
JOURNAL OF SOFTWAREMAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
Published online 4 November 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.396

Research

An architecture-centric
software maintainability
assessment using information
theory

Muhammad Anan1,‡, Hossein Saiedian2,∗,†,§ and
Jungwoo Ryoo3,‡

1Electrical and Computer Engineering, Purdue University Calumet, Hammond,
IN 46323, U.S.A.
2Electrical Engineering and Computer Science, University of Kansas,
Lawrence, KS 66045, U.S.A.
3Information Sciences and Technology, Penn State University, Altoona,
PA 16601, U.S.A.

SUMMARY

Architecture-based metrics can provide valuable information on whether or not one can localize the
effects of modification (such as adjusting data flows or control flows) in software and can therefore be
used to prevent the changes from adversely affecting other software components. This paper proposes an
architecture-centric metric using entropy for assessing structural dependencies among software compo-
nents. The proposed metric is based on a mathematical model representing the maintainability snapshot
of a system. The introduced architectural-level metric includes measures for coupling and cohesion. From
this model, the relative maintainability of a component, referred to as a maintainability profile, can
be developed to identify architectural decisions that are detrimental to the maintainability of a system.
Copyright © 2008 John Wiley & Sons, Ltd.

Received 17 September 2007; Revised 23 June 2008; Accepted 9 August 2008

KEY WORDS: software maintainability; coupling; cohesion; architectural metrics; information theory

∗Correspondence to: Hossein Saiedian, University of Kansas, EECS, 2001 Eaton Hall, Lawrence, KS 66045, U.S.A.
†E-mail: saiedian@ku.edu
‡Assistant Professor.
§Professor and Associate Chair.

Copyright q 2008 John Wiley & Sons, Ltd.



2 M. ANAN, H. SAIEDIAN AND J. RYOO

1. INTRODUCTION

It is well known that a large fraction of the efforts spent on a software product is devoted to its
maintenance [1]. Controlling maintenance costs typically means keeping potential software main-
tenance hazards from reaching production in an initial release. It also involves monitoring software
changes to determine if they introduce maintenance-unfriendly components into an existing system.
In order to provide objective and consistent ways to assess software maintainability, appropriate
metrics are indispensable.
Boehm et al. [2] defined modifiability as the degree to which a system or a component facilitates

the incorporation of changes, once the nature of the desired change has been determined.
This paper further explores Boehm’s definition by emphasizing that modifiability of a software

product is measured by:

• how easy/difficult it is to make changes, and
• how probable it is for an error to be introduced when the changes are made.

In many cases, the errors are attributable to architectural decisions made earlier in the development
process. For instance, the software could have been developed on a flawed architectural design and
is consequently too brittle to allow any serious modifications. It is also possible that the changes
made after the initial implementation violate the originally envisioned architecture deliberately
designed to accommodate future modifications.
There could be many types of architectural decisions that can influence modifiability, but the

authors are particularly interested in the data flow aspect of an architectural decision, which, they
believe, is a dominant factor.
Information theory [3] provides a way to measure information entropy (the average number of

bits necessary for storing and communicating data). In this paper, the authors demonstrate how
entropy can be used to record the reliability of a data flow, which, in turn, becomes a centerpiece
of their maintainability metric.
The proposed metric is based on a mathematical model representing the maintainability snapshot

of a system. From this model, the relative maintainability of a component, referred to as a main-
tainability profile, can be developed to identify architectural decisions that are detrimental to the
maintainability of a system.
The organization of this paper is as follows. Section 2 provides an overview of the existing

methods to measure software maintainability. Section 3 introduces the maintainability metric
proposed by the authors. Section 4 presents concrete examples showing how the proposed metric
can be applied to real-life software development environments. Section 5 concludes the paper by
discussing the limitations of this work and its future extensions.

2. RELATED WORK

Software metrics are used to quantify different aspects of artifacts produced during a software
project. A variety of software metrics have been developed to evaluate software architectures
[4–14]. Some of these metrics specialize in maintainability and scrutinize maintainability-specific
characteristics such as analyzability, changeability, stability, and testability. According to ISO 9126

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 3

(an international standard for the evaluation of software):

• analyzability represents the effort needed to diagnose deficiencies and identify parts to be
modified,

• changeability represents the effort needed for modification or fault removal,
• stability represents attributes of software that bear on the risk of unexpected effect of modifi-
cations, and

• testability represents the effort needed to validate modified software.

Software metrics measuring these maintainability characteristics are categorized into either
source code assessments of maintainability (analyzability and changeability) or architectural-
structure assessments of maintainability (stability and testability) [15–18]. The source-code-based
metrics attempt to assess the cognitive complexity of maintaining software, whereas architectural-
structure-based metrics attempt to assess the interrelationships and dependencies of software
components.

2.1. Source-code-based metrics of maintainability

Source-code-based metrics focus on defining maintainability in terms of the cognitive complexity
of the source code. These measures focus on the ability of a programmer to understand and maintain
the code itself. The notion of cyclomatic complexity is one of the first measures of such kind of
software complexity and hinges on the decision structures of the code as well as the application of
algorithms [19].
In addition, building on the idea of cognitive complexity, Halstead [20] developed another source-

code-based complexity measure using the number of operators and operands in a software module.
In general, this approach focuses more on lexical and textual complexity rather than on structural
and logical flows as also shown in McCabe’s approach [19].
Welker and Oman [21] proposed a Maintainability Index that is a combination of McCabe’s

cyclomatic complexity and Halstead’s approach. In addition, they worked on identifying specific
relationships between software costs and software maintainability.
Berns [22] also concentrated on source code complexity in measuring maintainability and defined

his metric as the understandability of the code, which is quantified by the difficulty in grasping how
dynamic software parts control their static software counterparts within a software application.

2.2. Architectural-structure-based metrics of maintainability

Architectural-structure-based maintainability metrics provide numerical measures of how facili-
tating the overall structure (including the interrelationships and dependencies) of software compo-
nents is in promoting the maintainability of a software application. Such metrics can be developed
by specifying a software system in graphs and by deriving measurements from their topologies.
Note that there are few metrics that explicitly claim their use as maintainability metrics per se.

Rather, most of them broadly measure complexity (by which maintainability is subsumed) at an
architectural level.
Architectural-level metrics of complexity include measures for coupling and cohesion. Coupling

is a measure of how strongly one component is connected to or relies on other components. Low

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



4 M. ANAN, H. SAIEDIAN AND J. RYOO

coupling implies that modifying a software component has little impact on another component. In
contrast to coupling, cohesion measures a component’s internal interdependence (i.e., intra-module
coupling of the component).
Bieman et al. [23,24] proposed a cohesion metric called Design Level Functional Cohesion,

which is a high-level review of the inputs and outputs of a component to define its cohesiveness.
Tomlinson [25] proposed a class coupling metric that computes the sum of the number of classes

to which a class is coupled divided by the number of its immediate subclasses. Thus, this measure
examined the complexity of an inheritance hierarchy in addition to the amount of information
contained in associations.
Other researchers also developed metrics for coupling and cohesion in object-oriented systems

[26]. Their main contributions lie in finding a relationship between understandability, errors, and
probability of errors.
Kazman and Burth [14] argue that coupling and cohesion are not true architectural metrics as

they measure the complexity of individual software components with no insight into the overall
complexity of a software architecture. They propose a metric based on pattern recognition. More
specifically, in their approach, the maintainability of software is judged by the percentage of archi-
tectural elements covered by user-defined patterns and the number of distinct patterns utilized in
the architecture.
Allen et al. [5,6] applied the information theory using coupling and cohesion metrics to evaluate

the quality of a design. Their preliminary analysis indicated that the information theory approach
makes finer-grain distinctions among alternative graphs than just counting graph features.
In this paper, the objective is to assess structural dependencies among software components in

terms of information flow dependency to represent the maintainability snapshot of a system. We
sliced the software structures according to their modules’ dependencies.

3. THE PROPOSED MAINTAINABILITY METRIC

3.1. Metric construction

In this paper, we propose a metric using the information flow dependencies among software compo-
nents and slicing the software structures according to these dependencies. The metric serves as a
mathematical model of the maintainability state of a system. From this model, the relative maintain-
ability of components (called the maintainability profile) can be constructed to identify architectural
decisions detrimental to maintainability.
We use a concrete example (a rail-road crossing system used by Alagar et al. [27]) to systemat-

ically illustrate how their metric is constructed. The system in the example consists of simple gate
controllers. Five trains (t) cross through one of two gates (g), each of which is controlled by its
own controller (c). See Figure 1. In the example, each train is connected to only one controller
with the exception of only one train (t3).

3.1.1. Architectural dependencies

The initial step in the metric construction is the identification of a special type of architectural
dependency called flow dependency.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 5

t1 t2 t3 t4 t5

g1

c1 c2

g2

Figure 1. Architecture of a rail-road crossing system.

t1 t2 t3 t4 t5

g1 g2

c1 c2

Figure 2. Flow-dependency graph for a rail-road crossing system.

Flow dependencies represent information exchange relationships between components. Any inter-
actions between two components occur by an information flow through a communication channel.
Thus, for example, if component u interacts with component v to get data, then there exists an
information flow dependency between u and v.
The flow dependencies between components are specified in a graph, in which a component

is represented by a vertex. An edge between two vertexes represent a data flow resulting from
object references or message exchanges. If there are only two components involved in a directional
interaction, a line with an arrow head is used. Otherwise a straight line is drawn.
The end result of the flow dependency analysis is a graph of all software components with

every interaction dependency between components displayed. The flow dependencies (representing
communication between trains, controllers, and gates) in the rail-road crossing example are shown
in Figure 2.
Each train communicates with its respective controller. There is only one train (t3) communi-

cating with both controllers. Each controller, in turn, communicates with its respective gate.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



6 M. ANAN, H. SAIEDIAN AND J. RYOO

t1 t2 t3 t4 t5

g1 g2

c1 c2

S1

S2

S3

Figure 3. Architectural slicing of the rail-road crossing system graph.

3.1.2. Architectural slicing

The result of the architectural dependency analysis is used to group components. This grouping is
referred to as slicing and is useful for understanding the design (or the lack of design).
For software maintenance, slicing is significant in that it identifies all the components that can be

affected by a software change as well as those that are not affected. In the proposed metric, slicing
is used to assess the degree of coupling and eventually the maintainability.
The slicing of the rail-road crossing example (Figure 3) is based on the communications identified

by the dependency analysis (Figure 2). The rail-road system is sliced into three subsystems (in a
layered fashion) using the similarities in connections between the components:

• sub-module one (S1) contains trains,
• sub-module two (S2) contains controllers, and
• sub-module three (S3) contains gates.

The rail-road crossing system (Figure 3) is a highly simple example of architectural slicing.
Note that slicing becomes increasingly difficult and time consuming as the complexity of software
grows.

3.1.3. Inter-module and intra-module dependency views

The architectural slicing results are used to construct inter-module dependency (data flows between
modules) view and intra-module dependency (data flow within a module) view. Inter-module depen-
dency (for example, components S1 and S2) is shown in Figure 4(a), while intra-module dependency
(for example, component S2) is shown in Figure 4(b).
The dependency views for the rail-road crossing system (inter-module dependency in Figure 5(a)

and intra-module dependency in Figure 5(b)) indicate that there is inter-module dependency, but
there is no intra-module dependency. Each layer communicates with its neighboring layer and does
not interact with other components in the same layer.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 7

1

2

3

4

1

2

3

4

S1 S1

S2 S2

(a) (b)

Figure 4. Example of (a) inter-module and (b) intra-module dependency views.

(a) (b)

Figure 5. Dependency views of the rail-road crossing system.

3.1.4. Metric definitions

Using the dependency views defined in the previous section, a mathematical model of soft-
ware maintainability can be established. This model is leveraged to capture the information
entropy of software in terms of information flows occurring in the various slicings of a software
structure.
Coupling and cohesion are defined by Briand et al. [10] in the context of a modular system (MS)

graph. Hence, the software-design graph should be partitioned into subsystems (modules). Allen
et al. [5] define a system graph to explicitly model the lack of relationship between the system and
its environment. Given is a set of useful definitions needed to construct a system’s mathematical
model. These definitions have benefited from [5,10].
Definition 1. MS. An MS is a software system represented by a graph S that has n nodes (compo-
nents).

Definition 2. Sub-module System. Each MS consists of any number of components denoted as Si .

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



8 M. ANAN, H. SAIEDIAN AND J. RYOO

Definition 3. Inter-module Dependency View. For a MS (S), the inter-module dependency view
is a MS graph whose nodes are connected with edges representing information flows across the
boundaries of an architectural slicing.

Definition 4. Intra-module Dependency View. For a MS (S), the intra-module dependency view
is a MS graph whose nodes are connected with edges representing information flows within the
boundary of an architectural slicing.

Definition 5. Directly Impacted. Let Ck and C j be two components belonging to either the same or
different architectural slicings. C j is said to be directly impacted by Ck if C j and Ck are connected
through a single data flow link.

Definition 6. Indirectly Impacted. Let Ck and C j be two components belonging to either the same
or different architectural slicings. C j is said to be indirectly impacted by Ck if C j is not directly
connected to Ck , but a path P=[C1,C2, · · · ,Cn] exists such that C1 is directly impacted by Ck ; Ci
is directly impacted by Ci−1 where i=2,3, · · · ,n; C j is directly impacted by Cn .

Definition 7. Entropy of an Architectural Slicing. Any node i (component) can have Ri number of
direct data flow links to other nodes in a system. The information entropy H(Si ) of architectural
slicing Si is defined as

H(Si ) = p
ns∑
i=1

(− log(PL(i)))

= 1

n

ns∑
i=1

(− log(PL(i)))

where k is the number of architectural slicings in a system, ns|Si the total number of nodes within

an architectural slicing Si , n the total number of nodes in an entire system n=∑Sk
i=1 ns|Si , p the

probability of a node to be involved in the event of a change p=1/n, Ri the total number of
inter-module data flow links connected to node i , PL(i) the probability of a data flow event to occur
on the links of a node i and PL(i)=1/(Ri +1).

Definition 8. System Entropy. For system S with k architectural slicings, its entropy H(S) is
defined as

H(S)=
k∑

i=1
H(Si )

where H(S) is the entropy of a system, H(Si ) is the entropy of an architectural slicing Si and k is
the number of architectural slicings in the system.

Definition 9. Information Entropy of an Architectural Slicing.

I (Si ) =
ns∑
i=1

(− log PL(i))

I (Si ) = H(Si )

p
=n×H(Si )

where I (Si ) is the information entropy of an architectural slicing.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 9

Definition 10. Coupling between Architectural Slicings.

Coupling(Si )=H(Si )

where H(Si ) is the information entropy of architectural slicing Si .

Definition 11. System Coupling. The cumulative coupling of System S is defined as

Coupling(S)=
k∑

i=1
H(Si )

where H(Si ) is the information entropy of an architectural slicing Si , and k is the total number of
architectural slicings in a system.

Definition 12. Architectural Slicing Cohesion. The cohesion of architectural slicing Si is defined as

Cohesion(Si )= Coupling(Si )

Coupling(S)
for ns>1

where ns is the total number of nodes in Si .

Cohesion(Si )=0 when ns =1

3.2. Metrics application

Using the metric definitions provided in the previous section, a maintainability profile (value) can be
calculated for an entire software system. This maintainability profile combines information entropy
values at various abstraction levels into a single, comparable number. The respective maintainability
profile values for architectural slicing are simply summed up to produce one maintainability profile
value for the system as a whole.
An architectural slicing would have a higher maintainability profile number when it is less

desirable for maintenance. Amaintainability profile value close to zero indicates that an architectural
slice does not require an excessive maintenance effort when a change is introduced.
For the rail-road crossing system, its system coupling (Definition 11) can be calculated by first

computing individual coupling values for all the nodes. For example, Coupling(t1) is calculated as
follows:

H(St1)= 1

n

ns∑
i=1

(− log(PL))= 1

9

(
− log

(
1

1+1

))
= 1

9
(− log(0.5))=0.033

This process continues until maintainability profile values for every architectural slicing in the
system are computed. From these calculations a maintainability profile value for the whole system
emerges (Table I).
Architectural Maintainability Effort (AME) for the system as a whole is then computed: H(S)=∑3
i=1 H(Si )=0.404. The maintainability profile (Table I) can also be visualized for more intuitive

reviews (Figure 6). This includes a bar graph (Figure 6(a)) and a fish-eye view (Figure 6(b)).

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



10 M. ANAN, H. SAIEDIAN AND J. RYOO

Table I. Maintainability profile for rail-road crossing system.

Slicing Node Probability of Coupling for a Information
Si ns event occurrence PL (i) slicing H(Si ) entropy I (Si )

S1 t1 0.5 0.033 1.69
t2 0.5 0.033
t3 0.33 0.05
t4 0.5 0.033
t5 0.5 0.033

S2 c1 0.2 0.078 1.39
c2 0.2 0.078

S3 g1 0.5 0.033 0.6
g2 0.5 0.033

Figure 6. Visual representations of the rail-road crossing system maintainability profile values.

4. A CASE STUDY

Figure 7 shows the result of a flow analysis and the slicing of a software system. Figure 7 is similar
to the selected system in [5]. The same system was chosen to show that applying our metric and
architectural slicing approach will produce a more accurate estimate of a system’s dependencies.
The selection of modules boundary in [5] is made to model both the design decisions to connect

each pair of nodes and the decision not to connect the others. The authors generate a set of
measures that are sensitive to patterns of connections. In contrast, we used flow dependency to
represent information exchange relationships among components. Any interactions between two
components occur by an information flow through a communication channel. The end result of the
flow dependency analysis is a graph of all software components with every interaction dependency
between components displayed. Thus, we construct the architectural slicing in order to group a
system’s components.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 11

Figure 7. Flow analysis and slicing results of a software system.

(a) (b)

Figure 8. Dependency views.

Figure 8 presents the inter-module and intra-module dependency views of the same system. In
this section, more examples with architectural variations are presented to:

• further illustrate some additional concepts including the cohesion of a component, and
• evaluate effects that architectural decisions have on the maintainability profile of a software
system.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



12 M. ANAN, H. SAIEDIAN AND J. RYOO

Table II. Maintainability profile values computed from the inter-module dependency view.

Slicing Node Probability of Coupling for a Information
Si ns event occurrence slicing H(Si ) entropy I (Si )

Env. 0 1 0 0
S1 1 0.25 0.043 0.6
S2 2 1 0 0.6

3 0.5 0.021
4 0.5 0.021

S3 5 0.5 0.021 0.6
6 1 0
7 0.5 0.021
8 1 0
9 1 0

S4 10 1 0 0
11 1 0
12 1 0
13 1 0

4.1. A software system with strong cohesion

Figure 7 shows the result of a flow analysis and the slicing of a software system. Figure 8 presents
the inter-module and intra-module dependency views of the same system. Note that the information
links in both dependency views are annotated with labels indicating the directions of information
flow. For instance [1,2] means that module 1 sends data to module 2. Table II shows the maintain-
ability profile values of the system computed from the inter-module dependency view (based on
Definition 3).
Based on the maintainability profile values (in Table II), AME for the system can be computed

as H(S)=∑3
i=1 H(Si )=0.127.

The maintainability profile values suggest that architectural slicing S1 is least maintainable due
to its relatively high level of information exchange with other slicings. The most maintainable
architectural slicing is S4 as it exhibits the smallest maintainability profile value (0.00). S4 does
not depend on any other slicing in terms of data flows.
The maintainability profile values from intra-module dependency view (based on Definition 4)

can also be computed as shown in Table III.
Using the intra-module maintainability profile values in Table III, one can compute AME for the

intra-module dependency view as H(S)=∑4
i=0 H(Si )=0.378.

Using Definition 12, one can also compute the cohesion of each architectural slicing (Table IV
and Figure 9). The numbers indicate that S2 is the most cohesive architectural slicing. This makes
sense as all the components in the architectural slicing are connected to each other, producing a
complete graph.

4.2. Application to various architectures

To illustrate how the proposed metric can be used to evaluate the maintainability of various systems,
several system architectures with different component arrangements are constructed (see Figure 10).

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 13

Table III. Maintainability profile values computed from the intra-module dependency view.

Slicing Node Probability of Coupling for a Information
Si ns event occurrence slicing H(Si ) entropy I (Si )

Env. 0 1 0.0 0
S1 1 1 0.0 0.0

2 0.33 0.034 1.44
S2 3 0.33 0.034

4 0.33 0.034
5 0.33 0.034 2.05
6 0.5 0.021

S3 7 0.33 0.034
8 0.5 0.021
9 0.33 0.034

10 0.33 0.034 1.87
S4 11 0.25 0.043

12 0.33 0.034
13 0.5 0.021

Table IV. Cohesion values for the architectural slicings.

Slicing Coupling for a Cohesion for a
Si slicing H(Si ) slicing

S1 0 0
S2 0.102 3.71
S3 0.144 2.63
S4 0.132 2.86

All of these systems have the same number of components (17) and connections (15). However,
communication patterns among various modules are different due to the various intra-module
dependencies. Therefore, it is not easy to capture the complexity of these architectures without
applying a quantitative assessment method to measure the information flow dependency within each
system.
Table V summarizes the maintainability profile values for all system architectures shown in

Figure 10 using the proposed maintainability metric. The maintainability profile includes: the prob-
ability of event occurrence, intermodule coupling, and the total architectural maintainability. The
architectures are compared based on the same criteria where sub-modules in each architecture have
the same number of communication channels with different components. From the results obtained
in Table V, it is clear that sub-module S3 has the highest complexity value compared with other
sub-modules in other architectures and therefore it is the least maintainable. This is because each
single component in S3 refers to other components outside the sub-module in terms of multiple
connections. As a result, coupling for S3 increases. Other sub-modules have different complexities
based on their interdependence on other sub-modules.
As illustrated in Figure 10, it is clear that low coupling is always desirable where a component

is not dependent on too many other components. Low coupling of a component is a sign of its

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



14 M. ANAN, H. SAIEDIAN AND J. RYOO

3.71

2.63

2.86

0

0

A
rc

h
it

ec
tu

ra
l S

lic
in

g

Cohesion

Figure 9. A visual representation of the cohesion values.

independence, which reduces the impact of change. On the other hand, higher value of maintain-
ability (coupling) for a component indicates more interactions between the component and other
components of the system, which means harder maintainability for the component. Besides, when
the coupling is near zero for a component, the component is easy to maintain.

5. FURTHER RESEARCH AND CONCLUSIONS

The proposed maintainability metric focuses on direct data flow links between components (i.e.,
those directly impacted) and does not consider the ripple effects of changes among components
separated by more than one data flow link (i.e., those indirectly impacted). It would be ideal to take
into account both directly and indirectly impacted components, and the authors plan to work on the
second incarnation of the metric, which uses a tracing algorithm that runs recursively to identify
all the components affected by changes in a particular component [28].
To test the scalability of the metric, the authors also plan to apply their metric to large-scale,

industrial-strength software systems implementing various architectural styles. Note that this further
validation is not limited to a software system in production but can be done during the different
phases of a software development life-cycle, which include design, implementation, and test. One
desirable way of doing this type of validation would be to use a software architecture design of
known maintainability quality as a benchmark to guide the entire validation process.
To effectively control software maintenance costs, metrics assessing the maintainability state of

software systems is crucial. A solid architecture-centric maintainability metric can significantly
improve one’s ability to accurately evaluate the impact of modifications in software.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 15

Figure 10. Examples of different module architectures.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



16 M. ANAN, H. SAIEDIAN AND J. RYOO

Table V. Maintainability profile values for different architectures.

Slicing Node Probability of Coupling for a
Si ns event occurrence slicing AME

S1 1 1 0 0.071
2 0.625 0.071

S2 1 0.5 0.018 0.087
2 0.067 0.069

S3 1 0.25 0.035 0.151
2 0.33 0.028
3 0.25 0.035
4 0.125 0.053

S4 1 1 0 0.138
2 1 0
3 0.17 0.046
4 0.17 0.046
5 0.17 0.046

S5 1 1 0 0.147
2 1 0
3 1 0
4 0.5 0.018
5 0.25 0.035
6 0.2 0.041
7 0.125 0.053

This paper proposed a novel maintainability metric based on dependencies (in terms of data
flow links) between software components and the information entropies associated with those
dependencies. Information entropy is highly relevant to measuring maintainability as increases in
information entropy adversely affect the system’s responses to modifications. Errors are more easily
introduced when the effect of certain changes is difficult to predict, which, in turn, implies poor
system maintainability.

REFERENCES

1. Boehm BW, Papaccio PN. Understanding, controlling software costs. IEEE Transactions on Software Engineering 1988;
14(10):1462–1477.

2. Boehm BW, Brown JR, Kaspar H, Lipow M, MacLeod GJ, Merritt MJ. Characteristics of Software Quality. North-Holland
Publishing: New York NY, U.S.A., 1978.

3. Shannon CE. A mathematical theory of communication. Bell System Technical Journal 1948; 27:379–423, 623–656.
4. Shereshevsky M, Ammari H, Gradetsky N, Mili A, Ammar H. Information theoretic metrics for software architectures.

Proceedings of the 25th International Computer Software and Applications Conference on Invigorating Software
Development. IEEE-CS: Silver Spring MD, October 2001; 151–157.

5. Allen E, Khoshgoftar T, Chen Y. Coupling and cohesion of software modules: An information theory approach.
Proceedings 6th IEEE International Symposium on Software Metrics, April 2001; 124–134.

6. Allen E, Khoshgoftar T. Measuring coupling and cohesion: An information-theory approach. Proceedings 7th IEEE
International Symposium on Software Metrics, November 1999; 119–127.

7. Allen EB, Gottipati S, Govindarajan R. Measuring size, complexity, and coupling of hypergraph abstractions of software:
An information-theory approach. Software Quality Journal 2007; 15(2):179–212.

8. Abd-El-Hafiz S. Entropies as measures of software information. Proceedings IEEE International Conference on Software
Maintenance, 2001; 110–117.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



AN ARCHITECTURE-CENTRIC SOFTWARE MAINTAINABILITY ASSESSMENT 17

9. Allen E, Khoshgoftaar T, Lanning D. An information theory-based approach to quantifying the contribution of a software
metric. Journal of Systems and Software 1997; 36:103–113.

10. Briand L, El Emam K, Morasca S. On the application of measurement theory in software engineering. Empirical Software
Engineering 1996; 1(1):61–88.

11. Henry S, Kafura K. Software structure metrics based on information flow. IEEE Transactions on Software Engineering
1981; 7(5):510–518.

12. Bianchi A, Caivano D, Lanubile F, Visaggio G. Evaluating software degradation through entropy. Proceedings of the
Seventh International Software Metrics Symposium (METRICS’01), April 2001; 210–219.

13. Carriere SJ, Woods S, Kazman R. Software architectural transformation. Proceedings of the 6th Working Conference on
Reverse Engineering. IEEE Computer Society: Silver Spring MD, 1999; 13–23.

14. Kazman R, Burth M. Assessing architectural complexity. Proceedings of the Second Euromicro Working Conference
on Software Maintenance and Reengineering (CSMR). IEEE Computer Society Press: Silver Spring MD, March 1998;
104–112.

15. Sheldon F, Jerath K, Chung H. Metrics for maintainability of class inheritance hierarchies. Journal of Software Maintenance
and Evolution: Research and Practice 2002; 14(3):147–160.

16. Briand L, Lanubile F, Pfleeger S, Rothermel G, Schneidewind N. Empirical studies of software maintenance: A report
from WESS ’97. Empirical Software Engineering 1998; 3(3):299–307.

17. Meyer B. The role of object-oriented metrics. IEEE Computer 1998; 31(11):123–127.
18. Coleman D, Ash D, Lowther B, Oman P. Using metrics to evaluate software system maintainability. Computer 1994;

27(8):44–49.
19. McCabe TJ. A complexity measure. IEEE Transactions on Software Engineering 1976; 2:308–320.
20. Halstead MH. Elements of Software Science. Operating, and Programming Systems Series, vol. 7. Elsevier: New York

NY, 1977.
21. Welker KD, Oman PW. Software maintainability metrics models in practice. Crosstalk, The Journal of Defense Software

Engineering 1995; 8(11):19–23.
22. Berns GM. Assessing software maintainability. Communications of the ACM 1984; 27(1):14–23.
23. Bieman JM, Ott LM. Measuring functional cohesion. IEEE Transactions on Software Engineering 1994; 20(8):

644–657.
24. Bieman JM, Kang B-K. Measuring design-level cohesion. IEEE Transactions on Software Engineering 1998; 24(2):

111–124.
25. Tomlinson ZG Jr. Quantifying software maintainability on re-engineered translation of FORTRAN to C++ code. Master’s

Thesis, Florida Institute of Technology, Melbourne, FL, July 2004.
26. Harrison R, Counsell S, Nithi R. Coupling metrics for object-oriented design. Proceedings of the Fifth International

Software Metrics Symposium (METRICS’98). IEEE Computer Society: Silver Spring MD, November 1998; 150–157.
27. Alagar VS, Li Q, Ormandjieva OS. Assessment of maintainability in object-oriented software. Proceedings of the 39th

International Conference and Exhibition on Technology of Object-oriented Languages and Systems. IEEE Computer
Society: Silver Spring MD, 2001; 194–205.

28. Xia F, Srikanth P. A change impact dependency measure for predicting the maintainability of source code. Proceedings
of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04), vol. II, September
2004; 22–23.

AUTHORS’ BIOGRAPHIES

Muhammad Anan is an Assistant Professor in the Department of Electrical and
Computer Engineering at Purdue University Calumet. Dr Anan has a PhD in Elec-
trical Engineering and Telecommunications Networking from the University of Missouri,
Kansas City. He has an MS degree in Electrical and Computer Engineering from the
University of Missouri-Columbia and another MS degree in Computer Science from the
University of Kansas. Dr Anan has over ten years of industrial experience working for
Sprint Nextel and IBM in the fields of telecommunications and Information Technology.
Dr Anan’s research interests are in the areas of software engineering, computer networks,
simulations and modeling, optical network control and switching architectures, network
management, digital system design and hardware design languages. He is a member of
IEEE.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr



18 M. ANAN, H. SAIEDIAN AND J. RYOO

Hossein Saiedian (PhD, Kansas State University, 1989) is currently a professor of soft-
ware engineering in the Department of Electrical Engineering and Computer Science
at the University of Kansas (KU) and a member of the KU Information and Telecom-
munication Technology Center (ITTC). Professor Saiedian’s primary area of research is
software engineering. He has over 130 publications in a variety of topics in software
engineering and computer science. Saiedian’s research in the past has been supported
by the NSF as well as other foundations. He is a Senior member of IEEE.

Jungwoo Ryoo is an Assistant Professor of Information Sciences and Technology at the
Pennsylvania State University-Altoona. His research interests include information assur-
ance and security, software engineering, and computer networking. Dr Ryoo conducts
extensive research in software security, network/cyber security, security management
(particularly in the government sector), software architecture, Architecture Description
Languages (ADLs), object-oriented software development, formal methods and require-
ments engineering. He also has significant industry experience working with Sprint and
IBM in architecting and implementing secure, high-performance software for large-scale
network management systems. He received his PhD in Computer Science from the
University of Kansas in 2005.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 21:1–18
DOI: 10.1002/smr


