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a b s t r a c t

With the growing number of mega services and cloud computing platforms, industrial organizations
are utilizing distributed data centers at increasing rates. Rather than the request/reply model, these
centers use an event-based communication model. Traditionally, the event-based middleware and the
Complex Event Processing (CEP) engine are viewed as two distinct components within a distributed
system’s architecture. This division adds additional system complexity and reduces the ability for
consuming applications to fully utilize the CEP toolset. This article will address these issues by proposing
a novel event-based middleware solution. We introduce Complex Event Routing Infrastructure (CERI),
a single event-based infrastructure that serves as an event bus and provides first class integration of
CEP. An unstructured peer-to-peer network is exploited to allow for efficient event transmission. To
reduce network flooding, superpeers and overlay network partitioning are introduced. Additionally, CERI
provides each client node the capability of local complex query evaluation. As a result, applications
can offload internal logic to the query evaluation engine in an efficient manner. Finally, as more client
nodes and event types are added to the system, the CERI can scale up. Because of these favorable scaling
properties, CERI serves as a foundational step in bringing event-basedmiddleware and CEP closer together
into a single unified infrastructure component.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Cloud computing, mega services, and thin clients are becoming
mainstreamwithin the industry. Complex applications aremoving
off the desktop in favor of deployment within the cloud. The
cloud computing model is reminiscent of mainframes and dummy
terminals. However, our client machines are quite powerful and
ourmainframes are a cluster ofmany servers that appear as a single
entity to the client as opposed to a centralized server. Whether
it be searching the Web, checking email or uploading photos to
share with family, the user gets the impression that he or she is
interacting with a single service. In reality, there is a controlled
chaos behind the scenes among potentially hundreds of servers to
perform a single operation. Companies developing these services
are constantly driven to add additional servers to accommodate
new features, more traffic or lower latencies.

Although the function of these distributed systems is quite di-
verse, there are common threads that run through all of them.
The various components within the system need a mechanism to
communicate with one another, and the components perform op-
erations at a staggering rate. While reply/request communication

∗ Corresponding author.
E-mail addresses: saiedian@eecs.ku.edu (H. Saiedian), gabew@microsoft.com

(G. Wishnie).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.11.005
was traditionally used for communicationwithin a distributed sys-
tem, the industry is starting to adopt event-based communication
mechanisms as their primary communication method. There are
a few predominant reasons which are causing this shift to occur.
Reply/request based communication creates a tight coupling be-
tween two components within a system. This is because the initia-
tor has to be aware of the consumer and both require the ability to
communicate with one another using the same channel and proto-
col. Having components tightly coupled complicates upgrades and
adds fragility into already complex systems. All of these additional
details place unnecessary burdens on the developers of the system
and require them to focus on lower level details rather than the
business level logic of the application.

1.1. Current event-based middleware limitations

Event-based communication solves the problem of spatial
coupling and temporal coupling [3] because the producers of
events and their consumers have no knowledge of one another.
In other words, the producer and consumer do not directly
communicate with one another. Communication within an event-
based system is done via middleware, called the event notification
service, which serves as a message bus within the system. An
event is defined as any observable operation of interest within a
system [8]. When a component wants to notify other components
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within the system that an event has occurred, it will publish
a notification using the notification service. In the same right,
when a component wants to know when certain events occur
within the system it will subscribe for a notification from the
notification service. It is then the job of the notification service
to ensure that events published by the producers make it to the
appropriate consumers. Additionally, the notification service can
shield the individual components from much of the complexities
of message passing, such as reliable messaging, message ordering
and other policies provided by a particular notification service.
Centralizing communication in this manner helps provide a single
and consistent model for the entire system.

As previously stated, an event is any observable operation
within a system. In today’s distributed systems, thousands of
events take place each second. Because events are being generated
so rapidly, it is very difficult for humans to extract much meaning
from the event cloud [7]. To illustrate, consider a banking system.
The system simply allows users to deposit and withdraw money
from their accounts. Using this system, consider the scenario
where a user attempts to withdraw money from their account but
is notified that it failed. In fact, there are many failed transaction
notifications generated within a small timeframe throughout the
system. Looking at each transaction, itmight not be clear that there
is a bigger issue; however, considering all the failure notifications
it seems obvious to conclude that there is an infrastructure issue. In
fact, at around the same time the bank balance lookup system sent
out a notification that it lost connectivity, causing all the failures.
Rather than have an engineer look, spending possibly hours, at all
the failures and eventually come to the conclusion that all were
caused because the balance lookup system lost connectivity, it is
better to allow the system to watch for this type of scenario itself
and notify the engineer of the exact issue. The ability to look at the
system at a higher level of abstraction is not addressed by current
publish/subscribe middleware. Rather, a separate complex event
processing component is required.

1.2. Current complex event processing limitations

The area of Complex Event Processing (CEP) arose from the need
of being able to extract meaningful information from the event
cloud created within a distributed system. A typical CEP system
consists of two primary components: the query language and
the query processor. Instead of allowing only basic subscriptions
with filtering, CEP systems allow a query to be submitted which
can contain complex filtering and time aggregation. For instance,
many CEP systems allow users to submit a query which looks at
a group of events within a given time window rather than just
individual events. This type of functionality allows aggregation of
more frequent events into summary events as well as time based
pattern detection. CEP systems also provide a query processor
which can receive the notifications being generated within the
systemand evaluate themagainst the CEP querieswhich have been
submitted.

Most CEP systems serve as a standard subscriber within
the system that listens for all notifications as opposed to the
notification service [7]. In other words, there is a dedicated
component within the system which serves as the complex query
processor. This component instructs the notification service that
it wishes to receive all notifications within the system. It will
evaluate the notifications against the subscriptions it has received.
When a condition within the query is satisfied, the processor
will perform various operations such as sending an email or even
publishing a new notification within the system to be received
by other components. While this centralized architecture allows
for easy integration within existing architectures, it also presents
scaling issues and does not allow the system to take advantage of
certain benefits that would come from combining the message-
passing middleware with CEP processing capabilities.

As stated earlier, a typical CEP system is built under the as-
sumption that its query processor will subscribe to all notifications
within the system in order to evaluate the queries submitted to it.
By centralizing the processor, a bottleneck is inserted into the sys-
tem as the system generates more notifications. A common solu-
tion to this type of scalability issue is to partition thedata processed
by the query processor. In other words, multiple query processors
will now exist and each of them only subscribe to a subset of the
notifications. Some of the issues with this solution are how to sub-
mit the queries to the correct query processor (the one receiving
the notifications being referenced) and how to handle subscrip-
tions that are interested in notifications received by two different
query processors.While these issues are solvable, they increase the
management complexity of the system each time new notification
types or queries are added.

This article presents the architecture of a publish/subscribe
middleware which, unlike other publish/subscribe middleware,
supports complex queries in a distributed manner. CERI addresses
complex queries by presenting a hierarchical event routing
transport layer whose goal is to efficiently route events to the
appropriate nodes. Each node then has the capability to process
these events using CEP semantics. Applications using CERI benefit
in two primary ways. First, they can submit complex queries as
they would in a standard event subscription. The advantage is
that complex queries support a much wider array of functionality,
allowing complex logic and filtering to be offloaded to the
event processing engine. Second, because all nodes have complex
query evaluation capabilities, applications can use the advanced
processing capabilities for local operations without suffering the
performance loss of communicating with a central processor. A
prototype of the above system is provided and tested. The objective
of the prototype is to demonstrate that a system with integrated
CEP capabilities can scale up to meet the communication needs of
a distributed system.

2. Background

Before discussing the current research in the field and the
proposed architecture, it is important to first have background
knowledge and a basic understanding into publish/subscribe
middleware. This section provides this additional context by first
introducing some of the basic architectures that are often used
when developing distributed publish/subscribe middleware and
then describing the core concepts that differentiate complex event
processing from standard event subscription models. Many of the
concepts utilized within CERI’s overlay network build upon this
body of work.

2.1. Architectural concepts

As distributed systems grow, they often evolve in terms of
hardware, network and architecture. If all applications that make
up a distributed system had to be aware of these changes,
the distributed system as a whole would grow very complex
and instable. Middleware is often used to allow for the natural
evolution of a distributed system while reducing the impact of
such changes to all components. Middleware is a logical layer that
sits between the consuming application and the physical operating
system and hardware [13]. Using middleware localizes the needed
modifications based on physical changes into a single layer of the
distributed system, allowing the consumers to remain unchanged.

When a distributed system uses an event-basedmodel for com-
munication, the application generating the notifications (produc-
ers) and the applications consuming the notifications (consumers)
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Table 1
An overview of the common relationships among events.

Time Ordering of events based on a clock.
e.g., A user deposits $500, then later withdraws $100.

Cause Dictates that one event must have occurred in order for another to have occurred.
e.g., A user withdrew $500 causing an overdraft to occur.

Aggregation Contains the set of events that make up the higher-level event.
e.g., A user gets an overdraft notice because $500 was deposited, $100 was withdrawn and $500 was withdrawn.
are not aware of one another. Instead, a consumer simply lets the
publish/subscribe middleware know that it wishes to receive cer-
tain notifications. When the consumer publishes the notifications
that match a subscription the middleware ensures that it goes to
the appropriate consumers.While this sounds straightforward, the
challenge comes when considering the scale at which many of the
enterprise level distributed systems operate. In other words, there
are thousands of producers and consumers generating notifica-
tions at extremely high rates. Fortunately there are a few funda-
mental architectural concepts that have been developed for such
circumstances.

The first major distributed systems were built for the purpose
of file sharing. Initially, they were implemented with a centralized
index node that stored the mapping of files to nodes. When
a node wanted to locate a file, it first contacted the central
index to locate which nodes had the file being requested. Once
located, it would go directly to those nodes to download the
file. In fact, the once infamous Napster file sharing network was
implemented with the above design. Because all nodes on the
network first had to contact the centralized index node before
downloading a file, the centralized index node served as the
bottleneck to the system. Realizing the limitations of a centralized
approach, other system architectures soon arose attempting to
decentralize the lookup process [11]. The next generation of
distributed systemswere designed in such away that nodes simply
contacted one another for file locations rather than a centralized
index node. Because of the decentralized nature of these systems
and the direct communication among nodes, this type of system
is referred to as having a peer-to-peer architecture [13]. Just as
file sharing distributed systems started out utilizing a centralized
architecture and later evolved into decentralized peer-to-peer
architectures, publish/subscribe middleware also followed the
same progression [5].

Peer-to-peer architectures fall into two primary categories:
structured and unstructured. The primary difference between the
two is the method in which the network is constructed. Struc-
tured peer-to-peer systems are constructed in a deterministic way,
while unstructured are not [13]. Currently themajority of proposed
publish/subscribe middleware systems utilize a structured peer-
to-peer network. Specifically, most publish/subscribe middleware
systems utilize some form of a distributed hash table (DHT). As
implied by the name, a DHT uses some form of hashing to dis-
tribute data and workload among the nodes in a system. Within a
DHT based publish/subscribe middleware, peers share the task of
storing subscriptions, matching subscriptions and delivering
notifications. The challenge of using DHT based architecture is
distributing load in a uniform manner across all nodes and per-
forming efficient lookups [16]. Some approaches used to solve the
previously mentioned issues of utilizing a DHT based architecture
within publish/subscribe middleware will be addressed in more
detail in Section 3.

2.2. Complex event processing

As the popularity of event-based communication grew within
the software community, so did the realization that as a distributed
system grows larger it is extremely difficult to get a good picture of
the behavior of the system at any one point in time. Consider again
the banking application mentioned earlier. Within this system
at any point in time there can be thousands of account holders
making deposits, withdrawals and transfers, each of which lead
to the generation of one or more events. In addition to the user
triggered events, the system itself is producing events to notify
of things such as network health, server health and component
level failures. The sheer volume of events within a distributed
system at any point in time make it all but impossible for a human
to make any kind of meaningful correlation without help. The
field of complex event processing (CEP) was developed to help
in the situation described previously. Essentially it strives to give
meaning to the meaningless cloud of events within a system.

Traditionally, publish/subscribe middleware systems adhere
to one of three types of subscription schemas: topic-based,
content-based and type-based [3]. Topic-based is the oldest and
simplest subscription schema. Within this subscription schema
each event is assigned to a particular topic. The subscribers
can request which topics they wish to receive. Topics can be
hierarchical in order to provide some flexibility, but even so
the filtering is limited. The content-based subscription schema
provides additional filtering capabilities over topic-based filters.
Systems that allow for content-based subscription filtering enable
events to be filtered by each of the attributes or properties
associated with the event. Allowing the additional granularity in
filtering reduces the number of unwanted events a subscriber
receives. For instance, consider a component within the example
banking system that wishes to receive all deposit events with an
amount of $500 or greater. In a topic-based system the subscriber
would receive all deposit events regardless of amount and would
then have to further filter out the ones that meet the additional
amount criteria. However, in a content-based system this logic
could be done in the subscription itself, meaning that the logic
in the subscribing component is simplified as the extra filtering
is no longer needed. Finally, the type-based subscription schema
provides much of the functionality of the content-based schema
with the addition of a type system being imposed on the events.
By utilizing a type system with events, a hierarchical and even
polymorphic relationship can be used in filtering, much like
what is present within a topic-based schema. While all of the
previously mentioned subscription schemas are useful, they have
the restriction of being able to only consider a single event at a
time.

In traditional publish/subscribe middleware event subscrip-
tions are typically limited to evaluating against a single event
at a time. While this is useful for receiving events that match
certain criteria, it still requires that subscriber components per-
form any aggregation and correlation their business logic requires.
Additionally, looking at raw events in this manner provides little
benefit to humans monitoring large scale distributed systems. For
this reason, CEP systems go beyond the previously mentioned fil-
tering capabilities and allow relationships between events to be
represented using advanced pattern matching languages. Specifi-
cally, the most common types of relationships considered to exist
between events are time, cause and aggregation [7]. Table 1 pro-
vides examples of what each of these relationships may look like
within the example banking system.

When observing relationships of this nature within the system,
a new entity is produced called a complex event. A complex event
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is simply an aggregate of one or more events that caused it to
occur. In other words, a complex event contains the events which
caused it [7]. Complex events providemuchmore information than
individual events. When connecting the causality of individual
events it is necessary that the application developer or user have
some understanding into the problem domain. However, complex
events contain the events that caused it to occur, making it obvious
as to what series of events lead to the current state.

3. Existing event-based middleware

The field of event-based middleware has been around for al-
most 20 years. Although this may not seem young in terms of the
computer industry, it remains relatively immature with the vast
majority of research completed within the last five to seven years.
The recent influx of research in the field can be contributed to
the growing trend of businesses to build cloud-based applications
rather than traditional client-based applications. This in turn in-
creases the number of distributed systems being developedwhich,
as demonstrated previously, often rely on event-based communi-
cation. As the amount of research increased, trends arose among
the various systems. Eugster et al. [3], provides a good dissection
of the various pieces that form an event-based middleware sys-
tem. Rather than provide that type of generalization, this section
attempts to show the evolution through a discussion of some of the
specific systems which have been proposed throughout the years.
In addition, the limitations of these existing systems will also be
noted to demonstrate the motivation for constructing the system
proposed in this article.

The systems being discussed in the remainder of this section
have been broken down into two major categories based on the
type of overlay network they implement: hybrid andDHT. The final
category in this section diverges from this model to discuss the
research done which directly relates to CEP.

3.1. Hybrid overlay networks

The first implementations of event-based middleware did
not have to deal with the scale present in today’s distributed
systems. For this reason, they were built with a centralized
server acting as the broker between the various clients who
published and consumed events. One such system that illustrates
this architecture is Yeast [5]. As alluded to earlier, Yeast uses
a centralized server to manage all clients within the system.
Clients would then send what were termed specifications, or
subscriptions, to the server in order to describe the pattern of
events which it was interested in receiving. With the growing
popularity of the Internet and the realization that the centralized
server approach would no longer scale, the focus turned toward
solving the problem of scalability.

In 2001, Carzaniga et al. [2] presented SIENA, which would
serve as the basis for much of the future research in the field.
SIENA was unique in the fact that it was first to provide an
expressive subscription language while also scaling to meet the
needs of larger networks. It did so by distributing the evaluation
of subscriptions and delivery of notifications throughout all
client nodes within the network rather than a centralized
location. Specifically, SIENA supported two primary types of
network topologies: hierarchical and peer-to-peer. To combat the
performance bottleneck broadcasting events to all nodes within
the network, SIENA broadcast the subscriptions (subscription
forwarding) and, optionally, the events published by each node
(advertisement forwarding). The decision to broadcast in this
manner was based on the fact that there are typically far less
subscriptions than notifications. With the communal knowledge
of which nodes require which notifications, the routing path can
be optimized for efficient delivery.
While SIENA allowed for expressive filtering and basic pattern
matching, it did not implement a complete pattern matching
language. In fact, the assumption was made that any necessary
matching beyond the capabilities of the language would be done
externally. In other words, if a node needs to construct a more
complex subscription than that allowed, it would have to instead
decompose the complex query into simpler ones that SIENA could
understand and perform the more advanced filtering locally.

At around the same SIENA was developed, Pietzuch and Bacon
[9] presented a more traditional event-based middleware system
dubbed Hermes. As with SIENA, Hermes distributed subscription
evaluation and event propagation throughout the nodes on
the network. However, Hermes provided a dedicated function,
called an event broker, which was responsible for performing
these functions. Within Hermes’ network the event brokers were
interconnected with client nodes, called event clients, which
are connected to the brokers. To extend the event filtering
capabilities beyond that provided by type-based subscriptions,
Hermes also supported basic content-based filtering. The content-
based filtering was performed by the brokers as close to the
source as possible to reduce unnecessary traffic. Similar to
SIENA, Hermes’s filtering capabilities were tightly bound to the
network topology. For this reason, neither made ideal candidates
for integrated CEP capabilities as they would require extensive
modifications.

3.2. DHT overlay networks

In addition to the various types of hybrid overlay networks
developed for use within event-based middleware, the use of a
DHT overlay network is often exploited due to the inherent ability
to provide efficient lookups across a distributed network. One
of the first such systems is called Chord [12]. Although Chord is
not an event-based middleware in its own right, it serves as the
basis for many such systems. For this reason, it warrants a brief
examination.

Chord was constructed with only a single operation in mind.
Given a key, it can map it to the node which contains the
associated data. Although seemingly simple, the problem is quickly
complicated by the fact that nodes can leave and join the network
at any time. When a node joins the network it is assigned an
identifier based off its IP address. The nodes are organized in a
ring based upon the identifier they have been assigned. The node is
then assigned a set of keys through the use of a consistent hashing
algorithm. When a node joins the network it is given some of the
keys of its successor within the ring. In the sameway, when a node
leaves the network, its keys are assigned to its successor within
the ring. Assigning keys in such a manner provides a balanced
distribution across all nodes in the ring, and also provides for
efficient entry and exit from the node ring.

Due to the previously discussed characteristics of Chord,
various event-based middleware systems are based upon this
overlay network. Two such systems are detailed by Terpstra
et al. [14] and Yang and Hu [16]. Terpstra et al. [14] describe
a system in which the task of delivering a notification and
evaluating a subscription is distributed among all the nodes within
the ring. Unfortunately, there is no specific subscription schema
implementedwithin their system, so it is unknown as to how itwill
perform. Additionally, it relies on broadcasting for the distribution
of subscriptions. Although there are often fewer subscriptions
within a system than notifications, it could lead to a bottleneck.

Yang and Hu [16] demonstrate that a content-based subscrip-
tion schema can be constructed atop a Chord overlay network.
They accomplish this by modeling the entire system’s schema as a
multi-dimensional space. Each dimension within this space repre-
sents an attribute that comprises the event. By describing the space
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in such amanner, the event can then be thought of as a point in the
space and the subscription is defined as a hypercuboid. A match is
madewhen the point represented by the event iswithin the hyper-
cuboid represented by the subscription. Unfortunately, because a
new dimension needs to be created for each event attribute, the
model breaks down as the diversity of events within the system
increases.

In addition to the Chord overlay network which supports
a single lookup operation, another foundational design was
developed by Ratnasamy et al. [11] to provide similar functionality.
The content-addressable network (CAN) attempts to solve the
same issue of a scalable distributed lookup operation but in a
differentmanner than that used by Chord. Specifically, a CANmaps
a virtual coordinate among all nodes within the overlay network.
Each node is responsible for the coordinate space it is assigned.
When a key/value pair is added to the system, the key is first
hashed using a uniform hash function and then mapped to a point
within the coordinate space. In the same way, when data needs
to be located, the hash of the key is computed which locates the
coordinate. Thus, by knowing the coordinate, the node storing the
value is also known.

Just as with Chord, many event-based middleware systems are
based on a CAN. Each typically focuses on a single shortcoming
of the initial implementation in an attempt to overcome the
limitation. For instance, Gupta et al. [4] present Meghdoot, which
focuses on evenly load balancing among all the peers in the
network. The limitation they focused onwas that of the uniformity
of the hash function to distribute data among all nodes. Specifically,
they proposed that real world data is often skewed, causing
the hash function to break down. To solve this problem, they
allow nodes to share knowledge of their current load and, if
needed, rebalance to reduce the potential bottleneck. In addition
to the Meghdoot system, Bharambe et al. [1] developed Mercury,
which adds support for multi-range queries within a DHT overlay
network. While the addition of range operators helps improve
the flexibility of the subscription language, causal relationships
and other advanced operators required by CEP still cannot be
represented, causing the model to break down.

Overall, DHT based overlay networks present interesting tech-
niques at efficiently balancing data, balancing load and perform-
ing efficient lookups among a large distributed network. The
problem lies in the fundamental motivator which was used to
design these types of networks. When built, they were op-
timized for a single operation: a value can be located effi-
ciently given a key. While there has been research done to
improve the available operations provided by subscription lan-
guages, each additional operator has to be carefully mapped
into how the network is built. Due to the number and com-
plexity of operators supported by complex query languages, it
is impractical to attempt to support them natively within a
DHT based overlay network. For this reason, a DHT was not
utilized by the system proposed in this article.

3.3. CEP frameworks

As evident by the amount of research available, the field of
CEP is much younger and less investigated than that of general
event-based middleware systems. Typically the research related
to CEP does not consider the act of event routing, just as the
previously mentioned systems do not consider support for CEP.
For instance, Pietzuch et al. [10] propose a composite event
(CE) detection framework which allows events to be composed
into complex events rather than subscriptions only considering
single events. The problem is that the proposed framework
merely acts as a simple subscriber and publisher within the
existing event infrastructure. In other words, the CE detection
component subscribes to all events or a specific set of events
using the capabilities provided by the current event infrastructure.
As complex events are created, they are published back to the
existing event infrastructure for distribution. The same type of
implementation is utilized byWu et al. [15] when presenting SASE.
Rather than focus on an end-to-end implementation, the research
instead focuses on the challenges presented by CEP.

While implementing the CE or CEP framework as a pluggable
component provides great flexibility for integration into existing
systems, it falls short in two primary areas. First, the scalability
model of the systems is different, which adds complexity into the
overall distributed system. In other words, a lot of focus is given to
scalability within the field of event-based middleware. However,
scalability is often overlooked when presenting a framework for
CEP. Ideally, the CEP system can take advantage of the extensive
research in this problem space done within the event-based
middleware field. Unfortunately, if the CEP engine acts merely as a
subscriber to events, it cannot. Second, the application developers
must learn two systems and often cannot easily take advantage of
the capabilities of the CEP toolset. Consider if an application wants
to only receive a complex event which has child events that meet
a specific criteria. Because the event infrastructure itself has no
knowledge of complex events it is not possible to construct a query
to meet the needs of the application. For these reasons, the system
proposed in this article considers CEP capabilities as a primary
function within the systems and merges the message passing and
CEP processing into a single infrastructure.

4. Proposed event-based middleware

This section introduces the architecture of the complex event
routing infrastructure (CERI). As described in the following section,
CERI utilizes several concepts from previous bodies of work for
scaling and routing optimizations but does so with the focus on
integrated CEP. CERI consists of two primary components: the
event router and the local event router. The role and high level
design of each of these components are discussed in detail in the
following subsections.

4.1. The event router

The event router’s primary responsibility is to facilitate the
process of events published by an application reaching the
applications that require them. Because of the wide range of
operators available to event matching languages used for CEP,
it is difficult to effectively filter out all candidate events before
they reach the client. For this reason, there are two levels of
filtering within CERI. The first level occurs at the event router
level while the second occurs on the clients themselves as part
of query evaluation. Due to the tiered filtering, it is inevitable
that more events will need to be routed than are actually needed
for query evaluation. Typically publish/subscribe systems attempt
to hash the subscriptions and events over a structured peer-to-
peer network [4]. While this provides the needed functionality
to support basic operators in the subscription, it is difficult to
perform range queries and other advanced operators efficiently.
As these operators are part of event pattern matching languages
used for CEP, it is necessary that they are efficiently supported
within CERI. For this reason, CERI’s emphasis is on efficient event
routing, allowing for query evaluation on all clients. With this
in mind, CERI diverges from most publish/subscribe middleware
systems and uses an unstructured peer-to-peer network rather
than a structured one.

Unstructured peer-to-peer networks differ from structured
peer-to-peer networks primarily in how the overlay network
is organized [13]. While structured peer-to-peer networks are
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Fig. 1. The benefits of superpeers within an unstructured peer-to-peer network. Without superpeers, an event must be broadcast to all other nodes regardless of whether it
is needed to. With the use of a superpeer, the events required by each node are indexed. When an event is published, it first goes to the superpeer which will only broadcast
to the appropriate nodes.
organized in a deterministic way which can be exploited by the
distributed system built on top of it, unstructured peer-to-peer
networks are built in a much more random manner. Although
the random construction of an unstructured peer-to-peer network
often helps nodes join and leave in an efficientmanner, data lookup
complexity is increased. To combat the issue of inefficient data
lookup, CERI uses superpeers to aid in event routing [6]. Fig. 1
illustrates the benefit of using superpeers to aid in event routing.

In CERI, the event router acts as the superpeer within the
system. When a node joins the network it will connect to an
event router. As a node creates subscriptions, the event router will
index the type of events required by all the subscriptions on that
particular node. The event routerwill then perform the first level of
filtering previously mentioned and only route the types of events
actually needed by the node for subscription evaluation. Because
large distributed systems often contain a large number of event
types, performing the initial filtering on the event router reduces
the footprint of CERI on each individual node.

For scalability purposes, there aremultiple event routerswithin
the system. By allowing multiple event routers, the system can
be scaled out rather than up as the peer-to-peer network grows.
For simplicity, rather than allow elections to determine which
peer among a pool of candidates will serve as an event router,
the event router role is a dedicated function within the system.
In other words, the machines acting as event routers will not be
running client applications. Making the event router a dedicated
function was done for two reasons. First, to make certain that an
event router is not executing client applications ensures that a
poorly written application cannot negatively impact a large set of
nodes relying on the given event router node. In other words, if a
client running on the event routerwere to consume themajority of
system resources causing the event router capabilities to suffer, all
additional nodes would suffer. Second, by providing a dedicated
function, a higher density of nodes to event routers will exist,
reducing the cross communication that happens among the event
routers. The separation of function was primarily completed due
to the large amount of event filtering that will be taking place on
the event routers. If the event router is the only task running on a
particular node, then the risk of starvation to any client application
running on the same node is not a threat.

To aid child nodes in selecting a potentially optimal event
router, the event router publishes a number of metrics to
give an indication of its current performance and load. These
metrics include incoming events per second (EPS), outgoing EPS,
subscription count and client count. Using these metrics, a child
node can get an indication of not only if it would like to connect
to the event router in the first place, but also if it would like to
switch to another less congested event router once connected.
By allowing performance interrogation of this nature by the child
node itself, starvation of a particular node is less likely to occur as
it can decide at any time if it would like to relocate. Load balancing
among the event routers themselves is another option to alleviate
this type of congestion. Yeung Cheung and Jacobsen [17] provide
a comprehensive investigation into load balancing techniques
within a distributed content-based system called PEER. However,
these methods were not considered within this design.

As a distributed system scales out, it is necessary to add
additional event routers. When more event routers are added,
network flooding again becomes an issue. For this reason, event
routers are grouped into zones. Zones are a logical grouping of a
set of event routers. This grouping can be completedmethodically,
such as grouping machines with similar functions into the same
zone, or it can be done randomly. Zones help reduce network
flooding by distributing the event type filtering that occurs on
the event router among the entire zone. This is accomplished
by allowing event routers within a zone to exchange the list
of event types their children require. In other words, CERI
performs subscription forwarding within zones as an optimization
technique [2]. Now, when a node publishes an event, its event
router will know if any other event routers within the zone have
children which require the event. With this knowledge, the event
router will only transmit the event to the appropriate subset of
event routers as opposed to all event routers just to be potentially
discarded by most. Fig. 2 demonstrates these differences.

With the formation of zones the overlay network is effectively
partitioned. Applications that tend to depend on one another are
grouped within the same zone as inter zone event transmission
is much faster. However, because publish/subscribe systems
decouple publishers fromsubscribers, this is not a requirement. For
this reason, the role of a gateway event router is introduced. The
gateway event router is effectively a superpeer among the event
routers. It performs the same function as any other event router
with the difference that it will also be the gateway between its
zone and all others within the overlay network. An election is held
within each zone among all the event routers to determine which
one acts as the gateway event router. Once the winner is decided,
all event routers are notified as to who is the acting gateway event
router.
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Fig. 2. The benefits of event router information sharing within zones. On the left is a zone in which the event routers (the gray nodes) do not share the events required
by their child nodes (the white nodes) with other event routers. Because of this configuration, when an event is published, it must go to all event routers even through
it only needs to go to the event router of the nodes that subscribe to the event (the black node). On the right the same scenario demonstrates the reduction of network
communication when publishing an event while information is shared within the zone.
Fig. 3. CERI’s overlay network. An example overlay network that contains two zones. Each zone has a single gateway event router (dark gray nodes), multiple event routers
(light gray nodes), and potentially many child nodes (white nodes).
The gateway event router has the extra responsibility of acting
as the mouthpiece of its zone. As a result, all events that originate
within a zone are always published to the current acting gateway
event router. Once a gateway event router receives an event from
its zone, it publishes it to the gateway event routers in all other
zones. In the same right, the gateway event router receives all
events that originate from external zones. Because the gateway
event router has the knowledge of what events each other event
router requires, the events are then directly distributed. The
organization of event routers and peerswithin the overlay network
is shown in Fig. 3.

The event publication process is composed of six distinct steps
as described below:

1. An event is sent from a client machine to the event router.
2. The event router forwards the event to all appropriate event

routers and the gateway event router within its zone.
3. The gateway event router distributes the event to all other

gateway event routers.
4. Within each zone the gateway event router forwards the event

to all appropriate event routers.
5. The event router sends the event to all appropriate client

machines.
6. The client machine receives the event and evaluates it against
its queries.

For clarity, the described event publication process is illustrated in
Fig. 4.

Using the above communicationmodel, an event will be routed
through at most four event routers for inter zone communication.
To achieve this upper bound, gateway event routers must have
knowledge of all zones within the system. If the system’s scale
surpasses practicality, gateway event routers can be modified
to only contain a partial view of the zones. However, such a
configuration increases the potential number of hubswhen routing
events between zones since each eventwould have to be published
by multiple gateway event routers rather than only one. For inter-
zone communication, an event will be routed through at most two
event routers. This is possible because all event routers within a
zone exchange the list of events required.

4.2. The local event router

In the same way the event router has the responsibility of
ensuring nodeswithin the overlay network receive the appropriate
events, the local event router’s responsibility is to ensure that
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Fig. 4. The event publication process. The steps indicated correspond to the process outlined above. Note that step 6 is not shown as this happens on each client and does
not require an additional transmission.
Table 2
The functionality provided by the CERI API.

RegisterForEvents Allows client applications to register for a set of events
UnregisterForEvents Allows client applications to unregister for a set of events
UnregisterAllEvents Allows client applications to no longer receive events
PublishEvent Allows client applications to publish an event
AddListener Allows client applications to receive a callback when a query match occurs
Fig. 5. The local event router interactions. The local event router serves as the
facilitator on the client node between the client application, the CEP engine and
the event routing infrastructure.

once events reach the node, they are routed to the appropriate
application for evaluation against the complex query. In addition
to event routing capabilities, the local event router has the extra
responsibility of facilitating the publication process with the client
applications and managing the connection of the node to the
overlay network. Fig. 5 demonstrates the interactions between all
of CERI’s components.

When a node wishes to join the network, the local event router
will begin the process of locating an appropriate event router
to make a connection with. Once connected to an event router,
the node is ready to create subscriptions and begin publishing
notifications. To aid application developers in both of these
processes, a simple application programmer interface (API) is
provided as a library. Intentionally, the library contains minimal
functionality, detailed in Table 2.

When the local event router receives an event to publish it adds
it into a publication queue. When dequeued, the local event router
attempts to publish the event to the event router. If the publication
fails, the following actions are taken. First, the local event router
will attempt tomake a configurable amount of retries to the known
event router. If still unsuccessful, the node and/or event router are
most likely having connectivity issues. The local event router will
next attempt to locate another event router to which to connect.
If successful, the event will be published as expected. However, if
still unsuccessful, the local event routerwill continue to retrywhile
allowing new events to be queued.

In the same way a client application can publish an event,
it can also create a subscription. The subscription itself is
evaluated locally. By locally evaluating a subscription, CERI allows
applications to efficiently offload internal logic to the CEP engine
without incurring the performance penalty of having to transmit
the event to an external machine. However, in order to perform
the first level of type based filtering, the types required for
evaluation are extracted. Once the types have been extracted,
they are processed for uniqueness. In other words, if the types
required have already been requested for the given node for
other subscriptions, no action is taken. Otherwise, if new types
of events are now required, the event router must be notified
in order to begin routing the additional events to the node. In
addition to sending required types to the event router when a
new subscription is added, the event router also has the ability to
request the node send all event types it requires. This is primarily
used when a node switches between event routers. The first thing
the event router does is request the full list of event types the node
wishes to receive.

In addition to facilitating the publication and subscription
processes, the local event router interacts with the CEP engine.
The local event router can interface with any CEP engine and
serve as an adapter to transform the events in a format which
can be understood by the engine. By not restricting the engine,
a CEP engine can be selected to best support the needs of the
organization. As noted earlier, evaluation of complex queries
takes place on the client nodes themselves. The benefit of
localizing this process is that not only can the system scale as
nodes are evaluating their own subscriptions, but applications
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can also efficiently take advantage of the functionality provided
by the CEP engine. For instance, a client application need not
only generate events for distribution but rather generate events
for their own consumption. Because complex pattern matching
languages support rich functionality and the subscriptions are
evaluated locally, applications can better utilize the infrastructure
for handling error prone logic that once would have been
implemented from scratch. By offloading logic in this manner,
additional benefit is added to the consuming applications.

5. Experiments and analysis

In order to prove that the theoretical design can be imple-
mented in an efficient manner, a prototype was constructed and
experimented on. This section begins by describing the technology
stack used by the prototype. Next, the implementation level de-
sign details are covered. This includes some of the lower level ar-
chitectural choices and the reasoning that went into making them.
Finally, the results of the experimentation are presented. Because
CERI is not responsible for processing the complex queries, the ex-
perimentation primarily focused on event routing speed.

5.1. Prototype design

One of the difficult tasks when constructing any system is de-
ciding which technologies best balance the various requirements.
With the requirements for CERI in mind, Table 3 enumerates
the category and chosen technology used when constructing the
prototype.

As shown in Table 3, the prototype primarily utilizes aMicrosoft
technology stack. This translates into Windows Server 2008
serving as the platform and.NET 3.5 as the development platform.
Additionally, Windows Communication Foundation (WCF) is used
when performing both inter process and network communication.
WCF was selected because it provided a simple way to modify
both the protocol and the channel being used for communication
in order to find the preferred combination. Finally, NEsper was
selected as the CEP engine used to perform complex query
evaluation in the prototype. NEsper was primarily selected due to
the flexibility it provides. It supports a very simple hosting model
which is exploited in the prototype.

Events within CERI are represented with plain-old.NET objects.
The only restriction placed on the event itself is that it must be
serializable. This is necessary because events must have the ability
to be transmitted over the network. For performance reasons
events are not deserialized until they reach their destination. To
allow the first of type based filtering to occur on event routers, the
type is transmitted separate from the main payload of the event.
The sequence of events that occurs when an event is published
by an application is shown in Fig. 6. When the event reaches an
appropriate node for query evaluation it is deserialized, converted
as necessary for the CEP engine and evaluated against all queries.

5.2. Experiments

In order to gage the effectiveness of the overlay network im-
plemented in CERI, simulations were performed on the prototype
described in the previous section. Because CERI’s primary focus is
on the transmission of events in a way which supports CEP, the
focus of the simulations is on the various transmission test dimen-
sions rather than query processing. It is understood that whatever
CEP engine is chosen for usage in conjunction with CERI will take
some non-zero time for processing the queries; however, for the
purposes of this article, this processing time is not considered. This
is primarily due to the volatile nature of measuring the time to
process a CEP query. The processing time can fluctuate based on
Table 3
The prototype’s technology stack.

Operating system Windows 2008 enterprise edition
Development platform .NET framework v. 3.5
Networking platform Windows communication foundation
Logging library Log4net
CEP engine NEsper

Fig. 6. Anevent’s transmission process. The various steps an event undergoeswhen
published on a node, transmitted through CERI and arriving on a subscriber node.

any number of factors including, but not limited to, the number of
events being considered in a query, the time window being con-
sidered and the time complexity of the operations being utilized.
For this reason, only the transmission time is considered to provide
the most stable set of metrics possible.

The simulation process was intentionally kept simple and
straightforward as to not introduce false latencies into the overlay
network. To obtain measurements, the prototype has been instru-
mented using Windows Performance Counters. Furthermore, all
countermeasures implemented to reduce saturation of the event
router by a single client have been disabled. Because the simu-
lations are in a controlled environment, they were deemed un-
necessary as they would only negatively impact the results and
artificially throttle the performance metrics. Lastly, a test client
was developed and instrumented in the samemanner as described
above. The test client serves as the means to control which events
are published and subscribed to within the system under test.

The first simulation was targeted at determining maximum
throughput of the system at different payload sizes. Essentially, the
aim is to determine the effects of payload on throughput. For this
test only two clients were added to the system, with a single event
being transmitted between them. One of the clients served as the
publisher and the other as the subscriber. It is thought that payload
size will have a significant impact on throughput. The reason for
this hypothesis is two-fold. First, the event must be transmitted.
Themore data required to be sent amongnodes per event, themore
saturated the components become, causing throughput to decline.
Second, before an event can be transmitted, it must first undergo
a serialization/deserialization process. The time required for this
step is directly impacted by the amount of data contained in the
event.

The test was performedwith an event payload size of 1, 100 and
500 KB. For a single event, the upper bound of 500 KB is reasonable.
If a distributed system expects to be sending larger events often, it
is recommended that an event-basedmiddleware be optimized for
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Fig. 7. Event size simulation results. Subfigures A–C show the raw throughput of the three event sizes tested in kilobytes for the duration of the experiment. There is a
strong negative correlation between event size and throughput. Subfigure D shows the average throughput of each event size for the same period.
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Fig. 8. Event type simulation results. Subfigures A–C show the raw throughput of the different number of event types throughout the duration of the experiment. Due to
the event router building an inverted index to map event types to subscribers, the throughput is not impacted as more types of events are added. Subfigure D shows the
average throughput for each number of event types for the same period.
this scenario. The performance metrics for this test were gathered
from both the publishing and subscribing client nodes. Fig. 7
provides the results of the simulation. As demonstrated, when the
size of the event grew 500 times, the event throughput fell by
a factor of 27. Though expected, the simulation demonstrates a
strong negative correlation between event size and throughput.

The next simulation examined the overall throughput of the
system as the number of event types increased. We assumed this
increase will have no impact on event throughput. The reasoning
behind this assumption lay in the fact that the event router kept
an inverted index mapping events to subscribers. In other words,
while building the prototype, we assumed that it was better to
make the subscription process slightly more expensive in order
to allow the transmission process to be more efficient. As a result,
each time an event subscription was added, an inverted index was
updated. This allowed event to subscriber mapping to be done in
constant time, as the number of event types increased.
The setup of this simulation consists of a single publisher and
subscriber. The subscriber receives all events published. As noted
above, the number of types of events published is the variable
under test. The test was performed with 1, 500 and 1000 event
types. Each event is a constant size of one kilobyte. All events
were published on a loop containing very little logic in order to
obtain maximum throughput with minimal processing latency.
The performance metrics for this test were gathered from both
the publishing and subscribing client nodes. Fig. 8 illustrates the
results of this simulation. The results show that regardless of the
number of types of events, the throughput remains constant. This is
a favorable characteristic, as a typical distributed system contains
an extremely diverse set of events.

The final simulation focused on altering the number of child
nodes rather than the events themselves. The aim was to examine
the performance of the event router as the number of active
child nodes grew. Because the event router is managing more
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Fig. 9. Number of child nodes simulation results. Subfigures A–C show the raw throughput of an event router with differing number of children for the duration of the
experiment. Subfigure D shows the average throughput per child node of the event router under test for the same period.
information as the child node count grows, it is believed that
this will negatively impact event throughput. For this simulation,
a single publisher was present while the number of subscribing
nodes was adjusted for testing. The event size and type remained
constant throughout the simulation. The test was performed with
1, 50 and 100 child nodes. The performance measurements were
taken from the event router as opposed to the child nodes, as
the event router serves as the bottleneck in this situation and
provides a single throughput metric. Fig. 9 shows the results
of this simulation. Based on this experiment, the number of
child nodes did not impact event throughput at first glance.
However, because the throughput was measured on the router, it
was essentially saturated. This means that while the throughput
remained constant, the child nodes are actually receiving fewer
events as the resource consumption is divided among them.

6. Conclusions

There is a gap between the event-based middleware and CEP
research. While CEP fundamentally relies on the fact that event
passing capabilities be preset within a distributed system, it
often exists as an independent component. Although this is still
useful, the full power of CEP is not readily available to other
components within the system is. The reason is because the event-
based middleware being used by the system does not understand
complex events, and queries cannot be formulated in such a
way to take advantage of the causal relationships represented
within them. Furthermore, applications cannot efficiently offload
operations, such as event aggregation to the CEP engine, because
they are often centrally located.

In addition to limiting the usage of CEP by the components
within the system, having a disconnected event-basedmiddleware
and CEP engine make the overall system more complex. For any
infrastructure component within a distributed system, there are
a few vital properties that must be guaranteed in order to assure
usefulness. The primary one is that of scalability. Because both
the event-based middleware and CEP engine rely on different
scalability models, it is more complex for a distributed system that
relies upon them to scale as a whole.

Given the above issues, this article proposed an event-based
middleware that treats CEP as a first class citizen. The primary
hurdle to accomplishing the above is the efficiency in which
events can be routed between the producers and consumers. In
traditional event-based middleware systems, the functionality of
the subscription language is tightly coupled to the organization of
the overlay network. Additionally, only a basic set of operators are
provided to allow for simpler network partitioning. However, to
provide the full richness of a complex query language, the overlay
network could not be designed in such a way that the supported
operators would be hindered. For this reason, CERI diverges from
the typically structured peer-to-peer overlay network and uses
an unstructured peer-to-peer design. Furthermore, CERI places
the query processing engines on the nodes themselves. Such a
configuration allows components within the system to locally
take advantage of the complex query language, allowing them to
offload internal logic. Specifically, it is shown that as additional
clients and types of events are added to the system, performance
does not diminish. With these favorable properties, CERI can be
scaled up to meet the needs of a growing distributed system. Our
approach demonstrates that an event-based middleware solution
can include CEP capabilities without making sacrifices.
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