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1. INTRODUCTION
Consider the case of a manager or technical lead responsible for developing

a new “connected” software product, perhaps a Web-based server application.
Being connected, this product will use Internet infrastructure and/or technolo-
gies to meet one or more of its requirements. Early in the development cycle,
perhaps during requirements definition, the subject of security arises. The
manager has been concentrating on functional requirements and features but
has given little thought to the subject of security. This hypothetical scenario
sparks several practical questions relating directly to the field of secure soft-
ware engineering (SSE):

• Will we really be attacked? Could the software really be at risk for attack?
• Isn’t security something handled by network administrators? How does the

software we’re developing open vulnerabilities?
• Aren’t there already solutions we can add on to provide the needed

protections?
• Should we be concerned? How would a security breach affect our

organization, product, and/or customers?
• As the development team, how should we mitigate security threats? How do

we go about building secure software?
• How do we know we’re doing a good job of making our software more

secure?
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The scenario is fabricated, but the questions are
based on real-world conversations the author has had
with managers and other developers. In addition,
papers such as (Hoglund & McGraw, 2002; vanWyk &
McGraw, 2005; vanWyk & Steven, 2006) support the
legitimacy of the above questions and their industry-
wide generalizations. After reading this paper, a software
engineering manager or lead developer should be better
equipped to answer the above questions. The primary
contribution of this paper is to consolidate and inter-
pret SSE research, making it more widely accessible to
a practicing industry audience, which (judging by the
current state of affairs) is overdue.

The current state of affairs, at least in the commercial
sector, finds a feature-centered development culture
where security concerns often get little attention
(McGraw, 1999). One needs only to look at the non-
stop stream of news headlines publicizing the latest
exploits testifying that security has yet again been
overlooked in the software development life cycle
(SDLC) (Viega & McGraw, 2001). It’s not that the
commercial sector doesn’t care about security; rather,
it’s more the case that managers and developers do
not understand how software development activities
relate to end-product security. The current majority of
commercial development community is largely, as
Wyk and Steven state, “. . . completely blind to how
the software their building or maintaining today could
be exploited tomorrow” (2006).

1.1. Fundamental Question 
and Motivation

A fundamental question is, “Will we really be
attacked? Or, could the software really be at risk for
attack?” First, this question should not be dismissed
lightly, since at least theoretically any money, time, or
other resources devoted to security will be completely
wasted if you are never attacked. Second, this question
is not trivial; it’s difficult to quantitatively determine
attack “attractiveness.” Intuitively, factors such as con-
nectivity, popularity (Alhazmi, Malaiya, & Ray,
(2005), attack difficulty, and market penetration play a
role in estimating how attractive your company or
product is to would-be attackers, but it’s difficult to
tangibly relate these factors to an attack probability
(i.e., used in risk analysis). With that said, the attack
probability is most likely not zero. Historical statistics,

for example, NIST National Vulnerability Database
(NIST, 2007), US-CERT vulnerability notes (CERT,
2007, and other anecdotal evidence (e.g., news head-
lines) strongly suggest that the correct question is not
“Will I be attacked” but rather “How will I be
attacked?”

If we’ve learned anything from the past, it should be
that software products we produce will be deployed into
hostile environments, often beyond our control, where
our software will be pushed to the limits and used in
unintended ways to accomplish intentionally malicious
objectives. This has never been truer than the present
time, and the situation isn’t getting any better —
especially for software running in a connected environ-
ment (Hoglund & McGraw, 2004). While many
improvements have been made in firewall technologies,
operating systems, and secure/encrypted sockets, the
root cause of many security vulnerabilities has been the
software itself (Hoglund & McGraw, 2002). Moreover,
due to improvements made in other areas such as oper-
ating systems, firewalls, and secure communications,
and because attackers will choose the path of least resis-
tance, experts predict attackers will increasingly attack
the application layer directly (Ahmad, 2007).

Although the concept of SSE is not new, the field
has received increased attention in the last decade.
Part of this increased attention is from the realization
that the current so-called “penetrate and patch”
approach to security is inadequate Essafi, Labed, &
Ghezala, 2006) because the applied patches often fix
similar vulnerabilities that frequently reappear in soft-
ware (Hoglund & McGraw, 2002; McGraw, 1999). For
example, at the time of this writing, 13 of the 20 most
severe US-CERT vulnerability notes documented over
the last 10 years were buffer overflow vulnerabilities
(US-CERT, 2007). The buffer overflow vulnerability is
a classic vulnerability that has been widely discussed
in software security literature, (e.g., Landwehr, 1994;
Krsul, 1998; McGraw, 2003, Viega et al., 2002; Viega
et al., 2000; Zitser, Lippmann, & Leek, 2004). Note
that (Landwehr et al., 1994) is a widely cited classic
flaw taxonomy dating back more than 10 years, dem-
onstrating that the buffer overflow vulnerability has
been repeated for at least as long. In addition, note
that the buffer overflow vulnerability in particular is
widespread. According to Zitser, Lippmann, and Leek
(2004), buffer overflows “account for roughly one-third
of all the severe remotely exploitable vulnerabilities
listed in the NIST ICAT vulnerability database.”
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Another factor contributing to the increased attention
in SSE is connectedness and technology convergence in
embedded devices (Hoglund & McGraw, 2002) and,
in particular, wireless phones. Many desktop applica-
tions such as Web browsers, email, media players, and
instant messaging are converging with the mobile
domain (Garcia & Horowitz, 2007). Many of these
applications have longstanding, widely publicized
security issues. The number of wireless phone custom-
ers, combined with the convergence of longstanding
security-plagued desktop features, implies that these
features must be specified, designed, implemented,
and tested better to avoid the widespread security
issues that currently plague desktop systems.

Finally, interest in secure software engineering is
increasing due to its financial benefits. There is finan-
cial justification for applying SSE processes, principals,
and best practices throughout the SDLC, especially
early on, rather than applying patches later in mainte-
nance. Software engineering circles have long recog-
nized that software development/maintenance costs
increase over time and that the most effective cost sav-
ings are realized with early corrective action; “often a
100 times more cost effective” (Bocehmand & Basili,
2001). Hoo, Sudbury, and Jaquith (2001) examined the
software development and maintenance costs (e.g.,
patch development costs) associated with security in
particular and concluded that return on investment
(ROI) was “from 12–21%, with the highest rate of
return occurring when analysis is performed during
application design.” Likewise reinforcing the notion of
early consideration, the final security assurance attained
by software products has also been shown to improve
when security is considered early in design (Sachitano,
Chapman, & Hamilton, 2004). Security improvements
indirectly translate into operational cost savings since
companies and/or users are less likely to incur losses
and down-time when using a more secure software
product; less time and money is wasted recovering from
attacks enabled by software security vulnerabilities.

1.2. Intended Audience
This paper is primarily targeted toward software

project managers and software developers in the com-
mercial sector, although the contained information
and concepts are widely applicable. More specifically,
this paper is written with the consumer electronics and
consumer software industries in mind.

Commercial and consumer-centered organizations are
important for several reasons. First, these organizations
represent technologies and products that have become
deeply integrated within the fabric of our lives (e.g.,
mobile phones and Internet), facilitating expanding
avenues of communication and commerce. Second,
commercial organizations develop these technologies
within a competitive atmosphere where time-to-market
pressures are more likely to cause security oversights.
Finally, the commercial sector faces much less govern-
ment regulation when compared to such sectors as
health care, military, and financial (Garcia & Horowitz,
2007). Time-to-market pressures combined with the
absence of regulations allows commercial organizations
to be largely self-policed. Therefore, barring any “altru-
istic intentions”, the primary motivations in the com-
mercial sector are financial (Anderson, 2001). 

Organizations operating in the commercial sector
are primarily motivated by financial considerations
(Anderson, 2001). Consequently, the security
improvements in and security assurance provided by
products built by such organizations are motivated by
financial considerations; this can be contrasted with a
nonprofit government contractor who might be moti-
vated to comply with Department of Defense (DOD)
Common Criteria (CC Technical Report, 2007) for
contract bidding/award eligibility. Commercial enti-
ties are motivated to improve the security of consumer
products in order to meet customer demands and to
satisfy competitive pressures. Perhaps the key motiva-
tion to improve product security, whether for a
mobile phone, Web server, operating system, or
shrink-wrapped software, is to maintain or increase
market share (Anderson, 2001). If a competitor creates
a more secure product, and your product suffers a
publicized security breach, you face the danger of
loosing your customers to your competitor. Depend-
ing on the importance of the product to your
business, such a loss could be devastating.

1.3. Paper Objectives
This paper attempts to help the reader answer the

previously mentioned questions by providing a better
understanding of SSE. Understanding is provided by
interpreting the relevant literature, consolidating past
and present research in one place. A secondary goal of
this paper is to highlight some of the difficult to
answer questions and limitations within the SSE field.
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These questions likely represent areas where more
research and improvement is needed; areas that
academia might work to address.

1.4. Paper Organization
This paper is organized as follows. A high level over-

view of the SSE field and its associated challenges is
presented in Section 2. Section 3 follows, attempting
to precisely define vulnerabilities, describes their ori-
gins and their relationship to threats, and discusses cur-
rent efforts to classify vulnerabilities. Section 4 blends
the discussion of threats and vulnerabilities into the
topic of risk analysis for computer/network security in
general. Section 4.1 demonstrates how threat/vulnera-
bility relationships can be used to specialize a standard
operational risk assessment calculation for software.
Finally, Section 5 outlines several best practices for
improving and monitoring software security.

2. OVERVIEW
This section describes what SSE is and is not.

Simply put, secure software engineering is not neces-
sarily engineering security software. SSE seeks to apply
processes, principals, and methods to build vulnerability-
free software, software that remains in a secure state
under attack and continues to provide service to
authorized users (Avizienis et al., 2004). Key questions
(listed in the introduction) addressed by this section
include the following:

• Isn’t security something handled by network admin-
istrators? How does the software we’re developing
open vulnerabilities?

• Aren’t there already solutions we can add on to
provide the needed protections?

As stated above, SSE is not necessarily engineering
security software. SSE can certainly be applied to build
security software, but SSE techniques can be applied to
building any type of software. Furthermore, as will be dis-
cussed shortly, it is becoming increasingly important to
look at applying SSE techniques to applications software.

There is a tendency among many software develop-
ers (even those with many years of experience) to view
computer and network security as an operational sub-
ject that the IT department or network administrators
handle (van Wyk & McGraw, 2005). In the IT context,

security assurance is obtained by installing/configuring
firewalls, keeping virus definitions up to date, and
applying the latest patches. Note that firewalls and
patches are actually “band-aid” solutions that compen-
sate for software vulnerabilities (Hoglund & McGraw,
2002). The correct context to address the root cause of
most computer security failures is in the software
development context (McGraw, 2004).

When the topic of security is raised in the develop-
ment context, an almost reflexive reaction is to think
about specialized security features such as cryptography,
authentication, and copy-protection and how the
development team might add on or integrate software
components providing these security features
(McGraw, 1999). The tendency to apply add-on secu-
rity components results from the fact that many of
these components 1) often implement sophisticated
and proven encryption and 2) are often already
prepackaged or provided by the underlying operating
system (OS) platform. It simply makes good sense,
both in terms of security assurance and costs, to reuse
such components (Peine, 2005). However, the devel-
opment team must realize that such add-on compo-
nents are not a security panacea. Security assurance
cannot be achieved by simply “bolting-on” security
software. The requirements, design, code, and selected
implementation language may all impact security.

In a complete system, a Web server, for example,
there are several categories of software working
together, packaged in different logical components
and often organized in layers (i.e., application,
network, OS/kernel/driver). A vulnerability in any
component at any layer provides opportunity for an
attacker. Any layer of the system may be attacked, and
often an attacker will target the weakest layer (Barnum
& Sethi, 2006; Kim et al., 2007). In fact, since much
research has led to security improvements in the oper-
ating system, networking, and cryptography layers
(Popek and Kline, 1979), attackers are increasingly
targeting the application layer (Panko, 2003).

Secure software engineering is concerned with engi-
neering software (all types) such that the end product
provides some level of security assurance. SSE is pred-
icated on fact that attackers frequently exploit vulnera-
bilities originating within the software development
life cycle (SDLC); during requirements, design, imple-
mentation, or are missed during verification (McGraw,
2003). Section 3 more deeply explores and defines the
term vulnerability and associated high-level concepts.
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Understanding exactly what is meant by “vulnerability”
and how attackers exploit vulnerabilities is essential for
understanding SSE and its associated challenges.
Section 2.1 provides an overview of some of these
challenges.

2.1. Current Challenges
Current ongoing research in the secure subfield of

software engineering focus on security centered:

1. Developer education,
2. Software development processes,
3. Best practices,
4. Threat enumeration and classification,
5. Requirements and Abuse cases,
6. Design and Architectures,
7. Testing, and
8. Metrics.

In terms of academic research accomplished and
research needed, it seems that many of our future techni-
cal challenges will come from the requirements, design,
and metrics areas. Challenges in the commercial sector
entail effectively leveraging existing research accomplish-
ments (primarily related to reducing implementation
level defects) from academia in practical ways.

As an industry/science, we are currently capable of
addressing many common and high frequency imple-
mentation level defects (Wing, 2003). Such implemen-
tation level defects include the notorious buffer
overflow and its more general class of input-valida-
tion-related defects (Tsipenyuk, Chess, & McGraw,
2005). According to Wing, “We have the technical
solutions in hand to detect or prevent these attacks; so
it is a matter of deploying them in an effective, scal-
able, and practical way.” However, based on personal
experience, the author would argue that deployment
of those tools is ongoing.

There is still a wide gap between progress made on
the academic front and the state of practice in indus-
try across all areas, and implementation in particular.
Implementation level defects account for approxi-
mately half of all exploited vulnerabilities (McGraw,
2006); with the remaining half stemming from defects
in requirements and design. Even if the available tools
for implementation were more widely deployed, there
would be a scant number of developers (when compared
to the majority) that would know how to use these tools

(McGraw, 2004). For example, ignorant-minded
application of static analysis tools is likely to result in
many false positives (Viega et al., 2000), possibly dis-
tracting developers from discovering real defects.

Aside from deploying technical solutions in the
form of tools, probably the single most important fac-
tor in reducing implementation level defects before
introduction would stem directly from improvements
in security-centric developer education. Developer
education is critical because exploit-enabling defects
unknowingly introduced into software will continue
to be unknowingly introduced into software unless the
development populace better understands attacks and
the vulnerabilities that enable them. Moreover, educa-
tion as mentioned above should not only provide the
answers to what threatens software and how those
threats are avoided, but also why it is advantageous to
address the security problem within the software
rather than looking to operational solutions (e.g., fire-
walls). To be effective, education about why it is
advantageous to address the security problem within
software needs to crossover into management and
propagate to the top. Management must lead by exam-
ple, showing real commitment to security improve-
ment by allocating time and money to properly
institute the processes and practices of SSE. Without
management backing, any software security “initia-
tive” is likely to be hype and lip-service (van Wyk &
Steven, 2006).

Other areas of focus showing the most promise for
academic research and advancement are requirements,
design, and metrics, with metrics being a key area (Geer,
Hoo, & Jaquith, 2003). Requirements and design are
promising because they are early activities in the SDLC,
and as indicated previously, earlier SDLC investments/
improvements are most likely to translate into the most
significant cost savings. Often, however, what is really
desired are methods/metrics to evaluate requirement
and design artifacts with respect to their impact on the
emergent software security attributes; this points to
development of early life-cycle metrics that can be used
as indicators of security assurance.

Note that process, practices, and testing (SQA) are
also all important, but with the exception of testing,
may not represent current “hot spots” for research.
However, processes, practices, and testing also are
likely to build on requirements, design, and metrics.
For example, testing is likely to directly benefit from
advances in testable security requirements. Also,
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processes in particular, while likely to be critical for
industry success, are fairly well understood at this
point, being able to leverage standard-issue software
engineering process research in a fairly straightforward
manner. Key information yet-to-be determined for
processes include the results of process comparison as
in Gregoire et al. (2007). Identifying and establishing
metrics for process comparison as they relate to end-
product security assurance seems a fundamental pre-
requisite. Processes can tell us how to organize our
requirements, design, implementation, review, and
testing activities, but it is difficult to quantitatively
analyze process effectiveness (especially when compar-
ing several processes) without the proper metrics.

Metrics are important to know whether or not we’re
actually improving security assurance (Geer, Hoo, &
Jaquith, 2003). Common techniques for determining
if one software product is “more secure” than another
involve comparing the number of security advisories
logged against each version in a post-mortem fashion,
with vulnerabilities identified after release. For exam-
ple, although looking at completely different things,
both Alhazmi, Malaiya, and Ray (2005) and Sachi-
tano, Chapman, and Hamilton (2004) use this post-
mortem approach for source data and comparison.
Furthermore, this post-mortem advisory counting
technique only works on products from the same
product line or that perform identical functions. In
the case of Sachitano et al. (2004), the security
attributes of two mail programs were being compared.
In the case of Alhazmi et al. (2005), a model for
vulnerability discovery rate in subsequent operating
system versions was being validated.

One of the reasons metrics continue to be actively
researched is that the academic community is still get-
ting a handle on cognitive security models (e.g., threat
and attack models) to reason about software and a
standardized taxonomy for vulnerability classifica-
tion(McGraw, 2006). That is, the research community
is still figuring out exactly what data should be mea-
sured, how the data should be characterized/classified,
and by what names the data should be known (Geer,
Hoo, & Jaquith, 2003).

The other issue that makes developing security met-
rics difficult is the nature of the security problem. The
effort required by an attacker to violate software secu-
rity defenses is linear, requiring an attacker to find a
single weakness to exploit. As Bellovin (2006) states,
“Whatever the defense, a single well-placed blow can

shatter it.” On the other hand, the effort required to
assure that software is secure is exponential, requiring
exhaustive and comprehensive knowledge of the soft-
ware and all its possible interactions with its environ-
ment; this simply isn’t tractable (Bellovin, 2006).

3. VULNERABILITIES
This section is intended to more rigorously discuss

the term vulnerability and comment on its various
related dimensions. Section 3.1 provides a brief primer
on the origins of vulnerabilities in software. In Section
3.2, the relationships among vulnerabilities and other
common terms such as threat and attack will be dis-
cussed. Threats, vulnerabilities, and their relationship
to risk analysis will also be briefly addressed in 3.2.
Finally, Section 3.3 expands on the relationship
between threats and vulnerabilities, suggesting ways in
which the noted relationship could be leveraged
within current vulnerability taxonomy efforts to pro-
vide additional information; information that could
be used to facilitate risk analysis and/or drum-up inter-
est in adopting SSE processes and practices. For now,
a better understanding of the term vulnerability is
required before the motivating question, “How does
the software we’re developing open vulnerabilities?”
can be answered accurately.

Krsul (1998) defines vulnerability as “an instance of
a [fault] in the specification, development, or configu-
ration of software such that its execution can violate
the [implicit or explicit] security policy.” While the
definition is comprehensive, capturing the essence of
the term vulnerability, some substitutions will help
when relating to contemporary SSE literature. In par-
ticular, this paper substitutes defect for fault and security
requirements for security policy.

The use of fault follows directly from its standard
use in dependability literature such as Avizienis et al.
(2004). The term defect, identical to fault, is used more
extensively in risk analysis literature such as (Alhazmi,
Malaiya, and Ray (2005) and Anderson (2002). More
recent SSE literature (e.g., McGraw, 1999, 2003;
McGraw & Potter, 2004) also favors the use of defect,
and so this paper will also use the term defect.

In the larger computer security context, a policy is
an official statement about the roles and responsibili-
ties of various individuals with respect to information
and computational assets. Generally speaking, the
term policy is usually framed in the larger context of
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computer/network security, not just software security.
In the overall computer/network security context, a
policy specifies acceptable and unacceptable use,
actions constituting abuse, and punishments for viola-
tors (Panko, 2003). In terms of software, such high
level specification translates into the software’s
implicit and explicit security requirements.

The important realization to take away from the
previous substitution discussion is that software secu-
rity assurance is ultimately a subset of software quality
assurance (Davis et al., 2004). Software quality assur-
ance is concerned with assuring that the software
conforms to its requirements; defects prevent the soft-
ware from meeting those requirements. In the more
general field of standard-issue software engineering,
approaches to improving software quality focus on
preventing and/or removing defects throughout
SDLC stages. SSE is concerned with eliminating (or at
least reducing) software defects/faults threatening
security; such defects are commonly called vulnerabil-
ities. In this regard, SSE seeks to improve the quality
of security attributes by preventing and/or removing
vulnerabilities throughout the SDLC. Section 3.1 will
now answer the question, “How does the software
we’re developing open vulnerabilities?” by detailing
vulnerability origination within the SDLC.

3.1. Vulnerability Origin
Vulnerabilities result from defects. The defects may

be easily identifiable, code level bugs resulting from
implementation, or may result from more deeply
seated issues/oversights (i.e., flaws) in the design or
requirements (McGraw, 2003). The following list enu-
merates various phases of the SDLC and briefly high-
lights the ways in which vulnerabilities manifest:

1. Requirements definition phase, resulting from inade-
quate or often completely absent (Firesmith, 2007)
security-centric requirements. Requirements may
fail to consider unintended and malicious uses
(Sindre & Opdahl, 2005). Security requirements
are often stated as nonfunctional requirements,
often specifying a particular technology to use
rather than identifying threats and characterizing
the threat environment. Coincidentally, later
stages in the software development life-cycle may
fail to address unintended/malicious uses of the
software.

2. Design phase, resulting from failure to adequately
account for security-related cross cutting concerns
such as error handling, policy enforcement, and
component composition (Tsipenyuk, Chess, &
McGraw, 2005). The complete absence of consider-
ing security in design is also a possibility.

3. Implementation phase, resulting from use of nontype
safe languages, insecure application programming
interfaces (APIs), improper use of secure APIs, seed-
ing by malicious developer, lack of secure coding
practices, and/or simply inadequate developer edu-
cation with respect to code-level defects tradition-
ally exploited by attackers (Tsipenyuk et al., 2005).

4. Verification/testing phase, resulting failure to catch
vulnerabilities introduced in requirements, design,
and implementation phases. Testing personnel may
lack architectural knowledge and/or malicious skills
needed to probe security weaknesses. Testing tools,
even those developed to test security, are currently
limited to black-box attacks (McGraw, 2005) and
may not integrate well with the system under test.

5. Maintenance phase, resulting from incorrect deploy-
ment configuration, or defects introduced by apply-
ing updates and bug fixes. Vulnerability origin in
maintenance shares much in common with origin
in previous phases since patches are typically cre-
ated in maintenance. Since the patch itself is a soft-
ware product, vulnerabilities can originate in many
of the same places that they occurred in previous
SDLC phases.

Vulnerabilities originate in a number of ways and
can enter the software at various phases. Generally
speaking, the earlier in the SDLC the vulnerability is
introduced (or rooted in), the more difficult (and
more costly) the corresponding defect would be to
patch. For example, it might be fairly straightforward
to patch a one-line coding error, whereas a “patch” in
the traditional sense would be near impossible to
“apply” to a flaw rooted deep within the design. In
such a case, a complete re-design might be required to
address the design flaw.

3.2. Vulnerabilities, Threats, 
and Attacks

Vulnerabilities, threats, and attacks are interrelated.
Vulnerabilities enable certain attacks. The danger that
an attacker will attempt to exploit a vulnerability
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represents a threat. The relationship among vulnera-
bilities, threats, and attacks is shown in Figure 1.

We plan against threats and we defend against
attacks. Specific threats represent the danger from
particular attack types. In software, there is a strong
relationship between particular attack types and the
vulnerabilities they seek to exploit. This paper points
out that threats, although existing independently from
the vulnerabilities they target, are of little concern if
said vulnerabilities do not exist in the first place. For
example, a whole class of common threats enabled by
C/C++ may be significantly reduced by simply
switching from C/C++ to a more strongly typed lan-
guage. A biological metaphor to germ threats may
help relating the conceptual framework.

A Germ Metaphor

If a person has not been vaccinated for chicken
pox, he or she is vulnerable to this disease. We might
say that person is threatened by chicken pox germs, or
vulnerable to a chicken pox attack; the disease targets
vulnerable individuals. If the person gets a vaccine
(assuming the vaccine provides immunity), the person
is no longer threatened by chicken pox. A key differ-
ence between the germ metaphor and threats in the
security context is intent. Germ threats naturally hap-
pen to exploit genetic vulnerabilities whereas attackers
maliciously seek to exploit system vulnerabilities.
Germ variants evolve and adapt by random muta-
tions; attackers intelligently vary attack strategies.

The important analogous point illustrated by the
germ metaphor is that there is a close relationship
between individual threats and the vulnerabilities they
would exploit. Although chicken pox exists indepen-
dently in the threat environment, it may not threaten

a vaccinated individual. If the individual’s DNA were
perfect and not susceptible to the germ threat in the
first place, the person would not have needed a vac-
cine. Note that threats represent the danger of particu-
lar types of attacks. Also, threats exist independently
from the vulnerability; simply because the software
doesn’t have a vulnerability susceptible to a particular
attack doesn’t mean that an attacker won’t try that
attack.

Threats and Vulnerabilities for Software

As demonstrated by the germ metaphor, threats are
relative to their target vulnerabilities. Threats represent
the danger that an attacker will seek to exploit an exist-
ing vulnerability in the target. Figure 2 illustrates a
threat, t, that targets an exploitable vulnerability, V.

Notice that the illustration places V near the
boundary, signifying that exploited vulnerabilities are
often localized around input/output interfaces and
the software/system boundary (e.g., files, communica-
tion channels, and system resources such as memory
and CPU; Manadhata & Wing, 2005). For software,
threats are only significant to consider when enabling
vulnerabilities are present (or are likely to be present)
in the target software. The danger threats represent is
linked to the consequences of exploited vulnerabili-
ties. If the corresponding vulnerabilities are removed,
the threats that target them will no longer be of con-
cern; those particular threats no longer threaten the
software. This relationship is shown in Figure 3. Bear
in mind that the vulnerability may be a latent design
flaw (possibly an oversight propagated from require-
ments) or the common code-level defect (e.g., buffer
overflow).

FIGURE 1 Defect, Threat, Vulnerability Relationship.

FIGURE 2 Threat t targets vulnerability V.

FIGURE 3 Software immune to threat t.
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Conversely, if the threat environment does not
contain a threat that would exploit a given defect,
then that defect can’t legitimately be classified as a
vulnerability. On a practical level, however, the infor-
mation we have about the threat environment is
historical. At any given point in time, the threat envi-
ronment is characterized by known threats. That is,
simply because no known threat currently exploits a
defect, one cannot generally predict whether or not
the defect could be exploited in the future. Inciden-
tally, SSE is equally concerned with standard-issue
software quality improvement and defect removal.
Due to earlier insights, however, SSE is more likely to
be concerned with detecting/removing defects at the
input/output and software/system boundaries and
defects similar in nature to those already known to be
actively exploited. Also, some defects, say for example
a spelling error in a UI field label, are extremely
unlikely to have any security implications.

The relationships discussed between threats and vul-
nerabilities have important implications on traditional
security-based risk analysis. At its heart, security-cen-
tered risk analysis for software (addressed in Section 4)
should take a holistic view of the threat environment
and how it relates to the deployment environment.
Consequently, when transferring concepts of classical
risk analysis and actually performing risk analysis for
software, it is important to continue considering opera-
tional mitigation options offered by the deployment
environment (Hoglund & McGraw, 2004).

For example, consider the case where a new Web
application is being developed. It is quite possible that
an existing firewall may already mitigate a threat to the
Web application and do this in a cost-effective man-
ner. That is, the application of a firewall mitigates a
known threat (e.g., a LAND attack where source and
destination IP addresses are both set equal), effectively
removing consideration for the root-level software
vulnerability (e.g., networking software enters unspecified

state or doesn’t properly check reply-to-self case).
Because the firewall provides immunity from threat t,
the LAND attack, it may not be necessary (outside
defense-in-depth considerations) to incur the cost
associated with mitigating what might be a design flaw
in an externally provided component based protocol
stack. Generally speaking, however, as threats move
further up the protocol stack to the application level,
there is less protection available from operational
solutions such as firewalls. Operational solutions are
also not common on the client side. In the absence of
operational mitigation options, the software develop-
ment team must mitigate the threat directly, hopefully
by keeping the code free of threat enabling vulnerabil-
ities, or as common practice, by providing a patch.

3.3. Vulnerability Taxonomy 
and Augmentation

This section suggests ways in which the threat/vulner-
ability relationship discussed in Section 3.2 can be lever-
aged within current vulnerability taxonomy efforts to
provide meaningful recommendations for value-added
metadata. This section also provides a brief introduction
to vulnerability taxonomy research and suggests meta-
data recommendations for the current draft taxonomy of
the Common Weakness Enumeration (CWE), spon-
sored by the National Cyber Security Division (NCSD)
of the U.S. Department of Homeland Security (DHS).
The proposed metadata would greatly facilitate early-
stage risk analysis and could also potentially provide
support for secure software development initiatives.

As mentioned previously, due to the close-knit rela-
tionship between threats and vulnerabilities, security
software engineers are likely to be interested keeping
the software free from defects which are similar in
nature to those already known to be actively exploited
“in the wild.” We might call such vulnerabilities “like-
vulnerabilities.” As mentioned previously, developer
education centered on currently exploited vulnerabili-
ties is a key element to avoiding the re-introduction of
like-vulnerabilities. An organizational framework, or
taxonomy, for organizing and classifying vulnerabili-
ties is an essential step toward this end.

Taxonomy Efforts and Rationale

A recent noteworthy work in the taxonomy area is
Fortify’s “Kingdoms” taxonomy (Tsipenyuk et al.,

FIGURE 4 Environment shields vulnerability V from threat t.



17 Secure Software Engineering

2005). In fact, the earlier treatment of vulnerability
origin in Section 3.1 was greatly aided and guided
by the “Kingdoms” work. Tailored specifically to be
easily remembered and to help transfer expert vulnera-
bility knowledge to practicing developers (Tsipenyuk
et al. (2005) defines the following categorization
scheme (in order of importance to software security):

• validation and representation,
• API abuse,
• security features,
• time and state,
• errors,
• code quality,
• encapsulation, and
• environment

In both McGraw (2006) and Tsipenyuk et al.
(2005), McGraw shows how the above classification
can be applied to classify OWASP’s Top Ten (2007)
vulnerabilities list and the “19 Sins” list presented in
the book titled 19 Deadly Sins of Software Security
(Howard, LeBlanc, & Viega, 2005). However, the very
simplicity that makes the “Kingdoms” work so power-
ful is at the same time its shortcoming: While provid-
ing a straightforward classification scheme for developers
to use in their day-to-day work, it doesn’t meet the
needs of management types or include the breadth
and detailed granularity required by security research-
ers. Several important reasons enumerated by Martin,
Christey, and Jarzombek (2005) motivate the need for
a comprehensive and standardized vulnerability tax-
onomy, discussing how such a taxonomy would, in
their words,

1. Provide a common language of discourse for dis-
cussing, finding, and dealing with the causes of
software security vulnerabilities as they are mani-
fested in code.

2. Allow software security tool vendors and service
providers to make clear and consistent claims of the
security vulnerability causes that they cover to their
potential user communities in terms of the CWEs that
they look for in a particular code language. In addi-
tion, a new type of CVE compatibility will be devel-
oped to allow security tool and service providers to
publicly declare their capability’s coverage of CWEs.

3. Allow purchasers to compare, evaluate, and select
software security tools and services that are most

appropriate to their needs including having some
level of assurance of the level of CWEs that a given
tool would find. Software purchasers would be able to
compare coverage of tool and service offerings against
the list of CWEs and the programming languages that
are used in the software they are acquiring.

4. Enable the verification of coverage claims made by
software security tool vendors and service provid-
ers. Verification is supported through CWE meta-
data and alignment with the software assurance and
metrics tool evaluation (SAMATE) reference
dataset.

5. Enable government and industry to leverage this stan-
dardization in the contractual terms and conditions.

Vulnerability taxonomy research has been ongoing
since the mid-1970s (McGraw, 2006). Factors compli-
cating the creation of a standard vulnerability taxon-
omy are the various users of the taxonomy, the level
of information required by those users, and the tech-
nical difficulty inherent in classifying defects spanning
multiple technologies, platforms, environments, and
SDLC phases (e.g., requirements, design, and imple-
mentation). For example, a taxonomy with too many
classification categories begins to approach a flat list-
ing, where meaningful categorization is not provided,
and vulnerabilities are therefore likely to be classified
ambiguously (McGraw, 2006). On the other hand,
without enough fine-grain attribution within the clas-
sification, it may be difficult for researchers to identify
the particular “species” of vulnerability, which may
depend on the type of software (e.g. application,
systems, driver, protocol) and/or the programming
language (e.g., vulnerabilities particular to C/C++
string functions).

The Common Weakness Enumeration 
(CWE)

After more than three decades of research, the
DHS-sponsored (CWE) stands as a remarkable work-
in-progress, combining several key ideas from past tax-
onomy research (Martin & Barnum, 2008), as the
CWE Web site states

“. . . we leveraged MITRE’s [preliminary list of vulnerability
examples for researchers] (PLOVER) effort as a starting point
for the creation of the formal Common Weakness Enumera-
tion. Not only does CWE encompass a large portion of the
CVE List’s 15,000 CVE names, but it also includes detail,
breadth and classification structure from a diverse set of other
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industry and academic sources and examples including the
McGraw/Fortify “Kingdoms" taxonomy; Howard, LeBlanc and
Viega’s 19 Deadly Sins; and Secure Software’s CLASP project;
among others.” (MITRE Corporation CWE List, 2007)

The CWE exists as a hierarchical tree structure,
applying a Kingdoms-style classification near the mid
level and then branching down into the detailed
species of particular vulnerabilities found in the wild.
The CWE draft Web site, in draft 7 as of this writing,
provides an expanding/contracting tree view which in
itself is a useful educational tool. As a developer
himself, the author found it very useful and elucidat-
ing to browse the various branches, expanding them
into more detailed form, examining the myriad ways,
across multiple technologies, in which software can be
exploited. One can only imagine how clever front-
ends could be applied to real data organized by
the CWE hierarchy at various levels and slices to cre-
ate different views specialized for a multitude of dis-
parate interests.

The CWE is a currently evolving community stan-
dard. According to Martin and Barnum (2008),
required entity attributes for individual definitions is
still in flux. A cursory review of various definitions
revealed that some definitions included a “likelihood
of exploit” while others did not. Based on the body of
SSE literature, this author would recommend that this
field be required for all definitions at the leaf nodes or
final tier of the hierarchy. The next section discusses
the importance of this metadata and argues for its
required inclusion.

Recommendations for the CWE

This author recommends that the “likelihood of
exploit” field be required for all leaf-node definitions.
If possible, listing attacks, or attack patterns in a sepa-
rate field which are known to exploit the vulnerability
would also be extremely useful. These recommenda-
tions are based primarily on the end-goals of more eas-
ily assessing the threat environment, providing input
into risk analysis calculations, and eliciting support for
secure development initiatives.

One of the more difficult tasks in risk assessment is
determining reasonable inputs for attack or threat
probability. Currently, threat models must be devel-
oped and analyzed to provide “threat likelihood”
inputs to risk analysis frameworks such as DREAD
and NIST SP800-30 (Buyens, DeWin, & Joosen,

2007). However, based on the threat/vulnerability
relationship discussed in Section 2 and the supporting
data provided by Alhazmi, Malaiya, and Ray (2005),
this author suggests that a close approximation for
threat probability/likelihood would be the “likelihood
of exploit” offered by certain CWE definitions. The
key to this notion is that the discovery of vulnerabili-
ties implies that in order to be discovered, those
vulnerabilities are also being (or have been) actively
attacked/exploited. Evidence of this relationship is
reflected in some earlier taxonomy category names
that incorrectly named the software defect with the
type of attack or exploit it enabled.

Were the individual CVE entries in the NIST NVD
database (NIST, 2007) categorized according to CWE
definitions, front-end tools could be provided to
quickly obtain situational awareness (e.g., what are we
up against and do we need to be concerned?). Aug-
menting the “likelihood” of exploit with the types of
attacks it enables, managers and architects could more
easily determine if an in-development software product
would likely face a similar threat environment once
deployed. Questions such as those introduced at the
beginning of this paper could more easily be answered
in meaningful ways, assuming appropriate filtering can
be done to obtain slices by technology and platform
that most closely mirror the in-development software
product. Recall such questions included

• Will we really be attacked? Could the software really
be at risk for attack?

• Should we be concerned? How would a security
breach affect our organization, product, and/or
customers?

As stated previously, a number of tools could lever-
age the CWE taxonomy to provide interesting views
on CVE data for different information consumers. In
order for tools to provide these views, new and exist-
ing CVE data must first be classified according to the
categories defined by the CWE.

4. THREATS AND RISK ANALYSIS
This section explains the role of threats and vulner-

abilities in risk assessment. As mentioned before,
while conceptually simple, risk assessment is not trivial
in practice due to the difficulty of quantifying tradi-
tionally qualitative and intangible factors (e.g., target
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attractiveness and loss of reputation). The definition
and discussion of threats, attacks, and vulnerabilities,
as well as the treatment of risk assessment, should help
the reader answer the following questions:

• Will we really be attacked? Could the software really
be at risk for attack?

• Should we be concerned? How would a security
breach affect our organization, product, and cus-
tomers?

Risk analysis is ultimately performed to determine
how money should be spent. A question closely
related to “How do we go about making our software
more secure?” is “How do we go about spending
money and decide where to place emphasis to reach
our security goals?” Standard-issue software engineer-
ing performs risk assessment to determine how to allo-
cate spending throughout the SDLC, within budget,
such that the resultant software expresses the desired
quality attributes. Schneidewind (2002) elegantly pro-
vides the software-based context for risk analysis with
the question, ”What is the cost of achieving quality
goals and the risk of not achieving them?”. The risk of
not achieving security goals relates directly to the
question “How would a security breach affect our
organization, product, and customers?” In terms of
SSE, much of the work entails accurately estimating
the cost or impact resulting from the “risk of not
achieving” the desired security qualities in the soft-
ware. Note that knowing what security qualities (i.e.,
confidentiality, integrity, and availability) are actually
desired depends on high level business objectives. For a
commercial organization, specific security qualities are
likely to be driven by market analysis, competition,
and perhaps a corporate mission statement.

Different organizations will likely choose different
relative priorities for threats with different high-level
security implications, such as confidentiality, integrity,
and availability; note that this also might suggest addi-
tional metadata required for CWE definitions dis-
cussed in Section 3.3. For example, an Internet Service
Provider (ISP), or vendor providing software for the
ISP sector, would likely place higher relative priority
on threats affecting availability. Conversely, a bank or
other financial institution would likely place higher
relative priority on integrity. In the ISP versus bank
example, the different emphasis on threat categories
follows directly from the difference in market forces

and how those forces weight the threat cost. An ISP
stands the most to loose when customers become dis-
satisfied with poor service availability and sign up with
a competitor (Garcia & Horowitz, 2007). Although a
bank will have many unhappy customers if they can’t
access their accounts for a day, it stands to lose more if
customer account balances are modified due to an
integrity breach. Essentially, one size does not fit all
when it comes to prioritizing threats, although partic-
ular domains may have similar relative priorities for
generalized threat categories.

The risk of not achieving the desired security
qualities is evaluated with respect to a given threat
environment. Computer/network security researchers
traditionally have analyzed risk by enumerating
threats, determining the value of threatened assets,
and making cost comparisons weighing potential loss
against mitigation costs (Panko, 2003).

When looking at security risk analysis for software,
many of the concepts from the classic computer/
network security context are transferable. In fact,
Verndon and McGraw (2004) state, “What separates a
great software risk assessment from a merely mediocre
one is its ability to apply classic risk definitions to soft-
ware design and then generate accurate mitigation
requirements.” In the same paper, the authors outline
three basic approaches to risk analysis as follows:

1. Financial loss methodologies that seek to provide a
loss figure to balance against the cost of implement-
ing various controls;

2. Mathematically derived “risk ratings” that equate
risk with arbitrary ratings for threat, probability,
and impact; and

3. Qualitative assessment techniques that base risk
assessment on anecdotal or knowledge-driven
factors.

In terms of traditional (i.e., nonsoftware-centered)
security-based risk analysis, organizations typically
attempt to determine how they should best allocate
their resources (usually financial) in order to mitigate
known threats. Security-based risk analysis involves
threat identification, threat prioritization, and the
development of a mitigation strategy (Panko, 2003;
Mead et al., 2004). Threats are prioritized on a “bang
for the buck” basis with top spots reserved for those
threats most cheaply mitigated that also pose the
highest loss potential.
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4.1. Vulnerability-Based Risk Analysis 
for Software

Determining priority for software involves calculat-
ing a variant of the “value of protection” (Panko,
2003) formula. The “value of protection” formula rep-
resents a classical computer/network security risk
assessment framework, classified as a “financial loss
methodology” (Verdon & McGraw, 2004). The origi-
nal formula is expressed as:

where VoP, is the value of protection (aka priority), R,
is the risk, calculated as (Ap x L), Ap, is the probability
of a successful attack, L, is the loss resulting from a
successful attack, and M, is the cost of the mitigation
countermeasure.

Applying the relationship among attack, threat, and
vulnerability (discussed in section 3.2, the equation
can be better adapted for software security risk analy-
sis. Realizing that Ap can be rephrased as the probabil-
ity that an attacker will successfully exploit
vulnerability V to realize a given threat, and that
threats target vulnerabilities, the formula has been
modified to approximate threat probability, Ap, with
P(V), which is defined below:

where VoP, is the value of protection (aka priority),
P(V), is the probability of a successful attack on
vulnerability V, L, is the loss resulting from a success-
ful attack, and M, is the cost of the mitigation
countermeasure.

In the above equation, an assumption is that there
exists a threat, t, in the threat environment, T, which
threatens vulnerability V, or  and threatens (t, V).
Threats are then ranked by VoP, with larger VoP
receiving priority consideration and financial expendi-
ture. In other words, if the financial loss L resulting
from a security breech is large and the cost of mitiga-
tion, M, is small then the threat will be ranked near
the top of the priority list (depending on its probabil-
ity of occurrence P(V)). Understanding that a success-
ful attack on vulnerability V could result in loss L, an
organization is often willing to consider paying less
than P(V) x L for a mitigating countermeasure.

Countermeasure tactics may include SSE-related strat-
egies for vulnerability removal, or may take a more
traditional role if possible. As this existing framework
is extended to software, it should include the methods
traditionally used in security based risk analysis.

As expressed earlier, the root cause of many vulner-
abilities is in the software itself. A popular mitigation
countermeasure frequently purchased is a firewall.
Often, companies buy firewalls to screen packets that
seek to exploit software running on the internal corpo-
rate network. As already discussed, were the software
built from the ground up to be immune to such
attacks (focus of SSE), investment in firewalls
wouldn’t be as popular. However, software is far from
perfect and it is doubtful we will ever be able to make
defect or vulnerability free software (firewalls are likely
here to stay). In addition, the cost required to make
software more secure may exceed the cost of what
might otherwise be considered a band-aid solution
(Hoglund & McGraw, 2002) for the root problem.

5. TOWARD A BETTER TOMORROW
Working toward a better, more secure tomorrow

starts with taking action today. This section provides a
high level overview of specific actions that must be
taken to actually build more secure software. The key
questions addressed by this section are shown below:

1. As the development team, how should we mitigate
security threats? How do we go about building
secure software?

2. How do we know we’re doing a good job of making
our software more secure?

In general, increasing software security (topic of
question 1) comes down to eliminating defects. As
mentioned previously, defects originate in various
phases of software development. Therefore, to
improve security, key defects must be prevented in
each phase. To evaluate security improvements (topic
of question 2), appropriate metrics must be used in
each phase to evaluate the relative assurance level as
the software is developed. Question 1 is answered by
Section 5.1, which discusses current life cycle activities
for vulnerability prevention. Question 2 is then
addressed by Section 5.2 which briefly discusses
current metrics. Finally, this section ends with Section
5.3, which discusses practical considerations for
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effectively executing techniques presented in the pre-
ceding sections.

5.1. Best Practices
Several best practices (i.e., touch points; McGraw,

2006) have been proposed for each phase in an effort
to reduce defect introduction throughout the SDLC.
A graphical representation of a typical software devel-
opment phase timeline is shown in Figure 5.

Note that the graphic in Figure 5 closely mirrors a
traditional waterfall development process, which may
not fit the needs of many organizations favoring alter-
native development approaches (e.g., iterative;
McGraw, 2004). Recent work such as Beznosov and
Kruchten (2004) explores how the security-centered
best practices illustrated in Figure 5 can be worked
into agile processes. A brief description of each best
practice follows:

Abuse cases - The negative of standard-issue use cases,
abuse cases describe the malicious misuse and abuse
of the system. Abuse cases help elicit functional,
testable requirements for the software. Such require-
ments facilitate testing that the software behaves as
specified when confronted with known, anticipated
attack scenarios. Note that compelling abuse cases,
in conjunction with preliminary risk analysis, can
provide motivation for adopting other SSE best
practices or spurring new secure software initiatives.

Security requirements - With the help of abuse cases,
specific and testable security related requirements
can be defined which should prove much more use-
ful than general “hand waiving” goal declarations
(e.g., software must remain secure). In additional,
more obvious specifications such as when/how to
authenticate, when/how to apply encryption, and
particular detailed security technologies should also
be defined.

Risk analysis - Risk analysis should permeate the
SDLC. Risk analysis has already been described
throughout this paper. Risk analysis attempts to
answer the fundamental questions “how concerned
should we be” and “how should we allocate
resources to address our concerns?” Both questions
largely depend on what threats exist, threat likeli-
hood, and resultant impact/damage. Early-stage risk
analysis compliments abuse case efforts to enumer-
ate known/expected threats. Understanding the
ways the software is threatened is paramount to
(1) declaring behavioral policies (specified in
requirements) that describe how the software
should respond under specific attacks; (2) tailoring
architectures (specified by design) that employ secu-
rity principles (e.g., least-privilege) to counter
threats; and (3) weighing potential damages/loss
against investments/changes in process, training,
external review, technology (e.g., language selection
and static analysis tools), and any other conceivable
effort applied in any other SDLC phase for the sake
of attaining better security assurance.

External review - As security is a specialized field, the
group responsible for design and implementation
likely lack sufficient experience and expertise to for-
mulate quality security requirements and properly
specify a secure design. Review external to the devel-
opment group is often necessary to illuminate over-
sights such as absent misuse cases, missing threats,
flawed requirements, and unsafe design approaches.
Expert knowledge at early stages can also help fine-
tune the risk analysis input parameters.

Risk-based security tests - Security test plans should
be developed that cover the security requirements,
and are based on enumerated threats and attack
models. Test plans should provide coverage for
cases representing the highest risk threats. Test
plans should attempt to violate secure design prin-
cipals in order to verify proper implementation.
Note that quality test plans require comprehensive
and complete threat enumeration, quality require-
ments, and accurate risk assessment. As an interest-
ing aside, test driven development techniques could
utilize the test plans to formulate tests for secure
code.

Static analysis - Static analysis is heavily focused on
detecting/removing defects in the implementation.
Static analysis can consist of peer-based code
review, external code review, and static analysis

FIGURE 5 Best practices applied to software artifacts
throughout the SDLC (McGraw, 2004).
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tools. Tool based static analysis is most directly
applicable to detecting code-level bugs. Higher
level, more abstract defects may be found by
human inspectors, where discrepancies between the
design and the implementation may be uncovered.
As security often involves specialized expertise, it
may be beneficial to enlist expert reviewers. As an
aside, an interesting technique might augment test
driven development practices with static analysis
tools for feedback. The idea here would be to help
more developers (without expert knowledge) to pro-
duce code with fewer vulnerabilities by leveraging
the expertise embodied in tools.

Penetration testing - Penetration testing is fundamen-
tally limited because it tests a negative; any degree
of assurance requires infinite testing (Bellovin,
2006; McGraw, 2006). In his book on software
security, McGraw (2006) further points out that the
common practice of using automated attack tools
can only show degrees of “badness” with respect to
security; absolutely nothing can be said about
assurance when using only canned black-box tests.
However, penetration testing can at least verify that
the software remains secure under the set of known
and anticipated attacks. Alluded to earlier, good
penetration testing should leverage white-box
knowledge relating to specific requirements, soft-
ware design, and likely threats enumerated via
misuse cases and risk analysis. As McGraw states,
“. . . any black-box penetration testing that doesn’t
take the software architecture into account probably
won’t uncover anything deeply interesting” (2004).

Security breaks - Security breaks represent successful
vulnerability exploitation. Note that since penetra-
tion testing cannot test all future attack scenarios, a
skilled attacker(s) bent on breaking in will break in
eventually. Detection of security breaks provides an
opportunity to measure/evaluate security (relative
to a single product) by comparing discovered vul-
nerabilities to subsequent versions. Gathering data
after detecting the break-in is also valuable for refin-
ing misuse cases and risk analysis. Because a breach
is always possible, Requirements/design activities
should specify mechanisms to facilitate patching.

5.2. Metrics for Software Security
As discussed near the end of Section 2.1, evaluating

the security assurance level of software is often an

exercise in comparing the number of discovered
vulnerabilities after release. As discussed previously,
these numbers only make sense when comparing sub-
sequent versions of the same product, or products
that perform the same functions (e.g., such as email
handlers in Sachitano, Chapman, and Hamilton,
2004). Other postmortem metrics such as daily vul-
nerability exposure, or daily vulnerability exposure
(DVE; Jones, 2007) have been noted which aim to
indicate exposure by tracking counts of known vulner-
abilities over time.

While post-mortem metrics will continue to
provide a straightforward basis for comparison and
monitoring, it is arguably more desirable to know
whether or not security is improving before release.
To this end, Nichols and Peterson (2007) suggest
several concrete metrics that can be used prior to
release to construct an overall “scorecard” indicative
of security. Some metrics they present could be used
as part of an overall risk management/project track-
ing strategy, prior to release, to gauge the relative
improvement in the software’s security. Theyr met-
rics, as well as (McGraw, 2006), applicable during
design, implementation, and verification phases are
listed below (and slightly reinterpreted) for easy and
generic reference:

• Percent validated input (PVI) - A metric computed as
(I x V) / I, where V represents the number of vali-
dated input interfaces, and I represents the total
counts of these input interfaces. The example given
in Nichols and Peterson (2007) discusses a concrete
application where I represents the count of HTML
form POSTS and V represents the number of those
form POSTS that are validated.

• Throw-away error count (Ctae) - A metric directly after
the “instance per application” count presented in
Nichols and Peterson (2007), Ctae is simply a count
of functions returning errors where the errors are
not used or checked. These instances of occurrence
can by identified by static analysis tools.

• Attack-based vulnerability count (CVa) - A simple
count, CVa counts the number of vulnerabilities
uncovered by launching a particular attack type, a,
against the software. Let all attack types be repre-
sented by A, where a ( A. Then the total, TCa, of all
such discovered vulnerabilities is TCa = ( CVa. This
paper is presenting a generic metric based on the
“cross-site scripting (XSS)” and “Injection flaw”
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examples given in Nichols and Peterson, where a
known attack (such as XSS or bad input) can be
used in penetration testing (see Section 5.1) to dis-
cover vulnerabilities. Increasing CVa is bad and
decreasing CVa is better.

• Lines of code (LOC ) and LOC2 - LOC is a simple
count of the lines of code in a given language.
McGraw (2006) states that, “more code, more bugs,
more security problems.” There is a strong empirical
correlation between LOC squared, LOC2, and the
number of incidents logged against fielded software
(McGraw, 2006). An organization can use LOC2 to
get a feel for attack-ability. Note that defect density
(number-of-defects/LOC) combined with vulnerability
discovery models presented by Alhazmi et al. (2005)
could provide estimates of future exploitation. To
make such future estimates, the development team
would have to track the number of vulnerabilities
discovered and fixed via the penetration test/fix
cycle.

Note that on further consideration, these metrics
spark additional practical implications for design
and implementation. For example, consider the PVI
metric. The PVI metric points to a design architec-
ture in which all input passes through a shared
validation filter. Such an architecture could make
the task of carrying out the actual counting much
easier as each input handler could be checked
for the presence of (or connection to) the shared
validation filter. In addition, Throw-away error
count (Ctae), suggests the importance of a coding
standard and the application of code reviews during
implementation.

With the collection and use of each metric, users
must be careful about what the metric actually indi-
cates. Fairly obvious, the above metrics are useful for
relative comparison. Less obvious is what they assure
or don’t assure. Most of the metrics indicate that the
security posture of the software is getting more or less
“worse.” For example, note the use of the word “bet-
ter” instead of “good” for the CVa metric. This word
choice is made under the assumption that canned
black-box tests will be used to launch the attack, dis-
cover the vulnerability, and subsequently increment
CVa. The “better” versus “good” word choice inten-
tionally reflects the notion that canned black-box tests
can only indicate relative levels of decreasing
“badness,” after McGraw (2006).

5.3. Culture Shift via Top-down 
Education

A practical assumption with respect to the application
of the afore-mentioned SSE best practices and measure-
ment collection is that the organization’s culture is secu-
rity conscious. If trying to launch a new SSE initiative,
the first task is to gauge the organization’s position within
the “culture spectrum” as it relates to security and take
actions to shift the culture in a more security conscience
direction if needed. Increasing team member and man-
agement awareness through education and the presenta-
tion of statistical data serves as the primary vehicle
enabling such a culture shift. Pointing key people at
information such as that contained in Section 2 (Over-
view) and Section 3.1 (Vulnerability Origin) would pro-
vide a starting point for further discussion. As discussed
in section 2, the whole notion of SSE, achieving better
security assurance by keeping the software free of exploit-
enabling vulnerabilities may be a new concept to many.
Also, depending on corporate culture and typical soft-
ware attributes desired, it may be that security is treated as
a second-class citizen. That is, under time-to-market pres-
sures to deliver feature complete software, it may be stan-
dard practice to relegate (often nonfunctional) security
attributes to the wayside. Relegating security attributes to
the wayside most likely represents the worst end of the
culture spectrum. No matter where on the security-
culture-spectrum an organization falls, any change must
start with top management. Ultimately, top management
sets the organizational tone and provides the go-ahead to
spend time and money on security related development
activities. Therefore, top management needs to be con-
vinced that it is in the best interests of the organization to
work SSE practices into the current SDLC.

To elicit top management support for secure develop-
ment initiatives, one should present the financial benefits
(e.g., relative cost savings and return on investment) as
mentioned earlier in Section 1.1. Any data that can be
gathered on similar products actively being attacked or
known threats to the in-development software should also
be presented to top management for their consideration.

6. CONCLUSIONS
This paper has presented a high-level overview of

SSE in an effort to answer practical questions relating to
the field. Preventing the introduction of vulnerabilities
prior to release, rather than patching vulnerabilities
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afterwards is THE challenge SSE rises to meet. Out-
side the context of formal methods and automated
theorem provers (which tend to require significant
investment and expertise), proving that a typical soft-
ware product is secure requires testing for negative
(e.g., there are no vulnerabilities). Since testing for a
negative can entail infinite testing time, it is important
to build security in from the beginning and to make
cost-effective decisions regarding when to stop testing.

A key question of overarching practical consideration
is how to go about the vulnerability prevention task in a
cost-effective manner. This consideration is not new to
SSE and is addressed by risk analysis in general, which is
predicated on the fact that there is some reasonable level
of preplanning and up-front expenditure required to
obtain security assurance. Generally speaking, risk analy-
sis must weigh the up-front costs of protections for vul-
nerabilities against the probability that attackers will
target those vulnerabilities. The more accurate the risk
analysis, the better will be the contingent business deci-
sions. This paper discussed aspects of risk analysis from
pre-existing fields of study, namely software engineering
and computer/network security, and gave an example
showing how the concepts translate to software.

Performing both vulnerability prevention and risk
assessment better relies on fundamentally agreeing on
classifications and models tailored for the SSE domain.
Efforts such as the CWE provide the groundwork and
common language needed to share information and
compare testing coverage of automated testing and static
analysis tools. Although the current focus of the CWE is
on supporting tools for vulnerability prevention, the
CWE can also be used to support risk assessment efforts.
In particular, the concept of using real vulnerability data
from fielded products with similar features to more
quickly carry out risk assessment was discussed. Addi-
tional research, tailored for software, into models for
better expressing and reasoning about threats, attacks,
and vulnerabilities should likewise benefit prerelease
efforts. While much work remains to be done, there are
current approaches and metrics that can be used starting
today as we work toward a better tomorrow.
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