
IEEE Communications Magazine • July 200994 0163-6804/09/$25.00 © 2009 IEEE

INTRODUCTION

Writing software for a 16-bit digital-signal pro-
cessing (DSP) application is difficult. One of the
main reasons for this difficulty is that the data
formats available on a standard 16-bit compiler
and processor do not provide adequate dynamic
range or noise performance for many DSP appli-
cations at high speed. This problem has been
widely recognized, and proposed solutions have
been developed and implemented to address it
[1]. However, existing data-formatting solutions
typically follow standard fixed-point and float-
ing-point approaches. This article asserts that
actual performance can be improved through the
use of irregular data formats.

The fractional format is often used for imple-
menting fixed-point DSP algorithms [2, p. 374].
In the embedded-C language [3], this format is
complimented with the accum format for reduc-
ing round-off noise during multiply-accumulate
operations. This pair of formats represents a
substantial improvement over the C-int format
but is often not sufficient for algorithms that
require a large dynamic range.

Many floating-point formats exist to address
the 16-bit dynamic-range issue, but the 16-bit
binary versions suffer from poor noise perfor-
mance. The floating-point format that typically is

used is the 32-bit IEEE Standard 754 floating-
point format [4]. In fact, this format is mandated
for floating point in the C99 standard [5]. The
IEEE 32-bit floating-point format is very com-
prehensive but potentially, very slow. If it is
implemented in assembly language on a 16-bit
DSP, arithmetic operations can take orders of
magnitude longer to execute than equivalent
fixed-point operations [6, p. 85], which are imple-
mented directly in hardware.

The 16-bit DSP data-formatting problem has
been around since engineers first began imple-
menting DSP algorithms in FORTRAN. If we
were to look at the data-formatting problem
from outside of the existing paradigms and from
an embedded DSP perspective, could we arrive
at solutions that actually improve DSP algorithm
performance? We say, “Yes.”

A NEW CLASS OF
FLOATING-POINT FORMATS

If we are to develop new data formats, we
require a model from which to derive them.
Therefore, we begin our development of new
formats by first developing a class of data for-
mats from which we can derive individual data
formats. An appropriate class of data formats
would allow specific formats to be derived that
achieve similar noise performance to the current
fixed-point fractional format, but with expanded
dynamic range. Let’s examine the fixed-point
fractional format to determine why it has good
noise performance.

Figure 1a plots the peak signal level vs. the
peak round-off noise level for the largest 16-bit
binary floating-point formats (including 16-bit
fixed point). The notation used in this chart is as
follows: sMeN, where s represents the sign bit, M
represents the number of bits in the mantissa, e
separates the exponent and mantissa, and N rep-
resents the number of bits in the exponent. The
peak signal level vs. peak round-off noise level in
decibels for each exponent is equal to 20 ×
log10((largest mantissa value)/(1/2 of smallest
mantissa value)).

ABSTRACT

Sixteen-bit, programmable, digital-signal pro-
cessors suffer from inadequate dynamic range
and noise performance due in part to the use of
standard data formats with few bits available for
numeric precision. A solution to this problem is
developed that involves the use of irregular data
formats. A new class of irregular floating-point
formats is developed. A specific format is derived
from this class that provides greater dynamic
range and improved noise performance for 16-
bit DSP applications. An experiment with one of
the new formats is conducted and analyzed, and
improved performance is verified. The impor-
tance of our work and its potential applications
are discussed.

ACEPTED FROM OPEN CALL

Manuel Richey, Honeywell International Inc.

Hossein Saiedian, University of Kansas

A New Class of Floating-Point Data
Formats with Applications to 16-Bit
Digital-Signal Processing Systems

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 94

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2009 95

This chart shows an advantage for the fixed-
point fractional format only for the strongest sig-
nals. However, this advantage is real, and
automatic gain-control (AGC) techniques can be
used to take advantage of it. The other formats
begin to outperform fixed-point fractional, as
soon as a data value drops below one-fourth of
the full range.

The ideal 16-bit format would achieve the per-
formance of each of the formats in its area of
strength. This implies a mantissa that is largest
for the numbers closest to one and that gradually
decreases in size as numbers get smaller. In Table
1, we can see this pattern is followed for the
fixed-point sign/magnitude fractional format. We
should point out that sign/magnitude is used in
Table 1 for clarity, but two’s complement is tradi-
tionally used in practice because it is easier to
implement in hardware [7]. The problem with the
fixed-point format is that precision falls off rapid-
ly to zero. If we allow the precision to fall off at a
slower rate, can we simultaneously achieve good
noise performance and a wider dynamic range?

To accomplish this goal, we re-examine Table
1. From this table we discover a mechanism for
recasting the 16-bit fixed-point format into a
floating-point format. If the Xs represent the
mantissa and the mantissa is normalized, the
number of leading zeros can represent an expo-
nent (i.e., n leading zeros represents 2–(n+1)). The
leading one becomes a mechanism for separating
the exponent from the mantissa and is replaced
with an implied one because the mantissa is nor-
malized. This description provides the exact same
formula as binary floating point, but the exponent
is encoded differently. The equation becomes

value = (–1)S × 1.M × 2–E

where S represents the number’s sign, M repre-
sents the mantissa (the Xs in Table 1), and E rep-
resents the exponent, which is equal to the
number of leading zeros + 1. To drive this point
home, let’s represent the fixed-point number
spectrum with the exponent at the right edge of
the mantissa rather than at the left edge. This
representation is shown in Table 2. This is very
interesting, but so far all we have done is observe
fixed point from a different perspective. We
haven’t gained anything.

Now, what would we have if we apply this
exponent mechanism to both ends of the 16-bit
word? This would give us two exponent fields,
both of which are filled with zeros and separated
from the mantissa by a one. The exponent from
each field is given by the number of leading or
trailing zeros. The available formats are rendered
as shown in Table 3. This approach provides us
with 120 exponents of varying degrees of preci-
sion (120 = summation of n for n = 1 to 15).
This is an entirely different class of floating point
than the standard binary floating point with fixed
exponent length. In fact, a large number of spe-
cific irregular floating-point formats could be cre-
ated from this floating-point class.

This class has several unique and important
features that we utilize as we derive specific for-
mats from it for DSP applications. These features
are:

Variable precision: Unlike traditional binary

�� Figure 1. Peak signal vs. peak round-off noise: a) for binary floating point
formats; b) for the first fractional format; c) for the second fractional format.

Peak signal amplitude

(a)

0.
25

20

Pe
ak

 s
ig

na
l /

 p
ea

k
ro

un
do

ff
 e

rr
or

 (
dB

)

0

40

60

80

100

120

1

0.
06

25

0.
01

56
25

0.
00

39
06

3

0.
00

09
76

6

0.
00

02
44

1

6.
10

4E
-0

5

1.
52

6E
-0

5

3.
81

5E
-0

6

9.
53

7E
-0

7

2.
38

4E
-0

7

5.
96

E-
08

1.
49

E-
08

3.
72

5E
-0

9

9.
31

3E
-1

0

2.
32

8E
-1

0

5.
82

1E
-1

1

1.
45

5E
-1

1

3.
63

8E
-1

2

9.
09

5E
-1

3

Peak signal amplitude

(b)

0.
25

20

Pe
ak

 s
ig

na
l /

 p
ea

k
ro

un
do

ff
 e

rr
or

 (
dB

)

0

40

60

80

100

120

1

0.
06

25

0.
01

56
25

0.
00

39
06

3

0.
00

09
76

6

0.
00

02
44

1

6.
10

4E
-0

5

1.
52

6E
-0

5

3.
81

5E
-0

6

9.
53

7E
-0

7

2.
38

4E
-0

7

5.
96

E-
08

1.
49

E-
08

3.
72

5E
-0

9

9.
31

3E
-1

0

2.
32

8E
-1

0

5.
82

1E
-1

1

1.
45

5E
-1

1

3.
63

8E
-1

2

9.
09

5E
-1

3

s15e0 (fractional)
s13e2
s12e3
s11e4
s10e5

s15e0 (fractional)
s11e4
s10e5
Modified fractional 1

Peak signal amplitude

(c)

0.
25

20

Pe
ak

 s
ig

na
l /

 p
ea

k
ro

un
do

ff
 e

rr
or

 (
dB

)

0

40

60

80

100

120

1

0.
06

25

0.
01

56
25

0.
00

39
06

3

0.
00

09
76

6

0.
00

02
44

1

6.
10

4E
-0

5

1.
52

6E
-0

5

3.
81

5E
-0

6

9.
53

7E
-0

7

2.
38

4E
-0

7

5.
96

E-
08

1.
49

E-
08

3.
72

5E
-0

9

9.
31

3E
-1

0

2.
32

8E
-1

0

5.
82

1E
-1

1

1.
45

5E
-1

1

3.
63

8E
-1

2

9.
09

5E
-1

3

s15e0 (fractional)
s11e4
s10e5
Modified fractional 2

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 95

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 200996

floating-point formats, the mantissa length and
numeric precision are variable for formats
derived from this class. This is especially impor-
tant for DSP formats.

Combining exponents: Individual exponents
can be combined to produce exponents of higher
precision. For example, two 12-bit exponents
could be combined to form a 13-bit exponent.
One 12-bit exponent could be combined with an
exponent from each of the other precisions (11,
10, 9…1) to also create a 13-bit exponent.

Dual exponent mapping: A number’s actual
value for this class of formats is given by the
equation: value = (–1)S × 1.M × 2f(EL,ER). The
exponent is essentially determined by the num-
ber of contiguous zeros on each end of the man-
tissa. The mantissa itself consists of the bits in
between the left-most and right-most ones
(excluding the sign bit). These two ones can be
used as separators because only zeroes are
allowed in the exponent fields. Each individual
binary exponent is derived by examining both
the left-edge and right-edge exponents (EL and
ER). A mechanism is then used (possibly, a table
lookup) to map the two edge exponents into a
single binary exponent f(EL,ER).

Optimal sequences: Exponents can be
ordered in any sequence, with the caveat that
each binary range (e.g., 0.5 to 0.25) must be cov-

ered within the numeric range of the number
format (e.g., 1.0 to 2–15 for fixed-point fraction-
al). The dynamic range of the format is the ratio
of the upper and of the lower limit (multiplied
by two if rounding is employed).

We should point out that this class of floating-
point formats is mainly applicable to problems
that can benefit from an uneven distribution of
precision. However, with the common use of
AGC mechanisms, DSP applications fall into this
category of problems. For applications that
require an even distribution of precision across
the numeric range, standard floating-point for-
mats are more appropriately used.

This class of floating-point formats could eas-
ily be developed much further. But we don’t
require further development to derive from it
data formats that are optimized for DSP. To
derive a specific format from this class, we mere-
ly define the exponent function f(EL,ER) for the
individual derived format. With this class of for-
mats as our primary tool, we now derive a data
format optimized for 16-bit DSP applications.

A NEW FRACTIONAL FORMAT
The authors have previously derived several data
formats optimized for 16-bit DSP applications
from this class of floating-point formats [8]. In this

�� Table 1. Fractional fixed point data in sign magnitude.

Numeric range
Format
S = sign bit
X = either 1 or 0

Significant binary digits

1.0–0.5 S1XXXXXXXXXXXXXX 15

0.5–0.25 S01XXXXXXXXXXXXX 14

0.25–0.125 S001XXXXXXXXXXXX 13

0.125–0.0625 S0001XXXXXXXXXXX 12

0.0625–0.03125 S00001XXXXXXXXXX 11

0.03125–0.015625 S000001XXXXXXXXX 10

0.015625–0.0078125 S0000001XXXXXXXX 9

0.0078125–0.00390625 S00000001XXXXXXX 8

0.00390625–0.001953125 S000000001XXXXXX 7

0.001953125–0.0009765625 S0000000001XXXXX 6

0.0009765625- 0.00048828125 S00000000001XXXX 5

0.00048828125–0.000244140625 S000000000001XXX 4

0.000244140625–0.0001220703125 S0000000000001XX 3

0.0001220703125–0.00006103515625 S00000000000001X 2

0.000030517578125 S000000000000001 1

0 S000000000000000 0

The main reasons for

introducing a new

fractional format are

that this format has

a path into a C data

type with the

embedded-C

standard (ISO,

2003a), and it has a

proven record

for use in

signal-processing

applications.

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 96

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2009 97

article we examine only one new data format, a
new fractional format. The main reasons for intro-
ducing a new fractional format are that this format
has a path into a C data type with the embedded-C
standard (ISO, 2003a), and it has a proven record
for use in signal-processing applications. If we can
develop a fractional format with improved dynamic
range that doesn’t sacrifice noise performance, we
will have accomplished something worthwhile.

Any format optimized for fractional DSP
should take a clue from the noise performance
of fixed point and have the largest mantissas at
the top of the range. The mantissa should then
fall off gradually to the smallest mantissa. Such a
format derived from our new class is shown in
Table 4 and illustrated in Fig. 1b. This format
provides a significant dynamic-range improve-
ment over the standard fixed-point format and
the prevailing 16-bit floating-point format (s10e5
or binary16). It should also provide significantly
improved noise performance over the binary16
floating-point format. Its only weakness is that a
single bit of precision was sacrificed in the top
two ranges when compared to fixed point. For a
fractional format, this is significant, and we can
do better by sacrificing some dynamic range.

By examining the binary fixed-point format,
we learn that a single term from each of the

ranges (A1 through M13 in Table 4) is combined
to form a single 15-bit magnitude. This procedure
is repeated to form a single 14-bit magnitude and
on down the line. The result is that the binary
fixed-point format can be considered a single
instance of the new class of floating-point formats
we developed in Table 3. To develop a new frac-
tional format, we follow the same approach, but
skip the creation of the first 15-bit magnitude.
This leaves us with two terms of each exponent
size, and we order them in decreasing precision as
shown in Table 5 and illustrated in Fig. 1c.

This format provides almost double the
dynamic range of standard fixed point at the cost
of decreased precision at the very top of the
numeric range (1.0–0.5). It also provides
improved precision over fixed point throughout
the remainder of the numeric range. As we dis-
cover, the increased dynamic range and addi-
tional overall precision actually improve the
round-off noise performance of this format when
compared to 16-bit fixed point.

SIMULATION AND RESULTS
A simulation was performed to validate
improved noise performance for the second new
fractional format. Here we provide a summary

�� Table 2. Fractional fixed point data format recast with trailing zeros.

Numeric range

Format
S = sign bit
M = mantissa
0 = exponent
1 = separator

Significant binary digits

1.0–0.5 SMMMMMMMMMMMMMM1 15

0.5–0.25 SMMMMMMMMMMMMM10 14

0.25–0.125 SMMMMMMMMMMMM100 13

0.125–0.0625 SMMMMMMMMMMM1000 12

0.0625–0.03125 SMMMMMMMMMM10000 11

0.03125–0.015625 SMMMMMMMMM100000 10

0.015625–0.0078125 SMMMMMMMM1000000 9

0.0078125–0.00390625 SMMMMMMM10000000 8

0.00390625–0.001953125 SMMMMMM100000000 7

0.001953125–0.0009765625 SMMMMM1000000000 6

0.0009765625- 0.00048828125 SMMMM10000000000 5

0.00048828125–0.000244140625 SMMM100000000000 4

0.000244140625–0.0001220703125 SMM1000000000000 3

0.0001220703125–0.00006103515625 SM10000000000000 2

0.000030517578125 s100000000000000 1

0 s000000000000000 0

This format provides

almost double the

dynamic range of

standard fixed point

at the cost of

decreased precision

at the very top of

the numeric range

(1.0–0.5). It also

provides improved

precision over fixed

point throughout the

remainder of the

numeric range.

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 97

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 200998

of the simulation and results, which are
described in greater detail elsewhere [8].

An amplitude modulation (AM) receiver sim-
ulation was used to compare the noise perfor-
mance for various data formats. The AM format
was selected because the problem is well under-
stood, and even if in decline, the format is still
widely used. This simulation contained several
typical DSP algorithms, which include the fol-
lowing: quantization to simulate 16-bit analog-
to-digital (A/D) conversion, finite impulse
response (FIR), and infinite impulse response
(IIR) filters, demodulation, AGC, Hanning win-
dow, fast Fourier transform (FFT), and signal-
to-noise ratio (SNR) measurement through
Parseval’s Theorem. AGC techniques were used
following several stages to improve the native
performance of the fractional format.

The following formats were simulated: IEEE
32-bit floating point (as a comparison baseline),
s10e5 16-bit floating point, a 16-bit logarithmic
format, fractional 16-bit fixed point, and the sec-
ond new fractional format presented here. The
simulation was performed for both weak-signal
and strong-signal cases and both with and with-
out the use of a single, large, post-multiply accu-
mulator. Noise was not added to the simulation,
so the resulting noise is a consequence of round-
off errors during calculation, quantization to
simulate A/D conversion, and out-of-band filter
rejection (just over 50 dB). The simulation
results are shown in Table 6.

As can be seen from Table 6, the new frac-
tional format significantly outperformed the
other 16-bit formats in terms of noise perfor-
mance, and it approaches the performance of

32-bit floating point for this simulation. It also
provides almost twice the dynamic range of tra-
ditional fixed point. The first fractional format
was not simulated, but would drastically
increase dynamic range with only a minor
degradation of noise performance when com-
pared to the second fractional format. It is still
very useful for problems that require a larger
dynamic range.

Better digital filters can also be achieved
using the new fractional format than are possible
using either fixed- or floating-point data types of
equivalent word width. As shown in Fig. 2, a
FIR-notch filter was created using the IEEE 32-
bit floating-point format. The coefficients were
then converted (with rounding) to the 16-bit
fixed-point fractional format, the s10e5 16-bit
floating-point format, and the 16-bit new frac-
tional format. The coefficients were then con-
verted back to floating point, and their
magnitude response was plotted. As seen in Fig.
2, when the digital coefficients were expressed in
the new fractional format, the rejection band
improved by approximately 10 dB compared to
the other two 16-bit formats. This improvement
may become even more pronounced in IIR fil-
ters, which employ feedback.

IMPLEMENTATION CONSIDERATIONS
Having derived a data format that actually
improves numeric performance for 16-bit DSP
applications, we are left with several implemen-
tation issues that must be addressed before the
format is truly useful. For non-real-time soft-
ware applications such as simulation or data
storage, the new fractional format has been
coded into a C++ class with overloaded arith-
metic operators that has provided excellent
results. Unfortunately, this class performs arith-
metic operations at a much slower rate than a
traditional fractional format would. Further-
more, a data format with two exponent fields
and a table-lookup mechanism may be difficult
to implement in hardware and may execute
more slowly than a traditional fractional for-
mat. The next logical step in our format devel-
opment process is to render the second new
fractional format into a form that is easily
implemented in hardware. We accomplish this
with a reorganization of the second new frac-
tional format that allows easy encoding and
decoding of the format into a 32-bit two’s com-
plement number.

Assume a 16-bit number partitioned into two
fields. The first field is a single-bit field repre-
senting a shift flag. The second field is a 15-bit
compressed two’s complement number. The
number of sign bits (leading ones or zeros) in
the two’s complement field is reduced by half
(rounding up). This organization of bits proves
equivalent to the new fractional format illustrat-
ed in Fig. 1c and defined in Table 5. Here we
provide a mechanism for expanding the 15-bit
field into a 32-bit two’s complement number,
and the shift bit indicates if the number is to be
shifted to the left by one bit or not.

To decode the format, the leading digits of
the 15-bit two’s complement field that are all
of the same binary value are to be doubled. In

�� Table 3. A new class of floating point formats.

Format
S = sign bit
M = mantissa
0 = exponent
1 = separator

Significant binary digits
(assuming normalized
Mantissa and implied
leading 1)

Identifier
(for later
reference)

S1MMMMMMMMMMMMM1 14 A1

S1MMMMMMMMMMMM10,
S01MMMMMMMMMMMM1

13 B1
B2

S1MMMMMMMMMMM100,
S01MMMMMMMMMMM10,
S001MMMMMMMMMMM1

12 C1
C2
C3

S1MMMMMMMMMM1000,
S01MMMMMMMMMM100,
S001MMMMMMMMMM10,
S0001MMMMMMMMMM1

11 D1
D2
D3
D4

5 values 10 E1–E5

… …

S1100…–S0…011 1 M1–M14

S1000…–S0…001 1 N1–N15

S000000000000000 0 & special use for S = 1 O1, O2

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 98

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2009 99

other words, i f there are f ive ones or f ive
zeros at the beginning of this f ield, you
replace them with ten ones or ten zeros. If the
shift bit is a zero, then you remove one of the
leading sign bits at the front of the field. This
number is then left justified into a 32-bit two’s
complement format, and the least significant
bits are all set to zero. You now have expand-
ed your 16-bit number into a 32-bit number
with maximum precision for the very largest
fractions.

The data can now be operated upon with a
traditional 32-bit two’s complement arithmetic
unit. However, we should point out that a 15-bit
DSP multiplier may be more appropriate
because there are not more than 15 bits of preci-
sion in either multiplicand. The resulting prod-
uct can be shifted into a 32-bit format after the
15 × 15 bit multiplication is complete.

Encoding from a 32-bit (or larger) two’s com-
plement word to a 16-bit new fractional format
is accomplished by following the reverse opera-
tion. The number of leading zeros is halved
(rounding up). The shift bit is then set to zero if
the original number of leading sign bits is odd.
Once the number of leading sign bits has been
halved and the shift bit set, then rounding must
be performed to compress the value into the
resulting 15-bit two’s complement format.

Although the number format itself has not

increased in size (16-bits) with this approach, the
computational element (multiplier, arithmetic
logic unit [ALU], accumulator) may now have
increased in size from 16 to 32 bits (at least for
addition). This format should prove easy to
implement in hardware but may result in a drop
in throughput and an increase in power con-
sumption due to the use of a 32-bit arithmetic
unit together with encoding and decoding logic.
Though this approach may slightly reduce the
throughput of a 16-bit DSP device, it should not
significantly affect the size or cost of the device
because these attributes are driven primarily by
the size of the main data and address buses. The
use of a smaller 15 × 15-bit multiplier may also
help with the size issue.

Some might argue that a hardware imple-
mentation of this new format would not be
worthwhile because it does not directly improve
important hardware performance parameters
such as circuit complexity, delay, and power con-
sumption. This point is granted. However, imple-
menting this new format in hardware directly
improves algorithm performance for many DSP
applications. Obviously, not all DSP applications
require additional dynamic range or improved
noise performance, but other DSP applications
go to great lengths algorithmically to obtain
additional performance in these two categories.
For these types of systems, improved algorithm

�� Table 4. A first attempt at a new fractional format.

Numeric range

Format
S = sign bit
M = mantissa
0 = exponent
1 = separator
Red = actual digit
Black = implied digit

N F

1.0–0.5 S0.1MMMMMMMMMMMMM1 14 A1

0.5–0.25 S0.01MMMMMMMMMMMM1 13 B2

0.25–0.125 S0.001MMMMMMMMMMMM10 13 B1

0.125–0.0625 S0.0001MMMMMMMMMMM10 12 C2

0.0625–0.03125 S0.00001MMMMMMMMMMM100 12 C1

0.03125–0.015625 S0.000001MMMMMMMMMMM1 12 C3

0.015625–0.0078125 S0.0000001MMMMMMMMMM1 11 D4

0.0078125–0.00390625 S0.00000001MMMMMMMMMM1000 11 D1

0.00390625–0.001953125 S0.000000001MMMMMMMMMM100 11 D2

0.001953125–0.0009765625 S0.0000000001MMMMMMMMMM10 11 D3

… … …

S0. “104 0s” 000000000000001 1 N15

0.0 0000000000000000 0 O1

Notes: N = number of significant binary digits. F = format from Table 3.

Having derived a

data format that

actually improves

numeric perfor-

mance for 16-bit

DSP applications,

we are left with

several implementa-

tion issues that must

be addressed before

the format is

truly useful.

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 99

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2009100

performance may indirectly improve power con-
sumption, delay, algorithm complexity, cost, and
size.

For many applications, the slight trade-off in
throughput and power is well worth the
improved dynamic range and noise performance
achieved with the new format. Many applications
that now require 32-bit floating point could be
realized at less cost if this new data format were
natively provided in a 16-bit programmable DSP
device. Furthermore, many applications that cur-
rently utilize programmable 16-bit DSPs could
experience improved performance with this new
format.

CONCLUSIONS

In this article we introduced a new class of float-
ing-point formats with uneven numeric preci-
sion. We illustrated how to derive specific
formats from this class by creating two new frac-
tional formats. We then presented simulation
results to verify that the second new fractional
format outperformed traditional 16-bit fixed-
and floating-point formats in terms of noise per-
formance and also dynamic range (for fixed
point). Finally we remapped the new derived
format into a form that is more convenient for
hardware implementation.

�� Table 5. A second attempt at a new fractional format.

�� Table 6. Summary of simulation results (dB).

Format Weak signal SNR
without accum

Weak signal SNR
with accum

Strong
signal SNR Dynamic range

IEEE 754 32-bit floating point 31.97 31.97 50.53 1530

s10e5 8.44 7.90 42.06 252

16-bit logarithmic 8.23 8.32 38.61 385

16-bit fixed point fractional 13.30 24.93 44.42 96

New fractional (#2) 21.91 27.16 50.13 181

Note: Among the 16-bit formats blue indicates the best performer and red the second best performer.

Numeric range

Format
S = sign bit
M = mantissa
0 = exponent
1 = separator
Red = actual digit
Black = implied digit

N F

1.0–0.5 S0.1MMMMMMMMMMMMM1 14 A1

0.5–0.25 S0.01MMMMMMMMMMMMM10 14 B1, C2, D3,…, M13

0.25–0.125 S0.001MMMMMMMMMMMM1 13 B2

0.125–0.0625 S0.0001MMMMMMMMMMMM100 13 C1, D2, …

0.0625–0.03125 S0.00001MMMMMMMMMMM1 12 C3

0.03125–0.015625 S0.000001MMMMMMMMMMM1000 12 D1, E2, …

0.015625–0.0078125 S0.0000001MMMMMMMMMM1 11 D4

0.0078125–0.00390625 S0.00000001MMMMMMMMMM10000 11 E1, F2, …

0.00390625–0.001953125 S0.000000001MMMMMMMMM1 10 E5

… … …

S0. “16 0s” 000000000000001 1 M13

0.0 0000000000000000 0 O1

Notes: N = number of significant binary digits. F = format from Table 3.

to be useful in a

real-time application,

the new format

should be directly

implemented in

hardware, most

conveniently in the

arithmetic element

of a programmable

16-bit DSP proces-

sor. Almost every

application that uses

a 16-bit DSP could

be improved by

using the new

fractional format.

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 100

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2009 101

We emphasized the fact that to be useful in a
real-time application, the new format should be
directly implemented in hardware, most conve-
niently in the arithmetic element of a pro-
grammable 16-bit DSP processor. Almost every
application that uses a 16-bit DSP could be
improved by using the new fractional format.
Some obvious potential applications are:
• CD audio and other digital audio data for-

mats
• Satellite TV and HDTV radio frequency

(RF) data formats for signal processing
• Modems and other telephony applications
• Toys that employ speech generation or

recognition
• Cell phone and software radio applications
• Implanted DSP devices (e.g., cochlear ear

implants)
Some important aspects of this article that

must be emphasized are:
• Both the new class of floating-point formats

and the new fractional formats are applica-
ble to data sizes other than 16-bits.

• The new class of formats may have applica-
tions outside the realm of DSP.

• Additional new data formats and more
detailed development is provided in the
authors’ previous work [8].
For many years, the signal-processing indus-

try has used primarily either fixed-point or bina-
ry floating-point number formats to represent
digital signals. If the field of data formatting is
opened up to include irregular formats, actual
performance in terms of dynamic range and
round-off noise can improve.

REFERENCES
[1] ISO/IEC JTC1/SC22 WG14/N854, “DSP-C: An Extension to

IOS/IEC IS 9899:1990,” 1998; http: / /www.open-
std.org/jtc1/sc22/wg14/www/docs/n854.pdf (accessed
Nov. 13, 2006).

[2] A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal
Processing, 2nd ed., Prentice-Hall, 1999.

[3] ISO/IEC JTC1/SC22 WG14/N1021, “Extensions for the
Programming Language C to Support Embedded Pro-
cessors: ISO/IEC DTR 18037,” 2003; http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1021.pdf (accessed
Nov. 13, 2006).

[4] IEEE Std P754 Draft 1.2.5, “Draft Standard for Floating-
Point Arithmetic”; math.berkeley.edu/~scanon/754
(accessed Nov. 13, 2006).

[5] ISO, “Rationale for International Standard-Programming
Languages — C,” revision 5.1, 2003; http://www.open-
std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
(accessed Oct. 18, 2006).

[6] S. W. Smith, The Scientist and Engineer’s Guide to Digi-
tal Signal Processing, California Technical Publishing,
1999; http://www.analog.com/processors/learning/
training/dsp_book_index.html (accessed Aug. 18,
2006).

[7] B. Parhami, Computer Arithmetic: Algorithms and Hard-
ware Designs, Oxford Univ. Press, 1999.

[8] M. Richey, “The Application of Irregular Data Formats for
Improved Performance in 16-bit Digital Signal Processing
Systems,” Master’s thesis, Univ. of Kansas, Dec. 2006.

BIOGRAPHIES
HOSSEIN SAIEDIAN [SM] (saiedian@eecs.ku.edu) received his
Ph.D. from Kansas State University in 1989. He is currently
a professor and an associate chair in the Department of
Electrical Engineering and Computer Science at the Univer-
sity of Kansas (KU) and a member of the KU Information
and Telecommunication Technology Center (ITTC). His pri-
mary area of research is software engineering and informa-
tion security. He has over 100 publications on a variety of
topics in software engineering and computer science.

MANUEL RICHEY (manuel.richey@honeywell.com) graduated
from the University of California at Davis in 1983 with a
Bachelor’s degree in electrical engineering. In 2007 he
earned his Master’s degree in computer science from the
University of Kansas. He is a principal engineer at Honey-
well International Inc. where he has worked since 1985. At
Honeywell, he has worked primarily in the fields of digital
signal processing and software radio. He holds seven U.S.
patents and has four additional patents pending.

�� Figure 2. A comparison of digital filter coefficient performance.

512i
500

0

-140

-150– 143.877

– 0.101

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

100 150 200 250 300 350 400 450 500 550

Ieee32FloatingPointi
FixedPointi
NewFractionali
S10E5i

SAIEDIAN LAYOUT 6/16/09 12:37 PM Page 101

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

