelogic DOORS—requirements management for advanced systems and software
development. http://www.telelogic.com/products/doors/doors/index.cfm.

Young, R. (2006). Twelve requirement basics for project success. CrossTalk The Journal of Defense
Software Engineering, 19(12), 4–8.

Author Biographies

Hossein Saiedian received a PhD in Computing and Information
Sciences from Kansas State University in 1989 and is currently a
professor of software engineering at the University of Kansas. Pro-
fessor Saiedian’s primary area of research is software engineering and
in particular models for quality software development, both technical
and managerial ones. Professor Saiedian has over 100 publications in a
variety of topics in software engineering and computer science. His
research in the past has been supported by the NSF as well as regional
organizations. Professor Saiedian is a senior member of the IEEE.

Andrew Kannenberg is a software engineer at Innovative Systems in
Mitchell, South Dakota. He received a bachelor’s degree in computer
science from the South Dakota School of Mines and Technology in
2004 and his master’s degree in computer science from the University
of Kansas in 2008.

Software Qual J (2013) 21:23–38 37

123

http://www.telelogic.com/products/doors/doors/index.cfm

Serhiy Morozov received his Ph.D. in Computer Science from the
University of Kansas in 2011 and is an assistant professor of computer
science at the University of Detroit Mercy. He completed his MS in
Computer Science in 2007. His primary research area is in recom-
mender systems, data retrieval, knowledge discovery systems, and
software engineering.

38 Software Qual J (2013) 21:23–38

123

	A streamlined, cost-effective database approach to manage requirements traceability
	Abstract
	Introduction
	The traceability tool problem
	Problems with manual traceability methods
	Problems with commercial off the shelf (COTS) traceability tools

	A proposed solution for the traceability tool problem
	A proposal for a database-based approach to traceability
	Prototyping the database-based approach to traceability
	Identifying the necessary traceability data
	Designing the database
	Creating the software wrapper for the database

	A practical case study
	Software project background
	Metrics
	Comparison with past project results using manual methods
	Cost comparison with existing traceability tool alternatives

	Conclusions
	Opportunities for future research

	References

