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I
n this article, we present and ana-
lyze a new family of fixed-point 
data formats for signal processing 
applications. These formats repre-
sent compressed two’s complement 

data formats where compression on the 
sign bit is undertaken on a sample by 
sample basis. The extra room provided 
by sign-bit compression is utilized to 
retain more bits of precision for each 
individual sample. Compressed two’s 
complement data formats are shown to 
provide greater dynamic range and 
improved noise performance over tradi-
tional fixed-point data formats such as 
sign-magnitude, offset binary, and tra-
ditional two’s complement. Traditional 
two’s complement is shown to be a 
member of the compressed two’s com-
plement family where the compression 
factor (CF) is equal to one. The 
dynamic range of a compressed two’s 
complement data format is shown to 
approach the dynamic range of a non-
compressed data format raised to the 
power of the CF. Improved perfor-
mance for digital signal processing 
(DSP) applications such as digital fil-
ters and transforms is presented for 
specific instances of this family. 

INTRODUCTION
The binary bits that make up an infor-
mation stream are typically not all of 
equal importance. This inequality has 
fostered numerous data compression 
techniques, many of which focus on 
removing the least important bits while 
maintaining the essence of the informa-
tion stream. Data compression is usu-
ally applied to information files such as 
text and pictures to reduce the amount 

of space required for storage. It is 
applied to information streams such as 
video and audio to decrease the 
required bandwidth needed to send 
information from one point to another. 
In this article, we present another use 
for data compression that improves the 
dynamic range and noise performance 
of discrete time signals. 

Two’s complement is the data 
format typically used to represent and 
operate on digital samples in a fixed-
point DSP system because it provides 
the same numeric precision as other 

fixed-point data formats but is easier 
to implement in digital hardware [2]. 
In a two’s complement fixed-point 
data format, the decimal point is set at 
a fixed position relative to the individ-
ual bits. As numbers become smaller, 
the sign bit fills in the unused digits 
at the most significant positions in 
the binary format.  The primary 

assumption for this format is that the 
smallest digits are the least important, 
and they are typically rounded to 
reduce algorithmic noise and fit in the 
binary word width of the chosen two’s 
complement format. 

For signal processing applications, 
the least important bits in a two’s com-
plement number are the leading ones 
and zeros, not the least significant bits 
(LSBs). A number only needs one sign 
bit. All of the other leading digits are 
used to identify the distance between the 
significant digits and the decimal point. 
These leading ones and zeros can be effi-
ciently compressed and the resulting 
space can be used for additional numeric 
precision. Unlike file-based compression 
techniques, this compression is per-
formed on a sample-by-sample basis. 

Figure 1 provides an example. 
Suppose a set of fixed-point data values 
of 12 b in width [Figure 1(a)] must fit 
into an 8-b data format. Typically, the 
entire data set is scaled such that the 
largest number fills the entire eight 
most significant bits (MSBs) [automatic 
gain control (AGC)]. Then the entire 
data set is rounded from 12 b to 8 b as 
shown in Figure 1(b) for a typical value. 
The negative effect of this approach is 
that up to 1/2 LSB of noise has been 
injected into each data sample by 
rounding. Furthermore, some of the 
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A 12-b Fixed-Point Number 000000101001

Rounded to an 8-b Two’s Complement Number 00000011

Ideal Compressed Two’s Complement Number 00101001

(a)

(b)

(c)

[ FIG1] Data rounding from 12 b to 8 b of a typical fixed-point number (Red 5 sign bits, 
Boldface 5 retained data, Gray 5 potentially lost LSBs).
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smallest signals may not be represent-
able as they round to zero. This effec-
tively decreases the dynamic range of 
the data set. For a compressed two’s 
complement number, the number of 
sign bits is reduced and room is made 
to retain the bits that would have been 
rounded off as shown for an ideal case 
in Figure 1(c). 

THE COMPRESSED TWO’S 
COMPLEMENT FORMAT 
A compressed two’s complement 
number has a predefined CF, and two 
data fields as shown in Figure 2 (CF is 
assumed).

Each member of this family of for-
mats is identified with a different CF 
(one, two, three, etc.). The CF is 
assumed but not included in the indi-
vidual bits of the data format. The CF 
determines how many bits each lead-
ing sign bit is to be expanded to for 
mathematical calculations. The shift 
field identifies how many digits to left 
shift the expanded number by. The 
c o m p r e s s e d  t w o ’s  c o m p l e m e n t 
number is just a traditional two’s 
complement number where each lead-
ing sign bit represents more than one 
leading sign bit when the number is 
expanded. The various widths of each 
of these fields constitute the different 
families in this class of data formats. 
The CF of a particular format gener-
ally determines the width of the shift 
field. The remaining bits constitute 
the compressed two’s complement 
number field.

A CF of one yields a shift field of 0 b 
in width, and a standard two’s comple-
ment number field of N b and results in 
a traditional fixed-point two’s comple-
ment data format. A CF of two results in 
a shift field width of 1 b and a com-
pressed two’s complement number field 
of N-1 b. The minimum size of the shift 
field in bits is equal to the base two loga-
rithm of the CF rounded up to the near-
est integer. A CF of four results in a 
number field of N-2 b and a shift field of 
2 b, and so forth. 

An example may help. Let’s illustrate 
a format with a CF of two and word 
length of five. The shift field for such a 

format is equal to log2(CF), or 1 b in 
width. There are 4 b remaining for the 
compressed two’s complement number 
field. Each leading sign bit is doubled, 
and if the shift bit is set to one, then the 
number is left shifted after being 
expanded. The resulting values are 
shown in Table 1. 

With a CF of two, the 4 b two’s com-
plement number field is expanded into 
8 b. This expansion obviously provides 
more dynamic range for the data 

format. What is not obvious at first 
glance is that a compressed data format 
also provides better numeric perfor-
mance than a 5 b standard two’s com-
plement format would provide. 
Evidence of performance improvement 
is presented later in this article.

STEPS FOR COMPRESSION AND 
DECOMPRESSION 
The steps followed for decompression 
with a CF of two are as follows:

[TABLE 1] A 5-b COMPRESSED TWO’S COMPLEMENT NUMBER WITH A 
COMPRESSION FACTOR OF TWO.

COMPRESSED BINARY VALUE (TWO’S 
COMPLEMENT FIELD—SHIFT FIELD) EXPANDED BINARY VALUE NUMERIC VALUE

0000 0 00000000 0

0000 1 00000001 1*

0001 0 00000010 2

0001 1 00000100 4

0010 0 00001000 8

0010 1 00010000 16

0011 0 00001100 12

0011 1 00011000 24

0100 0 00100000 32

0100 1 01000000 64

0101 0 00101000 40

0101 1 01010000 80

0110 0 00110000 48

0110 1 01100000 96

0111 0 00111000 56

0111 1 01110000 112

1000 0 11000000 264

1000 1 10000000 2128

1001 0 11001000 256

1001 1 10010000 2112

1010 0 11010000 248

1010 1 10100000 296

1011 0 11011000 240

1011 1 10110000 280

1100 0 11110000 216

1100 1 11100000 232

1101 0 11110100 212

1101 1 11101000 224

1110 0 11111100 24

1110 1 11111000 28

1111 0 11111111 21

1111 1 11111110 22
*0s are shifted into the LSB for all cases but this one.

MSB LSB

Compressed Two’s Complement Number Field Shift Field

[ FIG2] Format of a compressed two’s complement number.
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1) Double the number of leading sign 
bits.
2) Left justify the number into a field 
twice as wide as the compressed two’s 
complement number field. 
3) Pad the empty bits to the right 
with zeros. 
4) If the shift field equals one and the 
compressed number is not equal to 
zero, then shift the number left by 
one bit, shifting a zero into the LSB. 
5) If the compressed number is equal 
to zero and the shift bit is set to one, 
then shift a one into the LSB instead 
of a zero.
Similar steps are performed for for-

mats with CFs other than two. For 
example, the first step for decompres-
sion of a number with a  CF of four is to 
quadruple the number of leading sign 
bits. The two bit shift field of a CF 5 4 
format allows left shifts in Step 4 from 
zero to three. 

The steps followed to compress a 
two’s complement number with a CF of 
two are as follows:

1) Reduce the number of leading sign 
bits by a factor of two, rounding up 
for odd numbers (e.g., five leading 
sign bits is rounded up to three).
2) If the number of original leading 
sign bits is odd, then set the shift bit 
to one. 
3) Round the resulting number to the 
word width of the compressed two’s 

complement number field. (e.g., if 
one is compressing from 8 b to 4 b, 
round the result from Step 1 to 4 
bits). The technique used for round-
ing is very important, but that subject 
is adequately treated elsewhere [1].

4) If during the rounding process, the 
leading significant digit (i.e., nonsign 
bit) overflows into a new compressed 
sign bit, then the leading compressed 
sign bits and shift bit must be adjusted.
The data from Table 1 is plotted in 

Figure 3. This figure illustrates that 
greater precision is provided for the 
smallest numbers in a compressed two’s 
complement data format. This is similar 
to what is accomplished with 8-b m-law 
or A-law companding, and with float-
ing-point data formatting. The main 
advantage compressed two’s comple-
ment has over floating point is that the 
arithmetic is easier to accomplish in 
hardware, and that more precision is 
provided for the largest numbers in the 
format. This last point is not important 

for many problems, but is very impor-
tant for DSP problems. 

It turns out that for problems that 
require even distribution of precision, 
floating-point formats outperform com-
pressed two’s complement formats. DSP 
applications typically do not fall into this 
category because data is often repre-
sented as a fraction, and AGC techniques 
are often used to fit a problem’s dynamic 
range into a numeric format’s dynamic 
range. This arrangement typically gives 
fixed-point data formats an advantage in 
numeric precision over floating-point 
formats of equivalent word width. 
However, in this situation, compressed 
two’s complement formats have an 
advantage over both fixed- and floating-
point data formats in terms of numeric 
precision.

Another example will serve to 
hammer down this process. For a 5-b 
number with a CF of four, the shift field 
would be 2-b wide (log2(4)) and the 
compressed number field would be 3-b 
wide. During uncompression, each lead-
ing sign bit would be quadrupled, and 
right shifts of zero to three would place 
the remaining bits in their appropriate 
position. 

The examples we have presented 
illustrate the process and use of com-
pressed two’s complement data formats. 
But we have restricted ourselves to using 
small word widths to improve the ease of 
illustration. When compressed two’s 
complement number formats are used 
on larger word widths, truly impressive 
things begin to happen. For example, 
using a compressed two’s complement 
data format with a CF of two and a 16-b 
word width, the dynamic range is dou-
bled to approximately 180 dB and the 
round-off noise is reduced when com-
pared with traditional two’s complement 
arithmetic. A CF of three provides 
almost a tripling of dynamic range in 
bits (272 dB) together with improved 
round-off noise performance. This is 
illustrated in Figure 4. 

IMPLEMENTATION DETAILS
It may appear at first glance that we 
have thrown out one of the major 
advantages of the two’s complement 
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numbering systems by using a com-
pressed format, that being the simplic-
ity of the format. To some extent, this is 
true. However, we will endeavor to show 
that the sacrificed simplicity is not as 
great as first suspected. Furthermore, 
for many applications, the sacrificed 
simplicity in arithmetic implementa-
tion is more than made up for by 
increased simplicity in fixed-point 
signal processing algorithms. 

Compressed two’s complement algo-
rithms can be implemented in either 
software or hardware. Software imple-
mentation is appropriate for low-speed 
applications and where data storage is 
emphasized over throughput. Examples 
of potential uses would be for stored 
audio on a compact disc or compressed 
speech. A software implementation of a 
compressed two’s complement format 
with a CF of two is presented elsewhere 
in the form of a C11 class [3].

An appropriate hardware implemen-
tation would be within the arithmetic 
unit of a programmable digital signal 
processor integrated circuit. Such a cir-
cuit typically contains a multiply-accu-
mulator circuit [5] for implementing 
digital filters. A decompression circuit 
should precede the traditional fixed-
point arithmetic circuit where calcula-
tions are performed. When calculation is 
completed, data should flow through a 
compression circuit before being stored 
back into memory. The accumulator 
component of the arithmetic circuit 
would be larger than a traditional accu-
mulator by the CF. For example, a 16-b 
data format with a CF of four would 
require a 64-b arithmetic logic unit 
(ALU). However, the multiplier for such 
an arithmetic unit would be smaller as 
only 14 b of precision need be multi-
plied. Such an arithmetic unit for a CF 
of 4 is shown in Figure 5. 

PERFORMANCE IMPROVEMENTS
Much of the information presented here 
to validate performance improvements 
has been previously published [4], but is 
provided here to correlate it with com-
pressed two’s complement formatting. 
The improvement in dynamic range by 
using compressed two’s complement is 

easily calculated. In decibels, that is 
3.06* (CF – 1) * [word width – log2 
(CF)]. The result is a dramatic yet obvi-
ous improvement. What is less obvious is 
that while compressed two’s comple-
ment improves dynamic range, it also 
improves round-off noise performance. 

Figure 6 provides a powerful illustra-
tion of the performance gains that can 
be achieved through the use of com-
pressed two’s complement data formats. 
In this figure, the frequency spectrum 
of a digital notch filter is shown using 
four different formats. The filter was 
created using IEEE 754 32-b floating-
point coefficients. The IEEE 754 float-
ing-point format is shown in red. The 
coefficients were then converted to 

three other 16-b data formats and then 
converted back to IEEE floating point. 
The frequency spectrum was then plot-
ted for the other three data formats. 
Traditional 16-b two’s complement coef-
ficients are plotted in green. The 
magenta line shows the result using a 
16-b floating-point format (similar to 
IEEE Binary16 ) with 5 b of exponent 
and 10 b of mantissa. The purple line 
shows the same coefficients using a 16-b 
compressed two’s complement data 
format with a CF of two. As can be seen, 
the rejected stop band is ten decibels 
lower with the compressed two’s com-
plement format than for either of the 
uncompressed formats. Other than con-
version to and from a 16-b data format, 
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no arithmetic was performed in the 
example illustrated in Figure 6. 

A large DSP simulation has also been 
performed to validate improved perfor-
mance with the compressed two’s com-
plement data formats [3]. An amplitude 
modulation (AM) receiver simulation 
was used to compare the noise perfor-
mance for various data formats. The AM 
format was selected because this prob-
lem is well understood and still used 
even if in decline. This simulation 
 contained several typical DSP algo-
rithms that include the following: 
 quantization to simulate 16-b analog-to-
digital conversion, finite impulse 
response and infinite impulse response 
filters; demodulation; AGC; Hanning 
window; fast Fourier transform; and sig-
nal-to-noise ratio measurement via 
Parseval’s theorem. AGC techniques 
were used following several stages to 

improve the native performance of the 
fractional format. 

The simulation included the IEEE 
32-b floating-point format (as a compar-
ison baseline), together with four 16-b 
fixed-point formats. These were the 
s10e5 16-b floating point, a 16-b loga-
rithmic format, a 16-b two’s comple-
ment fractional fixed point, and a 
compressed two’s complement fractional 
format with a CF of two. The simulation 
was performed for both weak signal and 
strong signal cases and both with and 
without the use of a single large post-
multiply accumulator. Noise was not 
added to the simulation, so the resulting 
noise is a consequence of round-off 
errors during calculation, quantization 
to simulate A/D conversion, and out of 
band filter rejection (just over 50 dB). 
The simulation results are shown in 
Table 2.

As can be seen from Table 2, the 
compressed two’s complement format 
significantly outperformed the other 
16-b formats in terms of noise perfor-
mance and approached the performance 
of 32-b floating point for this simula-
tion. It also provides almost twice the 
dynamic range of traditional fixed point. 

CONCLUDING REMARKS
In this article, we have introduced and 
analyzed a new family of compressed 
fixed-point data formats for signal pro-
cessing applications. These sign-bit com-
pressed two’s complement data formats 
are shown to provide greater dynamic 
range and improved noise performance 
over traditional fixed-point and floating-
point data formats. Of course, the most 
desirable implementation for com-
pressed two’s complement would be in 
the ALU of a high-speed programmable 
DSP. Our results indicate that such a 
DSP should outperform a traditional 
DSP of equivalent data width in terms of 
algorithm performance.
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[TABLE 2] SUMMARY OF SIMULATION RESULTS (IN dB).

FORMAT

WEAK SIGNAL 
SNR WITHOUT 
ACCUM

WEAK SIGNAL 
SNR WITH 
ACCUM

STRONG 
SIGNAL 
SNR

DYNAMIC 
RANGE

IEEE 754 32-B FLOATING POINT 31.97 31.97 50.53 1530

16-B s10E5 FLOATING POINT 8.44 7.90 42.06 252
16-B LOGARITHMIC 8.23 8.32 38.61 385
16-B FIXED-POINT FRACTIONAL 13.30 24.93 44.42 96

16-B COMPRESSED TWO’S 
COMPLEMENT FRACTIONAL (CF 5 2)

21.91 27.16 50.13 181

Note: Among the 16-b formats, boldface and underlines indicates the best performer and italicized boldface the second 
best performer.
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[ FIG6] The frequency spectrum of a notch filter comparing the performance of various 
data formats.


