
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2012; 5:535–544

Published online 13 July 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.349
RESEARCH ARTICLE

A survey of client‐side Web threats and counter‐
threat measures
Daniel Hein1, Serhiy Morozov2 and Hossein Saiedian2,3*
1 Garmin International, Olathe, KS 66062, U.S.A.
2 EECS, University of Kansas, Lawrence, KS 66045, U.S.A.
3 ITTC, University of Kansas, Lawrence, KS 66045, U.S.A.
ABSTRACT

The increasing frequency and malevolence of online security threats require that we consider new approaches to this
problem. The existing literature focuses on the Web security problem from the server‐side perspective. In contrast, we
explore it from the client‐side, considering the major types of threats. After a short threat summary, we discuss related
research and existing countermeasures. We then examine intuitive human‐oriented trust models and posit a flexible,
multilayer framework to facilitate automated client‐side decision making. The proposed suggestions are not intrusive and
do not require advanced technical knowledge from end users. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS

information security; Web security; browser attacks; cross‐site scripting; client‐side security; trust and trustworthiness;
policy enforcement

*Correspondence

Hossein Saiedian, ITTC, University of Kansas, Lawrence, KS 66045, U.S.A.
E‐mail: saiedian@eecs.ku.edu
1. INTRODUCTION

Modern Web browsers are an indispensable tool for
information retrieval, entertainment, shopping, and bank-
ing online. At the same time, the popularity and ubiquity of
Web browsers has made them attractive targets for attack.
In fact, a recent Internet threat report from Symantec calls
out several disturbing trends in this domain [1].

(1) Home users are the most highly targeted sector and
account for 95% of all attacks.

(2) Client‐side attacks often originate from questionable
sources such as malicious Web sites or spam.
Although the best practices advise end users to avoid
such type of content, it appears that attackers are using
legitimate and trusted sites as a basis for attacks.

(3) The emergence of underground economy servers as
the de facto trading place for illicit information, for
example, credit card or social security numbers, is
indicative of the increased professionalization and
commercialization of malicious activities.

Not only that individuals are the primary attack
targets, but also that the attacks are more malevolent in
nature. Instead of prank‐like attacks, where the goal is to
Copyright © 2011 John Wiley & Sons, Ltd.
earn bragging rights, attacks are increasingly being linked
to organized crime [2], where the goal is identity theft and
other exploitation for financial gain [1]. Attacking a large
corporation may offer a larger payout, but involves a
greater risk. Preying on individual users involves less risks
and more stable financial rewards.

Compounding and complicating this situation are
the requirements thrust upon a user desiring to safely
and securely surf the Internet. A typical user‐oriented
list of security recommendations [3] contains a variety
of guidelines, suggestions, and best practices for safe
browsing. Such recommendations include staying away
from “suspect” Web sites and ensuring that applications
and operating system software include the most recent
patches and fixes [3]. Such expectations are unrealistic
because detecting a “suspect” Web site is not necessarily
straightforward—even for highly technical users.

Today attackers can easily produce friendly looking
Web sites with community appeal [4]. Additionally, even
“trusted”Web sites can be compromised to serve malicious
content to users [1]. Usually, an otherwise friendly Web
site can find itself serving malicious content simply as a
result of syndicated ad content [5]. Furthermore, many
applications, browser plug‐ins, and content handlers
require manual updates to stay current with the latest
535



Client‐side Web threats and counter‐threat measures D. Hein, S. Morozov and H. Saiedian
security‐related patches. However, even experienced
administrators are slow to apply security‐related updates
[6]. In general, people wish to surf freely, without having to
make a judgment call before following an interesting link.
Therefore, moving the burden of security enforcement to
inexperienced users is naive.

Given the current state of affairs, it is time to rethink the
design principals of modern browser software and
networking protocols. Current research indicates that the
application layer will continue to be heavily targeted [7,8]
because the root cause of many security vulnerabilities
stem directly from software design and implementation
[9,10]. To improve security, we need to fully understand
existing threats and their enabling factors. The first objective
of this paper is to give a concise overview of current threats
and to summarize existing research concerning Web
browser security. Once we have established the context
for better browser, protocol, and infrastructure security, we
call out notions of trust on the Web, posit the quantification
of trust, and outline a framework for decision making based
on resulting trust values.

This paper is organized in five sections that accomplish
these objectives. Section 2 reviews various browser
attacks. Section 3 then reviews ongoing research efforts
to improve browser security. Towards the end of Section
3, we allude to avoidance as a strategy to prevent in-
teraction with malicious sites. We consider trust relation-
ships on the Web and how users enter into such trust
relationships in Section 4. Finally, in Section 5, we consider
how trust values may be used to automatically avoid
unwanted sites.
2. BROWSER ATTACKS

This section reviews various attacks against Web brows-
ers, while pointing out the fundamental flaws in remedies
used by modern applications. Many security threats are
possible because of our trust and dependency on
underlying technology. For example, past research has
shown that most users do not understand the complexities
of certificate messages [11]. In fact, even computer science
students tend to accept forged certificates as they “click‐
through” typical warning dialogs [12]. Therefore, modern
Web threats are rooted in poor software design as much as
human carelessness.

Many Web‐based attacks are very similar in nature and
involve a few basic underlying principles. One of such
principles, known as the same origin policy (SOP), is used
by the browser to sandbox mobile code, typically written
in Java or JavaScript [13]. The SOP, and flaws in its
assumptions, is a popular research topic [13–15]. In fact,
the SOP has a critical “loophole” in various extensible
hypertext markup language elements, like iFrames [5] and
images [13]. This loophole allows scripts hosted on
alternate domains, to be included into the current page.
Once loaded, the malicious script gains extended capabil-
ities and can access other page elements [13]. SOP fails to
536 Secu
produce security because it allows cross‐domain access,
which renders it inadequate for providing the needed
domain isolation. The following three attacks are possible
due to this limitation.

2.1. Basic reconnaissance

Through simple reconnaissance, information about a
client’s interaction with other sites can be inferred. This
type of attack is often used as a stepping stone for more
advanced attacks, such as cross‐site request forgery
(CSRF). For example, Johns describes how a malicious
Web site can use standard JavaScript method calls to
deduce simultaneous connections of interest, for example,
bank and e‐commerce sites [13]. This vulnerability may
violate user privacy as well as provide additional
information for more advanced attacks described as
follows.

2.2. Cross‐site request forgery

A CSRF is often the ultimate goal of a longer attack chain.
A CSRF attack is typically characterized by replaying
an authenticated request in order to gain unauthorized
access or to carry out some unauthorized action, for
example, transferring funds to an off‐shore account. The
items replayed often include a particular URL or a
session cookie. Often, executable script code comes to
be bootstrapped into the current page, via aggregation
mechanisms allowed by JavaScript and the SOP [5].
Once loaded, this script can replay hypertext transfer
protocol (HTTP) requests within the context of a currently
authenticated session. There are various entry vectors
for CSRF attacks, the most common being cross‐site
scripting (XSS).

2.3. Cross‐site scripting

In XSS attacks, a script hosted on a different server is
executed with the privileges of the current page. Such
attacks are commonly carried out by enticing the user to
click on a malicious link that exploits a weakness in the
server’s input validation and error reporting mechanisms.
A common example is the case where a user is shown an
HTTP 404 message naming the requested file [16]. In such
cases, the attacker crafts a link in such a way that the
requested file name encodes script content. Failure to
appropriately recognize and filter the injected content
means that the browser will execute the malicious code as
part of a normal page rendering process.

2.4. DNS infrastructure

An important element of many browser threats is trust
and dependence on the underlying protocols such as the
domain name system (DNS). Attacks on Web applica-
tions based on DNS result manipulation are called DNS
infrastructure attacks. They target the domain name
rity Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Client‐side Web threats and counter‐threat measuresD. Hein, S. Morozov and H. Saiedian
service but have the ultimate goal of affecting the
dependent application, for example, Web browser [17].
DNS attacks either corrupt cached resource records (DNS
cache poisoning) or spoof authoritative name servers
(DNS hijacking) [17]. The security of the Web client
rests on the security of the DNS [18]. In fact, by targeting
a layer beneath the Web layer, the attacker can
completely subvert the SOP or any other controls based
on the assumption that the domain name properly maps
to an internet protocol (IP) owned by a given content
provider. However, as these attacks immediately affect
the DNS, the use of secure DNS (DNSSEC) will
effectively prevent them.

A compromised DNS server could redirect a user to a
malicious Web site without the user’s knowledge. For
instance, if the browser requested an IP address for the
Web site http://hotmail.com, a server could point it to a
malicious site that looks just like the original. This type of
attack is called phishing [19,20]. Usually the attacker
attempts to steal the authentication credentials, by making
a user think that he/she is logging into the original site.
This kind of attack is especially dangerous because an
average user cannot distinguish between a real Web site
and a well‐made fake [21]. In fact, it is relatively easy to
make nearly perfect copies of a legitimate Web site, with
no visible signs of forgery.

2.5. DNS rebinding

A DNS rebinding attack is not a direct attack on DNS
infrastructure. The basic idea of this attack is to change the
IP address “out from underneath” the browser, thereby
circumventing any remaining controls imposed by the
SOP. Typically, a malicious Web site sets up a short‐term
DNS record, causing the client to re‐request its IP address.
However, the attacker changes the DNS record such that
a new IP is returned.

Such attacks are considered dangerous, considering that
the session can be rebound to a private address behind a
firewall. Because firewalls typically allow HTTP traffic
through (port 80), such rebinding can be used to
circumvent the firewall and further profile other
machines on a protected intranet [14]. Although this attack
is accomplished via the modification of DNS resource
records, the modification is legitimate. Therefore, using
DNSSEC does not counter a DNS rebinding attack.

2.6. Summary

The list below summarizes the browser attacks discussed
in this section in order from the least to the most
dangerous.

(1) Basic reconnaissance.
(2) DNS rebinding.
(3) CSRF.
(4) XSS.
(5) DNS infrastructure.
Security Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Basic reconnaissance is the least harmful of the browser
attacks. Usually, the goal of this attack is extracting
information that is private but not crucial, for example,
sniffing user agent information or browser history. This
information is not explicitly protected, which is the reason
reconnaissance attacks work. DNS rebinding attack can be
harmful, but it assumes that a user wants to visit a
malicious site. This can be arranged by persuading a user
to click a link, but the users will unlikely complete any
serious transactions, unless the site has a secure certificate
available. CSRF is more dangerous because the malicious
code is acting on the behalf of the user and the destination
Web site cannot distinguish between the two. However, it
is possible for a Web site to ignore duplicate requests.
Because the protection for this vulnerability resides on the
server side, this type of attack is very dangerous. Finally,
the DNS infrastructure attack is the most dangerous. The
entire Web is built in layers, where each layer trusts that
the functionality below it is trustworthy. Therefore, if a
DNS server is compromised, any security precautions that
rely on it will fail.
3. ONGOING COUNTERMEASURE
AND CONTAINMENT EFFORTS

This section reviews efforts to counter the attacks
discussed earlier. The most straightforward solution to
Web security woes would be to disable Java and
JavaScript. However, even though almost every known
attack stems from the use of mobile code, the user
experience of modern Web applications would be
unacceptable without it. There are many approaches to
countering mobile code threats including “Band‐Aid”
solutions applied after the fact, improved design of script
execution control, and policy solutions that seek to avoid
the problem altogether. We consider these approaches in
the following sections.

3.1. Band‐Aids

Band‐Aid solutions cover up the fundamental problems in
design and implementation. These solutions include
“penetrate‐n‐patch” software updates as well as browser
plug‐ins to counter Web threats. The term “penetrate‐n‐
patch” refers to the paradigm of patching up security holes
after the fact [9]. Unfortunately, this is by far the most
widespread approach to software security in practice.
Furthermore, this approach often introduces new software
bugs and other unexpected security vulnerabilities.

One type of Band‐Aid solution is the “add‐on”
approach, where additional software components are used
to repel threats at their point of entry. Firefox plugin
NoScript is this type of add‐on [22]. It allows the user to
control which sites can execute mobile code, for example,
PDF, Flash, and Silverlight contents. This plugin solves
the immediate problem of accidentally surfing onto a
malicious Web site, but it provides no means of evaluating
537



Client‐side Web threats and counter‐threat measures D. Hein, S. Morozov and H. Saiedian
the trustworthiness of a site. Additionally, once a site is
trusted, all scripts originating from it are allowed, leaving
users open to XSS attacks.

A possible improvement to NoScript would be to keep
track of trusted and suspicious sites and automatically
decide whether or not to execute their code. Tiwari,
Bansal R., and Bansal D. developed such a system [23].
The white and black lists are cross‐validated against a
security advisory site, so an incorrectly classified Web site
may be appropriately labeled. The main advantage of their
approach is the fact that this plugin barely interferes with
the speed of the browser, thus providing the user with
transparent security.

Alternatively, NoScript could be extended to contain a
list of “recognized scripts” by implementing browser‐
enforced embedded policy (BEEP) [24]. Specifically, the
“whitelist” approach could be implemented in NoScript
such that only those scripts designated by authors of
trusted Web sites are allowed to execute on the client.
Usually this is done by providing cryptographic hashes for
each script. Results published by Jim, Swamy, and Hicks
found this improvement to be effective in preventing
known attacks [24]. BEEP is an effective tool against XSS
attacks, but it is not a widely adopted method. In fact,
preventing XSS attacks is largely a standardization,
conformance, and implementation effort.

3.2. JavaScript instrumentation

One approach to countering the mobile code problem is
through rewriting key portions of the JavaScript code
to ensure compliance with the client’s policy. Some
approaches also consider rewriting of higher‐order scripts
or code that has been generated dynamically [25]. The
instrumentation approach identifies JavaScript calls that are
traditionally problematic and adds additional code to
ensure that users have visibility into the inner workings
of the script. This approach is fine grain and provides
significant protection.

Other approaches are not as fine grained. Even signed
code cannot achieve this level of control [25]. The primary
advantage is insight into the actual “actions” carried out by
the script. Simply because some site signs a script does not
necessarily mean that the script is benign. For instance, a
malicious site could easily sign a script, which would be
executed according to a standard BEEP protocol. Howev-
er, such a fine‐grained approach requires a higher degree
of user involvement, which is not desirable for a majority
of Web users.

The key limitation of this approach is the level of user
involvement. Most users will not understand code or
system‐related information presented by the rewriting
engine. In fact, the users will become frustrated from user
interface notifications generated by the rewriting engine as
it encounters new and varied scripts. Therefore, the fine‐
grained nature of this approach will interfere with the
user’s browsing experience and will likely be deactivated.
Because of these issues, we favor a solution that offers less
538 Secu
user involvement and redirects the decision point to the
question of who to trust. However, the rewriting
mechanism could be useful in the context of a larger
framework, which dynamically enables it depending on
the trust rating (TR) for a particular site.

3.3. Virtualization

Virtualization solutions seek to provide a system‐level
sandbox for mobile code. Rather than attempting to
prevent or restrict execution of the script, this approach
allows bad things to happen, but in a “virtual” environ-
ment. In fact, any damage is completely reversible by
deleting the virtual machine instance [26]. Virtualization
is often used by honey clients to identify malicious Web
sites [4] but does nothing to prevent attacks that exploit
the “real” session between the virtualized client and a
host site. Although execution attributes on the local
machine are virtual, the machine is still processing real
HTTP(S) traffic.

A notable work in this area is Tahoma [26]. It utilizes a
virtualization to run conventional browsers without
actually defining its own browser architecture. Tahoma
models a browser as an operating system, with the Web
sites as “programs”. The operating system uses a separate
browser instance for each Web site in order to ensure
isolation. The user experience offered by Tahoma closely
parallels that offered by NoScript. Both solutions prevent
script execution by default and require a user to explicitly
approve code from a particular Web site. Tahoma is also
similar to BEEP [24] in that it uses manifests on the server
side to dictate the policy.

3.4. Architecture

Sound software architecture is essential for proper
security. In fact, one of the key contributions of good
architecture is the ability to reduce complexity of critical
components, allowing these components and the data
flowing through them to be more rigorously analyzed.
Simple design facilitates model checking, which would be
impossible in more complex systems.

For example, the Opus Palladianum (OP) browser
centralizes analysis through a browser kernel [15], which
coordinates the message passing various subsystems: user
interface, Web page, storage, and network. A key advantage
to this design is that the browser kernel can be kept relatively
small, facilitating its analysis. Another key contribution of
the OP browser is its notion of provider policy [15]. It binds
referenced objects to their domains of origin, rather than
allowing such objects to become part of the page. Therefore,
a movie from Apple’s Web site and a movie from YouTube
can be included on a page hosted by uiuc.edu, but they cannot
access any of the resources on the page [15]. As a result, this
approach offers more security than SOP without sacrificing
functionality.

Another approach by Ioannidis and Bellovin [27]
enforces the separation of privilege concept [28]. Many
rity Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Client‐side Web threats and counter‐threat measuresD. Hein, S. Morozov and H. Saiedian
browsers execute mobile code with the privileges of the
user. The security could be improved by tying the code
execution to individual processes [27]. By doing so, this
approach provides isolation and prevents malicious mobile
code from executing under unauthorized privileges.

3.5. Secure DNS

Given that much of Web security is based on avoiding
suspect sites, the information that a browser uses to
reference a particular site must be correct. Secure DNS, or
DNSSEC, secures the DNS infrastructure on top of which
Web security is based. It provides for cryptographic
authentication of resolution data [29]. However, DNSSEC
is not without its own problems.

First, DNSSEC differs from conventional public key
infrastructure (PKI) in its use of cryptographic keys, key
escrow, and signature structure. This could hamper
adoption because it is unfamiliar to designers and
cryptographic functionality may affect performance of
the system [17]. Although DNSSEC is mandated for the
“.gov” top‐level domain [17], it is not yet widely deployed
in the Internet. Finally, it does not provide end‐to‐end
security, so an evil man‐in‐the middle, between the client
and the caching name server, can alter response data.

3.6. Avoidance

Avoidance is one of the simplest and most popular
strategies. In addition to avoiding malicious sites, it can
prevent exposure to objectionable content, usually in the
context of parental control. Because malware is increas-
ingly installed by simply visiting a malicious site [5],
avoidance is a reasonable approach to increasing security.

One solution that employs avoidance is Web of Trust. It
is a Web‐based service that works in conjunction with a
browser plugin to color links: red indicating “malicious”
and green indicating “safe” [30]. Web of Trust is backed by
a large user community where individuals rate Web sites
on overall trustworthiness, child safety, vendor reliability,
and privacy. This “power in numbers” approach is very
effective. By distributing the work‐load among its users,
complex tasks such as policing the Web can be realized. In
fact, much of Section 5 is dedicated to exploring the
various aspects of a community rating model.

Another avoidance service is OpenDNS. It combines
both DNS and a user policy [31]. As a result, it can filter
records from any of the 30 categories including adult,
drugs, social networking, P2P file sharing, and so forth.
Depending on the policy, a user might filter only malicious
sites and allow all others. However, when attempting to
visit a Web site explicitly prohibited in the user policy, its
domain name will not be resolved.

3.7. Summary

The list below summarizes the countermeasures presented
in this section in order from the least to the most effective.
Security Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
(1) JavaScript control and instrumentation.
(2) Virtualization.
(3) Secure architecture.
(4) Secure DNS.
(5) Avoidance.

Browser plug‐ins that disable or modify JavaScript
execution are not solid solutions for browser security. There
are many ways to circumvent these countermeasures either
by purchasing a new domain name or obscuring your source
code. Virtualization is more effective because the damages
of the attack are contained in a virtual instance. However, it
does not prevent one from visiting a malicious site. Secure
architecture is one of the more effective approaches. The
goal is to design browsers with security in mind. However,
it goes completely against user friendliness and requires
major updates to most existing software. Secure DNS is an
effective measure against DNS infrastructure attacks, which
are the most dangerous. Finally, avoidance is the most
reliable way to ensure Web security. Instead of trying to
modify the site or alleviate the symptoms of vulnerability,
this approach simply prevents it from happening. However,
there is uncertainty about which sites people should avoid
and how to establish the trustworthiness of a site. The
following section discusses this topic in more detail.
4. TRUST AND TRUSTWORTHINESS

Most browser attacks exploit the trust relationship that the
client places on a Web site. Given that Web threats are both
increasingly prevalent and successful, this trust is often
misplaced. In this section, we review intuitive models of
trust among humans and show how to quantify it.

4.1. Human trust models

Humans establish trust via history, reputation, credentials,
and/or contract. History and reputation are closely related
and are based on human qualities like honesty, fairness,
loyalty, and professional qualifications. History is a
qualitative, perceptual measure of these qualities over
time. On the other hand, reputation is established by a
larger group. It relies on consensus opinion concerning an
individual’s trustworthiness. Credentials say little about a
person’s qualities but do provide a third‐party certification
of an individual’s qualification for a given task. Finally, a
contract provides a means of recourse, should a trusted
individual fail to deliver services as trusted. Contract in
particular is interesting in that the parties typically do not
trust each other—hence the contract. Rather, the parties to
a contract trust the higher authority of the government and
the legal system backing the contract.

4.2. Web trust models

Many experts agree that misplaced trust results from the
roots of the Internet itself, which was created to foster
539



Client‐side Web threats and counter‐threat measures D. Hein, S. Morozov and H. Saiedian
unrestricted information sharing. Back then, security was
not a primary design consideration [8]. As the Web has
matured, security has been an ever‐present concern,
and various mechanisms have been retrofitted into the
original protocols.

Of all the human trust models, history and reputation
implicitly apply to modern Web. In fact, these trust
relationships reveal themselves daily as users surf the
Web. It is natural for an individual to form a positive
opinion about a site that they frequently visit. Just as with
interpersonal relationships, users build their trust based
on historical interactions. However, this trust may be
completely unjustified because an average user is unaware
of the policy, practices, and implementation of the Web
site, for example, how information may be collected or the
quality of the server software. Furthermore, when surfing
the Web, a user does not utilize a single service long
enough to establish any history.

However, there is less of a basis for credentials.
Although some organizations allow compliant Web sites
to display a seal of approval [32], there is no infrastructure
supporting the concept of credentials to inform automated
decision making. For instance, TRUSTe explicitly certifies
a site along trust dimensions of interest. However, rather
than a seal, we seek a trust quality rating, cryptographi-
cally signed by a certifying organization.

Although one might think of the PKI as an issuer of
credentials, this is not correct. It only serves as a third‐
party confirmation of identity. To give out credentials, one
must determine if a particular Web site is correctly
applying industrial best practices and has exercised due
care in appropriately applying server‐side countermeasures
to current threats (e.g., via an audit). The PKI and
participating certificate authorities are simply a framework
for determining the binding between an entity’s public key
and its identity. The entities within the PKI state nothing
about the quality or trustworthiness of the entity in
question.

4.3. Trust and trust algebra

Trust relationships outlined in the previous sections are
rather intuitive, but in order to make automated policy
decisions, we need a way to quantify trust values. Fur-
thermore, the decision must rely on information of varying
certainty from sources of varying repute. For example,
people are more likely to trust a well‐known friend or a
widely acknowledged authority than a friend of a friend.
Therefore, as we approach the fringes of our trust chains, our
uncertainty about neighboring recommendations increases,
thereby reducing the trustworthiness of the proposition.

Jøsang discusses an algebra for quantifying trust [33].
This approach models an opinion as a vector of three
dimensions: d, the disbelief in a certain binary proposition;
b, the belief in a certain binary proposition; and u, the
uncertainty concerning d and b. The algebra defined for
the combination of values is grounded in a “framework for
artificial reasoning known as subjective logic” [33]. We
540 Secu
use trust algebra and concepts from subjective logic to
combine individual opinions about a site’s trustworthiness
such that consensus views about the site’s trustworthiness
may be derived.

The subjective logic provides a framework for the
combination and aggregation of the aforementioned
opinions. Operations within this framework allow opinion
combination based on recommendation, consensus, and
conjunction. These operations are explained as follows:
Recommendation
rity Comm. Networks 2012
Statement of belief concerning some
proposition made from one agent
to another, for example, a particular
client’s trust for a particular Web site
based on the recommendation of a
close friend.
Consensus
 Statement of the aggregate collective
belief across a community of agents
concerning some proposition, for
example, the collective community
opinion concerning the trustworthiness
of a givenWeb site.
Conjunction
 A particular agent’s overall opinion,
given two different propositions, for
example, the overall belief that a Web
site is both trustworthy and meets
content standards. Under certain
conditions, this operation is equivalent
to a logical AND.
The uncertainty component of an opinion model
enables realistic subjectivity. It quantifies the confidence
in the basis for a belief in a given statement, for example,
“This Web site is not malicious.” In fact, Jøsang stated that
“Uncertainty is caused by the lack of evidence to support
either belief or disbelief,” [33]. That is, users may trust a
Web site even though there is no reason to do so. In some
cases, a user trusts a Web site just because he or she feels
comfortable with the entity hosting it. Other than this
arbitrary feeling, there may be no actual grounds or basis
for the user’s opinion.

Users are generally unaware of the Web site’s policies
and practices, which constitutes lack of evidence or
uncertainty. We assume that such uncertainty can be
reduced by review and audit conducted by a qualified third
party. There is an issue of trusting the third‐party auditor,
that is, “watching the watchers,” but we leave this as an
open problem satisfying ourselves that some consortium
could bless approved auditors.

Jøsang’s model allows the expression of subjective
aspects of trust to be quantified. More research could
provide a better rationale for choosing uncertainty, the u
parameter in Jøsang’s model, but we suggest starting with
the following intuitive values:
[0.30..1]
 User believes that a Web site is trustworthy.
The user can be uncertain, u= 1, but probably
not more than 70% certain.
; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Client‐side Web threats and counter‐threat measuresD. Hein, S. Morozov and H. Saiedian
[0]
Security Comm
DOI: 10.1002/
User has been attacked; Web site is not
trustworthy.
[0..1]
 Value established by third‐party auditor based
on their assessment.
We have omitted cases when auditors have a
pessimistic disbelief; we assume that the uncertainty
value for audit applies toward a positive belief. We omit
negative belief for audit because we think it rare that
malicious sites would charter an audit. That is, trustworthy
sites elect to be audited to be more marketable.

Given the correct mechanisms for enforcement, there
could also be a place for self‐rating. This concept has been
around since the mid 1990s. In fact, the Platform for
Internet Content Selection (PICS) [34] was the first
metadata interchange standardized for such descriptions.
However, PICS has been replaced by resource description
format (RDF) and web ontology language (OWL) [35].
RDF can be used to describe various attributes of
individual data items on a Web page, whereas OWL can
be used to define a vocabulary and specify allowed
relations between said entities.

4.4. Integrating the trust model

Virtualization mechanisms working inside browsers could
“crowd‐source” TRs for sites on the Web. As discussed in
Section 3.3, a virtualized client can recover from an attack.
Therefore, client‐side attacks are allowed to execute in the
virtual environment for the purpose of detecting malicious
behavior. Multiple browser instances reporting a given site
as malicious could help to provide the “consensus” needed
to update a site’s global TR. This crowd‐sourced TR can
then be published in the site’s policy vector for
consumption by yet other clients.

Recall that as discussed in Section 3.4, the OP browser
implemented a provider policy. Coupling the notions of
provider policy with TRs could reduce the chances that
syndicated ad content could exploit weaknesses in the SOP
that is commonplace in today’s systems. The fact that the
provider policy better isolates resources from one another
prevents cross‐domain access by virtue of the architectural
structure itself. Moreover, if a given domain or IP address
is known to be malicious, perhaps by a crowd‐sourced
rating, the browser may elect not to connect to that site in
order to download content. The net result when viewing a
modern Web page might be that portions of the page
simply do not draw or draw a warning icon. The warning
icon could be clicked by the user to provide an override so
that maliciously classified page areas could be rendered on
demand. Such an override would be welcome in cases
where this technology is being debugged and many false
positives result. Although such an override increases the
user’s exposure to danger, the use of an architecture like
the OP browser would better confine attacks from
malicious scripts—rather than having access to the whole
page, malicious scripts would only be able to access
resources from the same provider.
. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
sec
5. SUGGESTIONS FOR BETTER
POLICY ENFORCEMENT

This section outlines a policy evaluation suggestions
tailored for Web‐based client applications, which facil-
itates avoidance of malicious Web sites. We describe a
conceptual framework, which allows policies to be applied
at various layers, each utilizing technologies of varying
maturity. The final solution might utilize a highly
distributed registry service like DNSSEC as a repository
for site policy vectors (SPV), specifying a domain’s
community TR. With such an infrastructure in place,
clients would not attempt connections to sites that fail to
meet policy‐specified rating requirements. Although some
user override would be allowed, by default, the client
would automatically avoid unwanted sites.

Similar services such as Web of Trust [30] and
OpenDNS [31] are already online but have overhead or
vulnerabilities that require a more thoroughly integrated
solution. For example, Web of Trust contains an additional
communication overhead introduced by their browser
plugin as it checks back with the Web‐of‐Trust server to
analyze link targets. OpenDNS comes much closer to our
avoidance goals, allowing users to blacklist domains.
On the other hand, OpenDNS is offered by a single entity
and presents a single point of failure. It is also vulnerable
to existing attacks on DNS because OpenDNS does not
use DNSSEC.

The key difference in our proposed solution is the
addition of an SPV. In the following paragraphs, we
consider this vector added to DNSSEC. However, note
that the addition of such a vector to DNSSEC is just one
suggestion. Internet architects will likely balk at our abuse
of DNSSEC in such a Web‐centered view of name
resolution. That is, the whole notion of adding the policy
vector is for avoiding malicious Web sites. In this way,
the avoidance strategy is centered on Web applications
because of the mobile code that might cause the client
to execute. Other services such as file transfer and
media streaming might also make use of DNS(SEC) for
name resolution.

The final solution could be integrated into DNSSEC by
adding SPV information into the metadata records. This
would allow flexible policy decisions as various solutions
come into being. The possibilities for information
expressed in the SPV site attributes are endless, but we
seek to add a single binary measure; for example, the site
is malicious, or the site is trustworthy. In fact, we could
build on other techniques for content description and
categorization, for example, OWL and RDF [35].
However, if our goal is to create a record format to be
integrated into the DNS infrastructure, extensible markup
language representations would introduce too much
overhead.

Regardless of the encoding method, the essential
information in the SPV consists of the triple {type, TR,
CT}, representing type, trust rating, and third‐party
certification. The type could be one of several application
541



Client‐side Web threats and counter‐threat measures D. Hein, S. Morozov and H. Saiedian
types such as entertainment, banking, and education. It
allows the client to change policy requirements for TR
depending on the type of site being visited, for example,
requiring higher levels of TR and a CT for “banking” Web
sites. The CT parameter indicates that the site has achieved
a certification for correctly adhering to standards for self‐
description and best Web development practices. Note that
the terms TR and CT may themselves be multidimensional.
For example, TR could be expressed as TR= T,R,CS,
where the values are trustworthiness, vendor reliability,
and child safety.

Figure 1 shows an overview of security policy and its
application at various layers in a pseudo Open Systems
Interconnection (OSI) model We use the original OSI
model because it offers a more detailed conceptual model
for modern Web applications. For example, although from
a pure networking standpoint, DNS is an application layer
protocol, from a Web‐centric view of the Internet, DNS is
part of the networking infrastructure. Therefore, in our
security model, the session layer contains Internet
infrastructure technologies such as DNSSEC. By more
clearly delineating Web technologies into these conceptual
layers, we can more easily reason about the application of
particular policies.

For example, the session layer, tasked with state and
connection management, provides a point for content and
connection‐related policy enforcement. Driven by a DNS
policy, the session layer could automatically prevent
connections to sites that do not meet policy requirements
for trustworthiness or allowed content. The presentation layer
also provides a point for content‐related policy enforcement.
For example, the work of BEEP could be applied at this level
to limit unauthorized mobile code execution.

We view DNS address resolution as a prerequisite
operation upon which the rest of the Web‐centric
application software is layered. We assume that the
higher‐level dependence on session layer services is both
temporal and logical. That is, in order to connect to a Web
Figure 1. Layered policy. OWL, web ontology language; RDF, reso
language; HTTP, hypertext transfer protocol; DNS, domain name sys

transmission control protocol; TLS, transfer layer security; SSL, s

542 Secu
host specified in a URL, the client software must first
resolve the DNS name to an IP address (a temporal
relationship) and then is logically dependent on the
resulting data read from the resolved IP address.

Given that the original intent behind the session layer
was to manage connections, it makes sense to apply
security‐related decisions concerning the supposed quality
of those connections. The session layer provides a point of
policy enforcement by automatically preventing connec-
tions to sites that do not meet our requirements. In some
cases, DNS will resolve to the local host address,
preventing the user from accidentally visiting an unwanted
site. Note that preventing name resolution is the technique
currently used by OpenDNS [31]. However, our session
layer scheme does not depend on any particular services but
is instead integrated into the client communication stack.

More expressive constructs could be conceived specif-
ically for Web applications running HTTP(S), where an
HTTP HEAD request is used as a standard mechanism to
retrieve self‐describing page content. In our model, such
mechanisms would work within the presentation layer.
Ideally, it would apply higher‐level policy constructs,
especially for fine‐grain control over content filtering.
However, it could control connection policy as a stop‐gap
solution until the appropriate DNSSEC infrastructure is
deployed.

Although allowing a great deal of flexibility, any self‐
describing mechanism is only applicable to those sites that
wish to cooperate and provide metadata describing
themselves and their content. To be truly meaningful for
a secure browsing experience, any self‐describing content
would have to be certified. Without a third‐party signature
certifying the SPV, such a mechanism is applicable only to
content ratings. The inclusion of a third‐party certification
is based on the assumptions that the client’s HTML
rendering engine does not execute mobile code when
processing a response to a HEAD request and that the SPV
provided by the site has been signed by a trusted third party.
urce description format; XHTML, extensible hypertext markup
tem; DNSSEC, secure DNS; UDP, user datagram protocol; TCP,
ecure sockets layer; IP, internet protocol; IPSEC, secure IP.

rity Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Client‐side Web threats and counter‐threat measuresD. Hein, S. Morozov and H. Saiedian
6. CONCLUSIONS

This paper presented several types of Web threats and
discussed various ongoing countermeasures in Web
security from the client’s perspective. Along the way, we
discussed practical applications, interesting cognitive
models, and forward‐looking enforcement mechanisms.
One of our more notable suggestions was that of applying
BEEP to NoScript, as a solution to address XSS. As the
pairing of NoScript and BEEP suggests, there are some
fairly straightforward countermeasures, despite the fact
that the Web security problem is widespread and growing.

With any countermeasure, it is important to remember
that users are inherently bad at making security decisions.
Considering human limitations is especially relevant in the
context of Web clients. In fact, security is often viewed as
a hindrance to users’ immediate objectives as they surf the
Web. Additionally, many existing controls are not well
understood by the user community. If possible, we should
strive to design systems that support the application of
policy in a more automated fashion.

By embedding decisions into the policy framework, we
believe that we can make security mechanisms less
intrusive while complying with policy. We specifically
considered avoidance as a strategy for dealing with
security on the Web. However, such as strategy is not
easily carried out because it depends on our notions of trust
and the infrastructure required to support it. Community‐
based models provide assurance that such infrastructure
goals are not out of reach.

Moving forward on the idea of trust, we described how
trust algebra could be applied to establish TRs for various
sites. Finally, we present a set of suggestions for a
multilayer policy enforcement that could be used to
prevent resolution of questionable site. We draw out Web
security issues and provide some intuitive thoughts
regarding a multilayer policy enforcement structure.
Ultimately, we would like to extend DNSSEC to include
SPV‐based resource records and support avoidance
strategies. We would also appreciate more discussion on
our suggestions within the research community.
REFERENCES

1. Symantec. Symantec Internet Security Threat Report:
Trends for January–June 07, September 2007. URL
http://eval.symantec.com/mktginfo/enterprise/white_
papers/ent‐whitepaper_threat_report_xii_09_2007.en‐
us.pdf [accessed on 9 May 2008]

2. Bellovin SM, Benzel TV, Blakley B, et al. Information
Assurance Technology Forecast 2008. IEEE Security
and Privacy 2008; 6(1): 16–23. doi: 10.1109/MSP.
2008.13

3. Dormann W, Rafail J. Securing Your Web Browser,
2008. URL: http://www.us‐cert.gov/reading_room/
securing_browser [accessed on 1 June 2011]
Security Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
4. Provos N, Mcnamee D, Mavrommatis P, Wang K,
Modadugu N. The ghost in the browser: analysis of
Web‐based malware. USENIX HotBots 07, Cambridge,
MA,2007.URLhttp://www.usenix.org/events/hotbots07/
tech/full_papers/provos/provos.pdf [accessed on 1 June
2011]

5. Provos N, Mavrommatis P, Rajab MA, Monrose F. All
your iFRAMEs point to us, Technical Report. Google
Inc., 1600 Amphitheatre Parkway, Mountain View,
CA, 2008. URL http://static.googleusercontent.com/
external_content/untrusted_dlcp/research.google.com/
en/us/archive/provos‐2008a.pdf [accessed on 28 April
2008]

6. Rescorla E. Security holes… Who cares? In
SSYM ’03: Proceedings of the 12th Conference on
USENIX Security Symposium. USENIX Association:
Berkeley, CA, 2003; 75–90.

7. Ahmad D. The Contemporary Software Security
Landscape. IEEE Security and Privacy 2007; 5(3):
75–77. doi: 10.1109/MSP.2007.73

8. Ortiz S. Internet Researchers Look to Wipe the Slate
Clean. Computer 2008; 41(1): 12–16.

9. Hoglund G, McGraw G. Point/counterpoint. IEEE
Software 2002; 19(6): 56–59. doi: 10.1109/MS.2002.
1049389

10. Hoglund G, McGraw G. Exploiting Software: How
to Break Code. Addison‐Wesley: Boston, MA, 2004;
1–23, 37–70.

11. RubinAD,GeerDE.Asurveyofwebsecurity.Computer
1998; 31(9): 34–41. doi: 10.1109/2.708448

12. Xia H, Brustoloni JC. Hardening web browsers
against man‐in‐the‐middle and eavesdropping attacks.
In WWW ’05: Proceedings of the 14th International
Conference on World Wide Web. ACM Press: New
York, NY, 2005; 489–498. doi: 10.1145/1060745.
1060817

13. Johns M. On JavaScript malware and related threats.
Journal in Computer Virology 2007; 4(3): 161–178.
doi: 10.1007/s11416‐007‐0076‐7

14. Johns M, Winter J. Protecting the intranet against
“JavaScript malware” and related attacks. Lecture
Notes in Computer Science, vol. 4579. Springer Berlin:
Heidelberg, 2007; 40–59. doi: 10.1007/978‐3‐540‐
73614‐13

15. Grier C, Tang S, King ST. Secure Web browsing with
the OP Web browser. In Proceedings of the 2008
IEEE Symposium on Security and Privacy, Oakland,
CA. IEEE Computer Society: Washington, DC, 2008;
402–416. URL http://www.imchris.org/research/
grier_sp08.pdf [accessed on 1 June 2011]

16. Rafail J. Cross‐site Scripting Vulnerabilities, 2007.
URL http://www.cert.org/archive/pdf/cross_site_
scripting.pdf [accessed on 1 June 2011]
543



Client‐side Web threats and counter‐threat measures D. Hein, S. Morozov and H. Saiedian
17. Chandramouli R, Rose S. Challenges in securing the
domain name system. IEEE Security and Privacy
2006; 4(1): 84–87. doi: 10.1109/MSP.2006.8

18. Avizienis A, Laprie JC, Randell B, Landwehr C. Basic
concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable and Secure
Computing 2004; 1(1): 11–33. doi: 10.1109/TDSC.2004.2

19. Dhamija R, Tygar JD, Hearst M. Why phishing works.
In Proceedings of the SIGCHI conference on Human
Factors in computing systems,CHI ’06. ACM:NewYork,
NY, 2006; 581–590. doi: 10.1145/1124772.1124861

20. Felten EW, Balfanz D, Dean D, Wallach DS. Web
spoofing: an internet con game. Technical Report
Technical Report 540‐96, Department of Computer
Science, Princeton University, West Windsor, NJ, 1997.

21. Ye Z, Smith S, Anthony D. Trusted paths for browsers.
ACM Transactions Information System Security May
2005; 8(2):153–186.

22. NoScript. 2008. http://noscript.net/ [accessed on
1 June 2011]

23. Tiwari S, Bansal R, Bansal D. Optimized client side
solution for cross site scripting. In ICON 2008. 16th
IEEE International Conference on Networks, New
Delhi, December 2008; 1–4.

24. Jim T, Swamy N, Hicks M. Defeating script injection
attacks with browser‐enforced embedded policies. In
WWW ’07: Proceedings of the 16th international
conference on World Wide Web. ACM: New York,
NY, 2007; 601–610. doi: 10.1145/1242572.1242654.

25. Yu D, Chander A, Islam N, Serikov I. JavaScript
Instrumentation for Browser Security. In POPL ’07:
Proceedings of the 34th annual ACM SIGPLAN‐
SIGACT symposium on Principles of programming
languages. ACM: New York, NY, 2007; 237–249.
doi: 10.1145/1190216.1190252.

26. Cox RS, Hansen JG, Gribble SD, Levy HM. A safety‐
oriented platform for Web applications. Proceedings
544 Secu
of the 2006 IEEE Symposium on Security and Privacy,
Oakland CA, May 2006; 350–364. doi: 10.1109/
SP.2006.4.

27. Ioannidis S, Bellovin SM. Building a secure Web
browser. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, Boston, MA,
June 2001; 127–134. URL http://www.cs.columbia.edu/
~smb/papers/sub‐browser.pdf [accessed on 1 June 2011]

28. Saltzer JH, Schroeder MD. The protection of infor-
mation in computer systems. Proceedings of the
IEEE 1975; 9(63): 1278–1308. URL http://web.mit.
edu/Saltzer/www/publications/protection/ [accessed on
June 1, 2011]

29. Arends R, Austein R, LarsonM,Massey. DNS Security
Introduction. Internet RFC 4033. IETF March 2005.
URL http://www.ietf.org/rfc/rfc4033.txt [accessed on
1 June 2011]

30. Web of Trust 2008. http://www.mywot.com/ [accessed on
1 June 2011]

31. OpenDNS 2008. http://www.opendns.com/ [accessed on
1 June 2011]

32. TRUSTe 2008. http://www.truste.org/about/index.php
[accessed on 1 June 2011]

33. Jøsang A. An algebra for assessing trust in certification
chains. In Proceedings of the Network and Distributed
Systems Security Symposium (NDSS), San Diego, CA,
1999. URL http://citeseer.ist.psu.edu/viewdoc/summary?
doi=10.1.1.25.1233

34. World Wide Web Consortium (W3C). Platform for
Internet Content Selection (PICS), 1996. URL http://
www.w3.org/PICS/ [accessed on 1 June 2011]

35. Daly J, Forgue MC, Hirakaw Y. World Wide Web
consortium issues RDf and OWL recommendations—
semantic web emerges as commercial‐grade infrastruc-
ture for sharing data on the Web, 2004. URL http://
www.w3.org/TR/2004/REC‐rdf‐primer‐20040210/
[accessed on 1 June 2011]
rity Comm. Networks 2012; 5:535–544 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec


