
COVER FE ATURE

29SEPTEMBER 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

However, by using the <document.domain=“example.
com”> script in various subdomains, the SOP permits
data sharing between the pages of example.com and dev.
example.com. Doing so can cause problems, however; the
script would let pages from a subdomain such as user-
pages.example.com access and alter pages from another
subdomain, such as payments.example.com.

The SOP incorrectly assumes that all directory paths
within the URL belong to the same source. For example,
URLs www.example.com/~john and www.example.
com/~mary have the same origin, even though they belong
to different users and therefore should not trust each other.
Another problem with the SOP is that it prevents developers
from delivering dynamic multisource data. As the Internet
and Web technology have progressed, the SOP has not
evolved to keep up with the security needs of a more com-
plex system, allowing malicious users to circumvent and
exploit it.

In principle, the SOP restriction is a good security
measure because it aims to protect data integrity and confi-
dentiality. However, it has not kept up with changes in Web
technology. The first Web browsers were not designed with
security in mind, so developers added the SOP mechanism
later to meet some basic security needs.

With the advent of JavaScript, Ajax, Web services, and
mashups, clever programmers and hackers have found
creative ways to subvert the SOP. Any SOP exploitation can
expose a Web application to attack from malicious code,
even if that exploitation comes from a well-intentioned
developer. In addition, those who correct security flaws
must account for the Web’s unique environment, such as

O ne of the first security measures that Internet
browsers incorporated was the same-origin
policy. As early as Netscape Navigator 2.0, SOP
prohibited data sharing between origins—any

unique host (such as a website), port, or application pro-
tocol. So, for example, SOP prevents one site’s documents
from accessing the document contents or properties from
other sites. Thus, the SOP makes it possible for users to
visit untrusted websites without allowing them to manipu-
late data and sessions on trusted sites.

If you browse http://example.com/index.htm, the SOP in
the browser would accept or reject script and data accesses
from the following sources:

 • http://example.com/about.htm (port 80): accept
 • https://example.com/doc.html (port 443): reject
 • http://google.com/search.php (port 80): reject
 • http://dev.example.com/more.htm (port 80): reject

By default, the SOP does not allow subdomains such
as dev.example.com to interact with the primary domain.

The same-origin policy, a fundamental se-
curity mechanism within Web browsers,
overly restricts Web application develop-
ment while creating an ever-growing list of
security holes, reinforcing the argument
that the SOP is not an appropriate security
model.

Hossein Saiedian, University of Kansas

Dan S. Broyles, Sprint Nextel

Security
Vulnerabilities in
the Same-Origin
Policy: Implications
and Alternatives

COVER FE ATURE

COMPUTER 30

statelessness and code mobility.1 To further complicate
matters, SOP rules and implementations differ between
resources, DOM objects, XMLHttpRequests, cookies,
Flash, Java, JavaScript, ActiveX, Silverlight, plug-ins, and
browsers.

Inexperienced Web programmers who do not know that
certain objects and actions—such as form submissions
and tags like <script> and —are not subject to
SOP might copy JavaScript from other websites without
understanding the security implications. Much like the
early Web browser itself, such developers focus on func-
tionality first and security last.

SOP weaknesses have led to attacks such as cross-site
request forgery (CSRF), cross-site scripting (XSS), and
Web cache poisoning. Attempts to fix these exploits have
had only limited success; they tend to patch individual
exploits without actually correcting the underlying secu-
rity problems. In other words, the SOP is not the correct

security mechanism and requires redesign to meet the
access-control requirements of Web-based assets. The
Web security community is still debating how best to
implement such a major undertaking. However, it seems
clear that the current SOP lacks two basic access-control
principles: the separation of privilege and least privilege.

Professional Web developers know about these defi-
ciencies and the many effective mitigation techniques
available, but many websites are built by nonprofessional
developers with limited experience.

NEED FOR DATA IN WEB APPLICATIONS
Internet activity is moving away from traditional

searching and navigating toward an interactive and
application-like activity in which browsers deliver
dynamic, customized content. Users can enter their own
content on Web forums, and social networking sites
and mashups incorporate content from many users and
third-party sites.

Jim Mischel has noted that the Web browser is the
platform of the future, but in its current state, the SOP
makes it difficult to share remote data and exposes too
many vulnerabilities.2 JavaScript and Ajax make modern
feature-rich websites possible, bringing applications
directly to users and improving efficiency and per-

formance. However, the SOP makes it difficult for Web
applications from one source to obtain and display data
from another. Developers use two common and powerful
techniques to circumvent the SOP and obtain data from
other domains; the first uses an Ajax proxy, and the second
uses JavaScript object notation with padding (JSONP) script
tag injection.

Ajax proxy
XMLHttpRequest objects, the cornerstone of Ajax tech-

nology, make dynamic Web applications possible. The SOP
restricts XMLHttpRequest calls much like it does any other
script running in a browser, allowing such requests only
between applications and servers from the same source.

Imagine a Web application that displays current stock
price information hosted by a remote webserver. If the
user enters a URL such as www.getyourstocks.com/
current.php?ticker=msft&format=json, the remote web-
server will return the current stock price in the following
format:

{

 “ticker”:”msft”,

 “current”:”24.5”,

 “lastclose”:”24.0”,

 “pctchange”:”2.1”,

 “30dayavg”:”23.45”

}

JavaScript makes it easy to format and display such
return data on the webpage, but the SOP forbids the de-
veloper from making a request to http://getyourstocks.com
from within his webpage. However, he can set up an ap-
plication proxy server on his webserver, ask it to obtain the
data from the other server, and deliver it through the server
to the user. Since the page makes an XMLHttpRequest to
the webserver proxy, which has the same origin as the Web
application, the SOP allows it. A proxy server is functional,
but slow and inefficient. It would be far better if the Web
application could query the remote server directly.2

JSONP script tag injection
Another approach to getting this outside data into the

Web application is to place the call to getyourstocks.com
inside a JavaScript function. In this example, if getyour-
stocks.com supports JSONP, then the programmer could
add a JavaScript function on the page called, for example,
showCurrent, that displays the data once it returns from
getyourstocks.com:

function showCurrent(data){

 // display the contents of the data

}

Inexperienced Web programmers who
do not know that certain objects and
actions are not subject to the SOP
might copy JavaScript from other
websites without understanding
the security implications.

31SEPTEMBER 2011

Then all the application needs is a <script> tag that
makes the request to the remote server:

<script type=“text/javascript”

src=“http://www.getyourstocks.com/current.
php?ticker=msft&format=json&callback=show
current">

</script>

The remote server will return the requested data so that
it calls the callback function, showCurrent:

showCurrent({

 “ticker”:”msft”,

 “current”:”24.5”,

 “lastclose”:”24.0”,

 “pctchange”:”2.1”,

 “30dayavg”:”23.45”

});

The webpage will execute the returned JavaScript as
if it were native to the page. However, if a hacker were to
alter the getyourstocks.com site so that it returns malicious
JavaScript instead of stock quote data, the browser running
this Web app will execute the malicious code. By circum-
venting SOP, the developer has introduced a security hole.

So how do developers obtain data for a Web application
and still maintain security? They need a better security
policy. Basic security logic suggests that third-party entities
should not have the same access rights as trusted enti-
ties, so a policy that lets application developers determine
access rights for each object might solve many SOP issues.

HACKER EXPLOITS
Hackers use various exploits to take advantage of SOP

deficiencies. There are many variations of these attacks,
and hackers create new exploits all the time. Here, the
purpose is not to enumerate every SOP vulnerability and
attack, but to outline the fundamental flaws in the SOP so
that readers can better analyze the proposed solutions.

Cross-site request forgery
Security experts identified the earliest CSRF as a con-

fused deputy attack. In this type of attack, hackers lure a
victim to a malicious website to submit a form that points
to a trusted target site in which the victim might have an
active session. The trusted webserver receives and pro-
cesses the form submission request, which looks identical
to a legitimate request from the trusted website.

CSRF includes any malicious webpage with scripts that
make unauthorized requests to trusted sites, hoping to
take advantage of users who have an active session with
the trusted site. For example, a user visits her bank’s web-

site regularly and has an active session open with the
bank when she browses to a malicious website contain-
ing code that calls the bank’s webserver. The call requests
a transfer to another account, robbing the unwitting user.
The browser caches the user’s active session information
within itself, so the malicious request to the bank’s server
looks exactly like a legitimate user request.

Today, banks employ various measures to thwart such
attacks, but other sites do not, especially those of small-
and medium-size companies whose Web developers do not
see the need for security measures covering SOP exploits.
Using the Referrer header could be effective against CSRF,
but Web applications frequently block this header because
of privacy concerns, so an application that enforces it
will exclude many users. Applications also strip Referrer
headers from all HTTPS requests. Still worse, hackers
can modify the Referrer header, making it unreliable.3

Adam Barth and his colleagues recommended augmenting
browser policy to use an Origin header as opposed to the
Referrer header to provide CSRF and click-jacking protec-
tion.4 The Mozilla security model currently proposes this
fix (https://wiki.mozilla.org/Security/Origin).

Cross-site scripting
There are two basic ways attackers implement XSS. The

first method, considered nonpersistent, introduces mali-
cious scripts in GET or POST requests that show up in pages
returned by the server. For example, an attacker sends an
e-mail containing a specially crafted hyperlink to a trusted
website; the URL string includes malicious instructions
reflected in the page returned by the webserver. The attack
takes place when the user clicks on the hyperlink.

The second attack, considered persistent, occurs when
the attacker injects malicious scripts into GET or POST
actions that the server stores and then dynamically pres-
ents to the victim. For example, a malicious user logs into a
forum and adds comments containing malicious JavaScript
to a discussion thread as follows.5

<html><head><title>Paul’s Blog</title>
</head><body>

 <h1>Scavenger Hunt!<h1>

 <hr>

 <h2>Paul: I will award the student
 bringing me the following items:</h2>

The SOP is not the correct security
mechanism and requires redesign to
meet the access-control requirements
of Web-based assets.

COVER FE ATURE

COMPUTER 32

 Yellow #2 pencil

 Secretary’s middle name

 Number of ceiling tiles in our lab

 <hr>

 <h4>Comments</h4>

 Karthick: What will we get?

 <script>

 //malicious script that modifies the
 above list

 </script>

 <hr>

</body></html>

The forum database stores this code as part of the thread.
The code executes anytime a user browses that page.

With the famous Samy MySpace worm, a user (Samy)
exploited an XSS vulnerability in the MySpace profile
form submission page and attached code to his profile.
The injected code included a CSRF attack wherein anyone
viewing his profile page would automatically add the
same code to their profile page, make Samy their hero,
and request Samy as a friend.6 Another XSS attack tech-
nique is to embed an invalid image object and use the
“onerror=” event to redirect the user to a webpage the
attacker chooses. Any code injected into a webpage re-
ceives full rights as if it were part of the original page. The
code can read and write other page elements, cookies, and
browser history.

Proper form validation and input sanitization can pre-
vent XSS attacks. The Samy attack infected a million user
accounts in the first day, and the damage to MySpace’s
reputation is incalculable. The estimated cost to repair
the damage from two smaller XSS attacks, Code Red and
Slammer, was $2.6 billion and $1 billion, respectively.

In DOMXSS, a more recent version of an XSS attack,
webpage code running on the client browser uses DOM
objects related to the URL string and other environment
variables that users can influence. If applications do not
properly validate these objects, an attacker can use them to
introduce malicious code into the page. This attack targets

Flash and other embedded programmable objects that have
access to user-manipulated DOM objects and environment
variables. In DOMXSS attacks, the client-side code embeds
the malicious code into the webpage; in traditional XSS at-
tacks, the server embeds the malicious code.

Dynamic pharming
Dynamic pharming employs Domain Name System

(DNS) hijacking to deliver a Web document with mali-
cious JavaScript code, and then in a separate <iframe>,
the attacker uses DNS rebinding techniques to load the
authentic website the user expected.7 In this way, the user
is actually interacting with a trusted website while, behind
the page, an attacker can monitor transactions and steal
session cookies and passwords. Since the malicious page
and the <iframe> appear to have the same origin, SOP
allows the malicious page to interact with the legitimate
website.

There are several ways to hijack the DNS name. For
example, an attacker can set up a wireless hotspot in an
airport. When unsuspecting users connect to this “free”
hotspot, the attacker’s router can intercept their DNS
requests and redirect these requests to a site of the at-
tacker’s choosing. Victims might never suspect the attack
since the browser indicates the domain that they trust
and expect.

PROTECTION CONSIDERATIONS
FOR DEVELOPERS

Even if a website has little traffic and contains no con-
fidential information, the fact that someone is interested
enough to visit the site makes it a potential target for attack.
As Figure 1 shows, the most vulnerable websites are those
of small- to medium-size companies or institutions, which
often do not understand the threat. If well-mannered users
can find the site, so can hackers.

It is thus important for developers of even small sites to
harden their sites against attacks. No strategy can guar-
antee protection against SOP attacks, but many make it
more difficult for such attacks to succeed. When attack-
ers exploit SOP vulnerabilities, they can steal passwords
and cookies, log keystrokes, and alter information. Having
good protection against CSRF attacks buys you nothing if a
hacker can hijack user sessions. Therefore, it makes sense
to prioritize security measures by protecting against XSS
first, CSRF second.

Scanning tools and services
Scanning services and vulnerability-checking tools

find common flaws, such as not filtering user input.8
Many popular vulnerability-checking tools are free, and
they test for basic SQL injection and XSS vulnerabilities,
system configuration problems, default passwords, and
so on. However, they fail to detect CSRF or DOMXSS

The most vulnerable websites are
those of small- to medium-size
companies or institutions, which
often do not understand the threat.

33SEPTEMBER 2011

attacks, which do not exactly fit the automated scanning
template; moreover, such services might not be updated
regularly enough to detect the newest exploits. For a fee,
professional scanning services can examine Web code
and simulate traditional and nontraditional attacks in a
safe environment.

Confine untrusted domain data to their
own <iframe>

When dealing with untrusted content, open it up in an
<iframe> with its own JavaScript execution context and
its own DOM elements. Using a different domain lets you
leverage the browser’s SOP to isolate code and elements
on the main page from malicious code or elements on the
<iframe>. This disassociation is beneficial but not always
possible. Mashups, for example, depend on the interaction
of data and components from multiple sources.

Avoid eval() and dynamically generated code
The eval() function lets the browser execute any string

as JavaScript code. Web applications that do not properly
validate input data risk executing malicious code. Avoid
dynamically generated code unless absolutely necessary.
JSON strings are meant to be a relatively safe subset of
JavaScript that lets data safely pass through a Web applica-
tion’s eval() function. However, attackers might attempt to
pass malformed JSON strings to your application, so use
regular expressions or parseJson() to check for non-JSON
strings.

HTML validation and escape of untrusted data
Web servers must validate all input, including URLs,

query strings, and post input. Sites that host blogs, forums,
comments, reviews, and social networks let users con-
tribute their own content, including HTML code and rich
data. As previously noted, malicious users exploit SOP
by uploading their own JavaScript routines. In the Samy
MySpace worm example, MySpace in fact did filter the
profile page submissions, but Samy circumvented the fil-
ters by breaking up the filtered words over multiple lines.
Better filtering would have frustrated the attack. Server-
side validation can remove potentially malicious tags and
scripts from untrusted user-supplied content and reduce
the threat of XSS attacks. Client-side validation is not
reliable for security purposes. Use one of the freely avail-
able security-focused encoding libraries to help validate
untrusted data.

Use the HttpOnly cookie attribute
The HttpOnly cookie attribute is a cookie security

control option that, if set, prevents JavaScript from ac-
cessing or modifying a cookie, making it more difficult
for an attacker to steal or abuse a session.9 Other cookie
security parameters are also useful. The path attribute

restricts cookie access to a specific path in the URL,
which makes it a little more secure than SOP. When
set, the secure flag instructs the browser to only grant
access to cookies from an HTTPS request. And setting the
expires attribute to a date in the past makes the browser
delete the cookie immediately instead of waiting until
it closes.

Use cryptographic tokens or captchas for
high-risk GET/POST requests

Jeremiah Grossman6 and Thomas Schreiber10 both ad-
vocated including a cryptographic token to all links and
forms that modify server-side data to provide strong pro-
tection against CSRF attacks. Presenting the user with
a link or form that includes an unpredictable element
specific to that action, user, and session disrupts these
attacks. To implement this token, you can use a hidden
input form element with a value from a keyed crypto-
graphic hash like HMAC_sha1(Action_Name + Secret,
SessionID). Before the server executes the request, it gen-
erates the same code or hash and compares it against the
user-submitted one; if the two do not match, the server
aborts the action.

Captcha and other challenge-response mechanisms are
also effective, but they affect the user experience, so use
them with care. Cryptographic synchronizer tokens are
not visible to users and require no additional user steps.

Avoid third-party code
Instead of pointing to a JavaScript or image file on a

remote server, copy the file to your webserver and ref-
erence it from there. Do not trust third-party ads. If a
webpage must contain ads, make sure they come from
a reputable company with an excellent security record.

Any scripts injected into the website, including those
for ads, have complete access to all webpage content.

Most at risk: Not
likely to have web-
site hardened
against attacks

Most likely to have
professional security
procedures in place

Site popularity (tra�c users and so on)

Lik
eli

ho
od

 of
 at

ta
ck

Figure 1. Website popularity versus likelihood of attack. The
most vulnerable websites are those of small- to medium-size
companies or institutions, which often do not understand
the threat.

COVER FE ATURE

COMPUTER 34

Third-party scripts lower the website’s security bound-
ary. If a hacker alters that script, that and every other site
using the same script will put confidential information
at risk. Multiple websites using scripts from a handful of
entities creates the potential for a single point of com-
promise. If it is absolutely necessary to use third-party
scripts, check them for vulnerabilities at secunia.com.

User precautionary reminders
If a Web application involves sensitive user information,

then its users will probably appreciate security reminders.
Use e-mail or website notifications encouraging users to
log out immediately after using the Web application; turn
off JavaScript or use white-list plug-ins like No-Script; use
a different browser to access secure or sensitive websites

than the one being used to browse the Internet freely, es-
pecially with tabbed browsing; and do not allow browsers
to remember usernames and passwords.

Mozilla Content Security Policy
One important security measure recently implemented

in Mozilla Firefox 4 is the Content Security Policy (CSP).
Aimed at mitigating XSS and click-jacking attacks, the
CSP employs a set of directives that define the security
policy for all types of webpage content on the webpage
(https://wiki.mozilla.org/Security/CSP/Specification). The
Web developer or administrator specifies a list of hosts or
URIs that can supply each content type. Additionally, the
CSP restricts common attack vectors in the client browser,
denying inline <script> tags, calls to eval(), and other
methods of creating code from strings.

NEW BROWSER SECURITY MODELS
The preceding techniques mitigate but do not solve the

root problem—the lack of an appropriate security model.
Many proposed new models aim to alleviate browser secu-
rity, but two that stand out as innovative and noteworthy
also complement each other.

Cryptographic server identity (locked SOP)
Chris Karlof and colleagues introduced a method that

enforces access control not only via a website’s host, port,
and application protocol, but also through the webserver’s
cryptographic identity: a browser only grants access if the
server’s public Secure Sockets Layer (SSL) key matches the
key from the locked Web objects.7 This is crucial to protect

against pharming attacks, which manipulate DNS records
and return the attacker’s IP address with the target site’s
name. Victims are unaware that they are under attack
since the URL in their browser shows the expected host
name. Using the webserver’s cryptographic identity, the
browser would detect and deny any server whose crypto-
graphic identity does not match the website’s SSL public
keys.

This proposal includes two policies: weak and strong
locked SOPs. In traditional SSL server connections, the
browser warns the user if the SSL certificate is unsigned
or if it has any errors, but users tend to ignore the warning.
SSL warnings can indicate a DNS spoofing or man-in-the-
middle attack. Using the weak locked SOP, the browser
would only allow a locked Web object to access another
locked Web object if the standard SOP would have allowed
it and if the object’s certificate had no errors or warnings.

For the strong locked SOP, the browser tags locked Web
objects with the public key of the webserver at the other
end of the SSL connection. A browser implementing the
strong policy would only allow access between locked Web
objects if the standard SOP would have allowed it and if
their tags match.

In a dynamic pharming attack, the attacker controls
the main page, and the <iframe> contains the genuine
trusted website, but only the true website server could
produce the cryptographic credentials necessary to verify
its identity. Therefore, the strong locked SOP would pre-
vent the attacker’s page from accessing anything on the
genuine page. By authenticating the server in this way, the
strong locked SOP prevents dynamic pharming attacks.
The locked SOPs, however, do nothing to thwart XSS or
CSRF attacks.

Escudo Web protection
Basic security logic suggests that third-party entities

should not have the same access privileges as trusted
entities. If various sections within webpages included
access-control mechanisms, a programmer could wall off
untrusted scripts and content from accessing or changing
trusted code or sensitive information.

Escudo is a new Web browser protection model that
uses mandatory access control to wall off content from
various sources and levels of trustworthiness.7 By en-
forcing access rules similar to those found in some file
systems, it seeks to enforce the separation of privilege and
the principle of least privilege, the lack of which contrib-
utes heavily to XSS and CSRF attacks. With Escudo, Web
developers identify the principles and objects in the code
along with their levels of trustworthiness, and the Web
browser implements those access decisions.

Unlike the CSP, which lists allowable sources of each
content type for the whole page, Escudo is more granular;
it identifies access rights to specific sections and elements

Basic security logic suggests that
third-party entities should not have
the same access privileges as trusted
entities.

35SEPTEMBER 2011

of the page, regardless of the content source. Developers
assign all the elements of each webpage to a protection
ring based on the trustworthiness of those elements and
their protection requirements. The developer is free to
apply as many rings as is necessary to protect the applica-
tion’s security.

Escudo lets developers define the meaning of a par-
ticular ring number, but ring level 0 is the most privileged.
Principals can access elements with equal or lesser
privilege, so a principal in ring level 2 can only perform op-
erations on elements in ring levels 2 and higher. To assign
ring levels, the developer encapsulates various page ele-
ments inside a div tag with a new attribute called ring. In
addition to the ring boundaries, Escudo also incorporates
access-control lists (ACLs), which let developers specify the
minimum privilege level to read, write, or use a particular
element.

The following code example defines a set of rings and
access-control assignments:

<div ring=2 r=1 w=0>

 ...

 <div ring=3 r=2 w=0>

 ...

 </div>

</div>

In this code segment, the outer ring is level 2. The ACL as-
signments require that a principal must have a ring level
of 1 to read the element (r = 1), and ring level 0 to modify
it (w = 0). The combination of ring levels and ACLs gives
Escudo a high degree of access granularity and lets de-
velopers employ the principle of least privilege in various
parts of their applications.

For nested rings, inner rings must have a lower privilege
level than outer rings, or else the Escudo security policy
in the browser ignores them. This prevents untrusted
sources from injecting code with a higher privilege level.
Furthermore, div tags can include markup randomization
attributes such as nonces to prevent injected code from
splitting the div tag and creating a new div region with
elevated privileges. Properly configured, the Escudo-
enabled browser assigns untrusted principals to the
least-privileged ring, where they cannot access or alter
the rest of the page.

As the following example shows, Escudo rings separate
untrusted page elements from trusted elements, thereby
preventing a malicious user from altering the content:

<html><head><title>Paul’s Blog</title>
</head><body>

 <div ring=2 r=0 w=0 x=0
 nonce=23409750497590487>

 <h1>Scavenger Hunt!<h1>

 <hr>

 <h2>Paul: I will award the student
 bringing me the following items:</h2>

 Yellow #2 pencil

 Secretary’s middle name

 Number of ceiling tiles in our
 lab

 </div nonce=23409750497590487>

 <hr>

 <h4>Comments</h4>

 <div ring=3 r=1 w=1 x=1
 nonce=23409750497590487>

 Karthick: What will we get?

 <div ring=0 r=0 w=0 x=0>

 <script>

 //malicious script to modify the
 above list

 </script>

 </div>

 </div nonce=23409750497590487>

 <hr>

</body></html>

The attempt to embed a ring level of 0 will also fail, be-
cause it resides within ring level 3.

Using attributes in the HTTP header, Escudo rings
can also protect cookies, browser API code, and browser
history. Escudo is backward compatible; Web browsers
that do not support the mechanism will simply ignore
the Escudo attributes in the div tag and implement SOP
as always.

W eb developers need better control and security
mechanisms. Data and code from untrusted
sources should not have the same privileges

as the trusted programmer’s code. Looking forward, the
CSP should continue to improve; future development may
include protection attributes similar to Escudo to allow
fine-grained access control. Escudo itself could benefit
by incorporating a valid-only flag, similar to the locked
SOP, instructing the browser to ignore items within the
div tag unless the SSL certificate(s) for the locked items
in the tag are valid.

As the Internet evolves, the Web browser’s fundamental
security mechanism also must evolve. If the future Web

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel� sh and lazy.

(except ours!)

“
”

The world-renowned IEEE Computer Society Press is currently
seeking authors. The CS Press publishes, promotes, and
distributes a wide variety of authoritative computer science
and engineering texts. It offers authors the prestige of the
IEEE Computer Society imprint, combined with the worldwide
sales and marketing power of our partner, the scientifi c and
technical publisher Wiley & Sons.

For more information contact Kate Guillemette,
Product Development Editor, at kguillemette@computer.org.

www.computer.org/cspress

COVER FE ATURE

COMPUTER 36

browser is to be an effective user interface for experiencing
the Internet, privacy, trust, and security will be among its
most important qualities.

References
 1. A. Rubin and D. Geer, “A Survey of Web Security,” Com-

puter, Sept. 1998, pp. 34-41.
 2. J. Mischel, “Browser Applications and the Same Origin

Policy,” informIT, 6 Aug. 2010; www.informit.com/guides/
content.aspx?g=dotnet&seqNum=809.

 3. J. Grossman, “Cross-Site Request Forgery: The Sleeping
Giant,” WhiteHat Security, July 2007; www.whitehatsec.
com/home/assets/WPCSRF072307.pdf.

 4. A. Barth, C. Jackson, and J.C. Mitchell, “Robust Defenses
for Cross-Site Request Forgery,” Proc. 15th ACM Conf. Com-
puter and Communications Security (CCS 08), ACM Press,
2008, pp. 75-87.

 5. K. Jayaraman et al., “ESCUDO: A Fine-grained Protection
Model for Web Browsers,” Proc. IEEE 30th Int’l Conf. Dis-
tributed Computing Systems (ICDCS 10), IEEE CS Press,
2010, pp. 231-240.

 6. J. Grossman, “Cross-Site Scripting Worms and Viruses:
The Impending Threat and the Best Defense,” WhiteHat
Security, Apr. 2006; http://net-security.org/dl/articles/
WHXSSThreats.pdf.

 7. C. Karlof et al., “Dynamic Pharming Attacks and Locked
Same-Origin Policies for Web Browsers,” Proc. 14th ACM
Conf. Computer and Communications Security (CCS 07),
ACM Press, 2007, pp. 58-71.

 8. M. Curphey and R. Arawo, “Web Application Security As-
sessment Tools,” IEEE Security & Privacy, July/Aug. 2006,
pp. 32-41.

 9. S. Crites, F. Hsu, and H. Chen, “OMash: Enabling Secure
Web Mashups via Object Abstractions,” Proc. 15th ACM
Conf. Computer and Communications Security (CCS 08),
ACM Press, 2008, pp. 99-107.

 10. T. Schreiber, “Session Riding: A Widespread Vulnerability
in Today’s Web Applications,” SecureNet GmbH, Dec. 2004;
www.securenet.de/papers/Session_Riding.pdf.

Hossein Saiedian is a professor of software engineering
in the Department of Electrical Engineering and Com-
puter Science at the University of Kansas, where he also
is a member of the Information and Telecommunication
Technology Center. His research focuses on software en-
gineering, particularly technical and managerial models
for quality software development. Saiedian received a PhD
in computer science from Kansas State University. He is a
senior member of IEEE. Contact him at saiedian@ku.edu.

Dan S. Broyles is an engineer in the technology develop-
ment organization at Sprint Nextel, where he provides
spectrum analysis applications and automation tools for
internal engineering teams. He received an MS in informa-
tion technology from the University of Kansas. Contact him
at daniel.s.broyles@sprint.com.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

