
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Does Test-Driven Development
Really Improve Software Design Quality?

David S. Janzen, California Polytechnic State University, San Luis Obispo
Hossein Saiedian, University of Kansas

Vol. 25, No. 2
March/April 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 March/April 2008 I E E E S o f t w a r e � 77

features o f t war e m e t r i c s

Does Test-Driven
Development Really
Improve Software
Design Quality?

David S. Janzen, California Polytechnic State University, San Luis Obispo

Hossein Saiedian, University of Kansas

TDD is first and
foremost a design
practice. The question
is, how good are the
resulting designs?
Empirical studies
help clarify the
practice and answer
this question.

S oftware developers are known for adopting new technologies and practices on the

basis of their novelty or anecdotal evidence of their promise. Who can blame them?

With constant pressure to produce more with less, we often can’t wait for evidence

before jumping in. We become convinced that competition won’t let us wait.

Advocates for test-driven development claim
that TDD produces code that’s simpler, more co-
hesive, and less coupled than code developed in a
more traditional test-last way. Support for TDD is
growing in many development contexts beyond its
common association with Extreme Programming.
Examples such as Robert C. Martin’s bowling game
demonstrate the clean and sometimes surprising de-
signs that can emerge with TDD,1 and the buzz has
proven sufficient for many software developers to
try it. Positive personal experiences have led many
to add TDD to their list of “best practices,” but for
others, the jury is still out. And although the litera-
ture includes many publications that teach us how
to do TDD, it includes less empirical evaluation of
the results.

In 2004, we began a study to collect evidence
that would substantiate or question the claims re-
garding TDD’s influence on software.

TDD misconceptions
We looked for professional development teams

who were using TDD and willing to participate in
the study. We interviewed representatives from four
reputable Fortune 500 companies who claimed to be
using TDD. However, when we dug a little deeper,
we discovered some unfortunate misconceptions:

Misconception #1: TDD equals automated test-
ing. Some developers we met placed a heavy
emphasis on automated testing. Because TDD
has helped propel automated testing to the fore-
front, many seem to think that TDD is only
about writing automated tests.
Misconception #2: TDD means write all tests
first. Some developers thought that TDD in-
volved writing the tests (all the tests) first,
rather than using the short, rapid test-code it-
erations of TDD.

Unfortunately, these perspectives miss TDD’s pri-
mary purpose, which is design. Granted, the tests
are important, and automated test suites that can
run at the click of a button are great. However,

■

■

78	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

from early on, TDD pioneers have been clear that
TDD is about design, not the tests.2

Why the confusion regarding TDD? We propose
two possible explanations.

First, we can blame it on the name, which in-
cludes the word “test” but not the word “design.”
But, alas, “test-driven development” seems to be
here to stay. We’re unlikely to revert to earlier,
more accurately descriptive names such as “test-
driven design.”

A second source of confusion is the difference
between internal and external quality. Several
early studies focused on TDD’s effects on defects
(external quality) and productivity.3 Many re-
sults were promising although somewhat mixed.
Boby George and Laurie Williams reported fewer
defects but lower productivity.4 Hakan Erdog-
mus, Maurizio Morisio, and Marco Torchiano
reported minimal external quality differences but
improved productivity.5 Adam Geras, Michael
Smith, and James Miller reported no changes in
productivity, but more frequent unplanned test
failures.6 The emphasis on external quality is
valid and beneficial, but it can also miss TDD’s
primary focus on design.

Matthias Müller addressed internal quality in a
recent case study comparing five open-source and
student TDD projects with three open-source non-
TDD projects.7 (The study incorrectly identified
one TDD project, JUnit, as being non-TDD, and
it didn’t confirm whether two projects, Ant and
log4j, were TDD or non-TDD.) Although Müller
focused on a new metric to gauge testability, he
indicated that software developed with TDD had
lower coupling, smaller classes, and higher testabil-
ity, but less cohesiveness.

Despite the misconceptions about TDD, some
of the traditional test-last development teams we
interviewed reported positive experiences with au-
tomated testing, resulting in quality and productiv-
ity improvements. Other test-last teams reported
frustrations and eventual abandonment of the ap-
proach. We believed that focusing on internal qual-

ities, such as simplicity, size, coupling, and cohe-
sion, would emphasize TDD’s design aspects and
help clarify how to use it.

TDD in a traditional
development process

We wanted to examine TDD independent
of other process practices, but we had to select a
methodology to minimize independent variables.
We chose to study TDD in the context of a some-
what traditional development process based on the
Unified Process.8 The projects in this research were
relatively short (typically three to four months). We
believe the process we used could be repeated as it-
erations in a larger evolutionary process model, but
we didn’t study this.

Figure 1a illustrates a traditional test-last flow
of development. This process involves significant
effort in specifying the system architecture and
design before any significant software develop-
ment. Such an approach does not preclude some
programming to explore a prototype or prove a
concept, but it assumes that no significant produc-
tion software is constructed without a detailed de-
sign. Unit testing occurs after a unit is coded. We
asked test-last programmers in the study to use an
iterative approach in which the time from unit con-
struction to unit testing was very short (seconds or
minutes rather than weeks or months).

Figure 1b illustrates the test-first development
flow. In this approach, the project identifies some
high-level architecture early, but that design doesn’t
proceed to a detailed level. Instead, the test-first
process of writing unit tests and constructing the
units in short, rapid iterations allows the design to
emerge and evolve.

Neither of these flows makes any assumptions
about other process practices.

Study design and execution
We designed our study to compare the test-first

TDD approach with a comparable but reversed test-
last approach. In particular, programmers in both

TestDetailed design

Code
High-level

design/architecture

High-level
design/architecture

Unit testCode

RefactorCode

(a)

TestUnit test

Design and code

(b)

Figure 1. Development
flow: (a) traditional test-
last and (b) test-driven
development/test-first
flow.

	 March/April 2008 I E E E S o f t w a r e � 79

the test-first and test-last groups wrote automated
unit tests and production code in short, rapid itera-
tions. We conducted pre-experiment surveys to en-
sure no significant differences existed between the
test-first and test-last groups in terms of program-
ming experience, age, and acceptance of TDD. The
only difference was whether they wrote the tests
before or after writing the code under test.

We selected a development group in one com-
pany to conduct three quasi-controlled experi-
ments and one case study. (We call the studies
quasi-controlled because the teams weren’t ran-
domly assigned.) We selected this group because
of their willingness to participate in the study, to
share project data, and to use TDD as an integral
part of design. Developers voluntarily participated
as part of their regular full-time work for the com-
pany, which assigned all projects and used the re-
sults in production.

In addition, we conducted two quasi-con-
trolled experiments in undergraduate and gradu-
ate software engineering courses at the University
of Kansas during the summer and fall of 2005.
Nineteen students worked in teams of three or

four programmers each. Both courses involved the
same semester-long project.

Table 1 summarizes the studies. The three in-
dustry quasi-controlled experiments involved five
similar but distinct projects completed by overlap-
ping groups of five developers. The “Teams” col-
umns in table 1 identify these developers with the
letters A through E and indicate how the teams
overlap on projects. All industry developers had
computing degrees and a minimum of six years’
professional development experience. The projects
were all Web applications completed in Java, devel-
oped as part of the team’s normal work domain,
and completed in three to 12 months each.

Companies are rarely willing to commit two
teams to develop the same system just to see which
approach works better. So, to make things fair,
we interleaved the approaches and mixed up their
order in completing individual projects. The first
quasi-experiment involved a test-last project with
no automated tests, followed by a second phase
of the same project completed with a test-first
approach. The test-first project used the Spring
framework. We labeled this comparison INT-TF

Table 1
Study profile

Study*
Experiment
Type

Test-First Test-Last

Classes LOC
Teams†/
experience*

Technologies/
real world? Classes LOC

Teams†/
experience

Technologies/
real world?

INT-TF Quasi-
controlled

28 842 A/>5 years J2EE, Spring/
real world

18 1,562 A/>5 years J2EE/real world

ITL-TF Quasi-
controlled

28 842 A/>5 years J2EE, Spring/
real world

21 811 AB/>5 years J2EE/real world

ITF-TL Quasi-
controlled

69 1,559 ABC/>5 years J2EE, Spring,
Struts/real
world

57 2,071 BC/>5 years J2EE, Spring,
Struts/real
world

ICS Case study 126 2,750 ABC/>5 years J2EE, Spring,
Struts/real
world

831 49,330 ABCDE‡/
>5 years

J2EE, Spring,
Struts/real
world

GSE Quasi-
controlled

19 1,301 Two teams of
3 participants/
0–5 years

Java/ academic 4 867 One team of
3 participants/
>5 years

Java/academic

USE Quasi-
controlled

28 1,053 One team of
3 participants/
novice

Java/academic 17 1,254 Two teams
of 3 and 4
participants/
novice

Java/academic

Unique totals 173 5,104 12
participants

N/A 852 51,451 15
participants

N/A

* INT-TF (industry no-tests followed by test-first), ITL-TF (industry test-last followed by test-first), ITF-TL (industry test-first followed by test-last), ICS (industry case study), GSE (graduate software engineering), USE (undergraduate
software engineering).

† A, B, C, D, and E identify five developers to show overlap between teams.
‡ One of the early test-last projects had additional developers.

80	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

for “industry no-tests followed by test-first.” The
second quasi-experiment involved a test-last project
followed by a test-first project. Again, the test-first
application used the Spring framework; we labeled
this comparison ITL-TF for “industry test-last fol-
lowed by test-first.” The third quasi-experiment
involved a test-first project followed by a test-last
project. Both projects used the Struts and Spring
frameworks along with object-relational mapping
patterns and extensive mock objects in testing; we
labeled this comparison ITF-TL for “industry test-
first followed by test-last.”

The case study, labeled ICS, examined 15 soft-
ware projects completed in one development group
over five years. The 15 projects included the five
test-first and test-last projects from the industry
quasi-experiments. The group had completed the
remaining 10 projects prior to the quasi-experiment
projects. We interviewed the developers from these
10 projects and determined that all 10 used a test-
last approach. All 15 case study projects were com-
pleted in three to 12 months with less than 10,000
lines of code by development teams of three or fewer
primary developers. Six projects were completed
with no automated unit tests; six projects, with au-
tomated tests in a test-last manner; and three proj-
ects, with automated tests in a test-first manner. All
projects used Java to develop Web applications in a
single domain.

We labeled the academic studies GSE for “grad-
uate software engineering” and USE for “under-
graduate software engineering.” We divided the
student programmers into test-first and test-last
groups and gave them the same set of programming
requirements for the semester-long project—specif-
ically, to design and build an HTML pretty-print
system. The system was to take an HTML file as
input and transform the file into a more human-
readable format by performing operations such as
deleting redundant tags and adding appropriate
indentation.

Students self-selected their teammates, and we
compared the results from pre-experiment surveys
to ensure that no statistically significant differences
existed between the teams in preparation or bias.
In particular, we established Java experience as a
blocking variable to ensure that each team had a
minimum and balanced skill set. In every case, the
teams were fairly balanced and didn’t change dur-
ing the study. All but one student in the GSE study
had at least one year of professional development
experience. Students in the USE study were all ju-
niors or seniors.

We developed TDD and automated testing
training materials and delivered them in conjunc-
tion with each study. We gave the training to the
industry participants in summer 2004. The test-
first and test-last projects began in fall 2004 and

(a) (b)

(c) (d)

0

20

40

60

80

100

USE GSE ICS INT-TF ITL-TF ITF-TL

USE GSE ICS INT-TF ITL-TF ITF-TL

Av
er

ag
e

lin
e

co
ve

ra
ge

 (p
er

ce
nt

)

0

20

40

60

80

100

120

140

160

USE GSE ICS INT-TF ITL-TF ITF-TL

Li
ne

s
of

 c
od

e
pe

r m
od

ul
e

0

5

10

15

20

25

30

35

Li
ne

s
of

 c
od

e
pe

r m
et

ho
d

0

2

4

6

8

10

12

14

16

M
et

ho
ds

 p
er

 c
la

ss

Test-first
Test-last

Test-first
Test-last

Test-first
Test-last

Test-first
Test-last

USE GSE ICS INT-TF ITL-TF ITF-TL

Figure 2. Code size
metrics: (a) average
line coverage of
automated tests, (b)
lines of code per module
(class), (c) lines of code
per method, and (d)
methods per class.

	 March/April 2008 I E E E S o f t w a r e � 81

ran through spring 2006. Although the develop-
ers might have experienced some learning curve
with TDD during the first few months, we be-
lieve the project durations and total time elapsed
established sufficient experience in the test-first
projects.

The software engineering courses involved rel-
atively short training sessions (about two hours)
dedicated to automated unit testing and TDD top-
ics. Some students noted challenges with applying
TDD at first. We observed undergraduate students
in a lab setting and provided additional informal
instruction as needed to keep them writing au-
tomated tests. The industry training consisted of
a full-day course on automated unit testing and
TDD. We carefully presented the materials for both
test-first and test-last approaches to avoid introduc-
ing any approach bias.

Analyzing the studies
We used several popular software metrics to

evaluate the artifacts from the study. Although
experts differ regarding the most appropriate met-
rics, particularly in areas such as coupling9 and co-
hesion,10 we selected a representative set that are
widely calculated and reported.

We began our analysis by considering whether
the programmers in our studies actually wrote au-
tomated unit tests. We informally monitored devel-
opers during the studies through brief interviews
and observed code samples. The post-experiment
survey asked developers to anonymously report
whether they used the prescribed approach. In all
the studies but one, programmers reported using
the approach they were instructed to use (test-first
or test-last). The one exception was a team in the
undergraduate software engineering course. De-
spite being instructed to use a test-first approach,
the team reported using a test-last approach, so we
reclassified them into the test-last control group.

Figure 2a reports each study’s average line cover-
age. This measure indicates the percentage of lines
of code that the automated test suites execute. Not
surprisingly, line coverage is rather low in the stu-
dent studies and some test-last teams failed to write
any automated tests. In their post-survey comments,
several student test-last team members reported
running out of time to write tests. In contrast, pro-
fessional test-last developers in the ICS, ITL-TF, and
ITF-TL studies reported more faithful adherence to
the rapid-cycle “code-test-refactor” practice.

In every study but the last one, the test-first
programmers wrote tests that covered a higher
percentage of code. The test-last control group in
the INT-TF study performed only manual test-

ing, so the group had no line coverage. In the case
study, we omitted test-last projects with no auto-
mated tests from the line-coverage percentage cal-
culation to avoid unfairly penalizing the test-last
measures. In all the studies, we found additional
testing metrics such as branch coverage and num-
ber of assertions to be generally consistent with
the line-coverage results.

In the final study, when the same professional
developers completed a test-last project after having
completed a test-first project earlier, they increased
their average line coverage. Average branch test cov-
erage (Boolean expressions in control structures)
was actually a bit lower at 74 percent for test-last
while the test-first project achieved 94 percent. We
observed a similar phenomenon in a separate study
with beginning programmers.11 In that study, stu-
dent programmers who used the test-first approach
first wrote more tests than their test-last counter-
parts. However, on the subsequent project, when
students were asked to use the opposite approach,
the test-last programmers (those who used test-first
on the first project) again wrote more tests. Could
it be that the test-first approach has some sort of
a residual effect on a programmer’s disposition to
write more tests? If so, we wonder whether this ef-
fect would diminish over time.

Impact on code size
The simplest software metric is size. Figure 2b

reports lines of code per module (generally a class).
In all studies, test-first programmers wrote smaller
modules than their test-last counterparts. The case
study was the only study with enough classes to
analyze the data statistically. A two-sample, two-
tailed, unequal variance t-test indicated that the
difference in ICS lines of code per module was sta-
tistically significant with p < 0.05. Unless stated
otherwise, we use this same test and criteria when
claiming statistical significance.

Similarly, test-first programmers tended to write
smaller methods on average. Figure 2c reveals that
test-first programmers’ average method size in lines
of code was below the test-last averages in all but
the last two industry studies (ITL-TF and ITF-TL).
The use of simple one-line accessor methods af-
fects these differences. The ITF-TL study had the
most striking difference with nearly 40 percent of
the methods in the test-last project being simple
one-line accessors. In contrast, only 11 percent of
the test-first methods were simple accessors. Inlin-
ing the one-line accessor methods strengthens the
claim that test-first programmers write smaller
methods on average.

Finally, figure 2d indicates that the test-first

82	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

programmers wrote fewer methods per class in all
but the ITL-TF study (the difference was very slight
in the USE study).

In summary, the data shows a possible tendency
for test-first programmers to write smaller, simpler
classes and methods.

Impact on complexity
Size is one measure of complexity: smaller classes

and methods are generally simpler and easier to un-
derstand. Other common complexity measures in-
clude counting the number of independent paths
through code (cyclomatic complexity) and mea-
suring the degree of nesting (nested block depth).
More branches, paths, and nesting make code more
complex and therefore more difficult to understand,
test, and maintain.

We report three metrics to compare the com-
plexity differences between the test-first and test-last
projects. Weighted-methods complexity measures
the sum of cyclomatic complexities for all methods
in a class. In figure 3a, we see that test-first pro-
grammers consistently produced classes with lower
complexity in terms of the number of branches and
the number of methods. The ICS and ITF-TL dif-
ferences were statistically significant. The consis-
tently simpler classes by test-first programmers isn’t
surprising considering the earlier report of fewer
methods per class.

The remaining two metrics, cyclomatic com-
plexity per method and nested block depth (NBD)
per method, measure whether individual methods
are more or less complex. Figures 3b compares
cyclomatic complexity per method, and figure 3c
compares NBD per method. The method-level dif-
ferences are less consistent than those at the class-
level. Cyclomatic complexity per method was lower
in the test-first projects in four of the six studies.
The difference was statistically significant in ICS
and INT-TF. In the two studies where the test-last
methods were less complex, the difference was
small and the method complexity was low for both
test-first and test-last methods. The difference in
the ITF-TL study was statistically significant, but

we question the difference, given the earlier discus-
sion on accessor methods in this study.

NBD comparisons were similar. The test-first
projects had lower NBD in three studies. In the
remaining three studies, the test-last projects had
lower NBD, but the values are low and the differ-
ences are small.

We think the complexity metrics point to a ten-
dency of test-first programmers to write simpler
classes and sometimes simpler methods.

Impact on coupling
The tendency of test-first programmers to imple-

ment solutions with more and smaller classes and
methods might generate more connections between
classes. Figure 4a shows the coupling between ob-
jects (CBO), which measures the number of connec-
tions between objects. Half the studies had a lower
CBO in the test-first projects, and half were lower
in the test-last projects. The average CBO values
were acceptable in all the studies; none of the differ-
ences were statistically significant. The maximum
CBO for any class was acceptably low (12 or fewer)
for all the projects except two test-last ICS projects
(CBO of 28 and 49) and the two projects in the ITF-
TL study. Interestingly, the test-first project in the
ITF-TL study had a class with a CBO of 26 and the
test-last project had a class with a CBO of 16, both
of which might be considered unacceptably high.

Figure 4b reports differences in another cou-
pling measure: fan-out per class. Fan-out refers to
the number of classes used by a class. Not surpris-
ingly, the results are similar to those for CBO. The
differences are small—not statistically significant—
and the values are acceptable.

Two additional metrics seem informative when
considering coupling: the average number of method
parameters (PAR) and the information flow (IF =
fan-in2 * fan-out2), where fan-in refers to the num-
ber of classes using a particular class. In all but the
GSE study, PAR was higher in the test-first projects.
This difference was statistically significant in all the
industry studies. In all but the ITL-TF study, IF was
higher in the test-first projects.

(a) (b) (c)
USE GSE ICS INT-TF ITL-TF ITF-TL USE GSE ICS INT-TF ITL-TF ITF-TL USE GSE ICS INT-TF ITL-TF ITF-TL

0
20
40
60
80

100
120
140
160
180

W
ei

gh
te

d-
m

et
ho

ds
 c

om
pl

ex
ity

0

1

2

3

4

5

6

7

Cy
cl

om
at

ic
 c

om
pl

ex
ity

 p
er

 m
et

ho
d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ne
st

ed
-b

lo
ck

 d
ep

th
 p

er
 m

et
ho

d

Test-first
Test-last

Test-first
Test-last

Test-first
Test-last

Figure 3. Complexity
metrics: (a) weighted-
methods complexity,
(b) cyclomatic
complexity per method,
and (c) nested block
depth per method.

	 March/April 2008 I E E E S o f t w a r e � 83

The PAR and IF measures indicate a high vol-
ume of interaction and data passing between units
in the test-first projects. This could reflect the in-
creased testing discussed earlier. Test-first develop-
ers often report writing more parameters to make
a method easier to configure and test. The higher
IF values in the test-first projects might indicate
high reuse (fan-in).

We were curious about whether the possible in-
creased coupling was good or bad. Coupling can
be bad when it’s rigid and changes in one module
cause changes in another module. However, some
coupling can be good, particularly when it’s con-
figurable or uses abstract connections such as in-
terfaces or abstract classes. Such code can be highly
flexible and thus more maintainable and reusable.

Many test-first programmers make heavy use
of interfaces and abstract classes to simplify test-
ing. For instance, the dependency-injection pat-
tern12 is popular among TDD developers, and it’s
central to frameworks such as Spring,13 which sev-
eral projects in our study used. To check this out,
we looked at several abstraction metrics, including
Robert Martin’s abstractness measure (RMA),1
number of interfaces implemented (NII), number
of interfaces (NOI), and number of abstract classes
(NOA) in all the projects. Our evaluation of these
measures didn’t give a conclusive answer to whether
the test-first approach produces more abstract de-
signs. However in most of the studies, the test-first
approach resulted in more abstract projects in terms
of RMA, NOI, and NII.

The coupling analysis doesn’t reveal clear an-
swers. It appears that test-first programmers might
actually tend to write more highly coupled smaller
units. However, possible increases in abstractness
might indicate that the higher coupling is a good
kind of coupling, resulting in more flexible soft-
ware. The coupling question needs more work.

Impact on cohesion
Cohesion is difficult to measure. The most

common metrics look at the sharing (or use) of at-
tributes among methods. We elected to use Brian

Henderson-Sellers’ definition of lack of cohesion of
methods, LCOM5,14 because it normalizes cohe-
sion values between zero and one. In addition, sev-
eral popular tools calculate LCOM5.

Figure 4c reports LCOM5 measures for the
studies. LCOM is an inverse metric, so lower values
indicate better cohesion. The chart indicates that
cohesion was better in the test-first projects in half
the studies (ICS, ITL-TF, and ITF-TL) and worse in
the other half. The difference was statistically sig-
nificant in only two studies (ICS and ITF-TL).

One known problem with most cohesion met-
rics is their failure to account for accessor meth-
ods.10 Most cohesion metrics, including LCOM5,
penalize classes that use accessor methods. The use
of accessor methods is common in Java software,
and all the study projects involved Java.

To gauge the impact of this concern, we calcu-
lated the percentage of accessor to total methods in
all but the ICS studies. The test-first projects had
an average of 10 percent more accessors in all but
the ITF-TL study. It seems plausible that correcting
for the accessor problem would bring the test-first
cohesion metrics in line with the test-last measures.
We were nevertheless unable to substantiate claims
that TDD improves cohesion.

Threats to validity
Like most empirical studies, the validity of our

results is subject to several threats. In particular, the
results are based on a small number of developers.
Team selection wasn’t randomized, and participants
knew that we were comparing TDD and non-TDD
approaches, leading to a possible Hawthorne effect.
Furthermore, in the industry experiments, it was
nearly impossible to control all variables except the
use or non-use of TDD, while keeping the projects
real and in-domain.

We made every effort to ensure that the TDD
and non-TDD teams were applying the approach
assigned to them. We interviewed developers during
the projects and at their conclusion. We observed
the undergraduate academic teams in a lab setting
and examined multiple in-process code samples to

(a) (b) (c)USE GSE ICS INT-TF ITL-TF ITF-TL USE GSE ICS INT-TF ITL-TF ITF-TL USE GSE ICS INT-TF ITL-TF ITF-TL
0

1

2

3

4

5

6

Co
up

lin
g

be
tw

ee
n

ob
je

ct
s

0

0.5

1.0

1.5

2.0

2.5

3.0

Fa
n-

ou
t p

er
 c

la
ss

0

0.1

0.2

0.3

0.4

0.5

0.6

La
ck

 o
f c

oh
es

io
n

of
 m

et
ho

dsTest-first
Test-last

Test-first
Test-last

Test-first
Test-last

Figure 4. Coupling
and cohesion between
objects per project:
(a) coupling between
objects per project,
(b) fan-out per class,
and (c) lack of cohesion
of methods.

84	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

see that automated unit tests were written in step
with production code. Still, developers could have
misapplied the TDD and non-TDD approaches at
some points. We look forward to additional stud-
ies in varied domains that will increase the results’
validity and broaden their applicability.

B y focusing on how TDD influences design
characteristics, we hope to raise awareness
of TDD as a design approach and assist

others in decisions on whether and how to adopt
TDD. Our results indicate that test-first program-
mers are more likely to write software in more and
smaller units that are less complex and more highly
tested. We weren’t able to confirm claims that TDD
improves cohesion while lowering coupling, but we
anticipate ways to clarify the questions these design
characteristics raised. In particular, we’re working
to eliminate the confounding factor of accessor us-
age in the cohesion metrics.

References
	 1.	 R.C. Martin, Agile Software Development: Principles,

Patterns, and Practices, Pearson Education, 2003.
	 2.	 K. Beck, “Aim, Fire,” IEEE Software, Sept./Oct. 2001,

pp. 87–89.
	 3.	 D. Janzen and H. Saiedian, “Test-Driven Development:

Concepts, Taxonomy, and Future Direction,” Com-
puter, Sept. 2005, pp. 43–50.

	 4.	 B. George and L. Williams, “A Structured Experiment
of Test-Driven Development,” Information and Soft-
ware Technology, vol. 46, no. 5, 2004, pp. 337–342.

	 5.	 H. Erdogmus, M. Morisio, and M. Torchiano, “On the
Effectiveness of the Test-First Approach to Program-
ming,” IEEE Trans. Software Eng., vol. 31, no. 3,
2005, pp. 226–237.

	 6.	 A. Geras, M. Smith, and J. Miller, “A Prototype Em-
pirical Evaluation of Test Driven Development,” Proc.
10th Int’l Symp. Software Metrics (Metrics 04), IEEE
CS Press, 2004, pp. 405–416.

	 7.	 M.M. Müller, “The Effect of Test-Driven Development
on Program Code,” Proc. Int’l Conf. Extreme Program-
ming and Agile Processes in Software Eng. (XP 06),
Springer, 2006, pp. 94–103.

	 8.	 P. Kruchten, The Rational Unified Process: An Intro-
duction, 3rd ed., Addison-Wesley, 2003.

	 9.	 L.C. Briand, J.W. Daly, and K. Wüst, “A Unified
Framework for Coupling Measurement in Object-Ori-
ented Systems,” IEEE Trans. Software Eng., vol. 25,
no. 1, 1999, pp. 91–121.

	10.	 L. Briand, J. Daly, and J. Wüst, “A Unified Framework
for Cohesion Measurement in Object-Oriented Sys-
tems,” Empirical Software Eng., vol. 3, no. 1, 1998, pp.
65–117.

	11.	 D. Janzen and H. Saiedian, “A Leveled Examination of
Test-Driven Development Acceptance,” Proc. 29th Int’l
Conf. Software Eng. (ICSE 07), IEEE CS Press, 2007,
pp. 719–722.

	12.	 M. Fowler, “Inversion of Control Containers and the
Dependency Injection Patterns,” 2004; www.martin-
fowler.com/articles/injection.html.

	13.	 R. Johnson et al., Java Development with the Spring
Framework, Wrox, 2005.

	14.	 B. Henderson-Sellers, Object-Oriented Metrics: Mea-
sures of Complexity, Prentice Hall, 1996.

About the Authors
David Janzen is an assistant professor of computer science at California Polytechnic
State University, San Luis Obispo, and president of Simex, a software consulting and
training company. His teaching and research interests include agile methodologies and
practices, empirical software engineering, software architecture, and software metrics. He
received his PhD in computer science from the University of Kansas and is a member of the
IEEE Computer Society and the ACM. Contact him at California Polytechnic State University,
Computer Science Department, San Luis Obispo, California, 93407, djanzen@calpoly.edu or
david@simexusa.com.

Hossein Saiedian is a professor of software engineering in the Department of
Electrical Engineering and Computer Science at the University of Kansas and a member
of the university’s Information and Telecommunication Technology Center. His research
interests are in software engineering—particularly, technical and managerial models for
quality software development. He received his PhD in computer science from Kansas State
University. He’s a senior member of the IEEE. Contact him at EECS, University of Kansas,
Lawrence, KS 66049, saiedian@eecs.ku.edu.

Writers

For detailed information on sub-
mitting articles, write for our
Editorial Guidelines (software@
computer.org) or access www.
computer.org/software/author.
htm.

Letters to the Editor

Send letters to

	 Editor, IEEE Software
	 10662 Los Vaqueros Circle
	 Los Alamitos, CA 90720
	 software@computer.org

Please provide an email address or
daytime phone number with your
letter.

On the Web

Access www.computer.org/
software for information about
IEEE Software.

Subscribe

Visit www.computer.
org/subscribe.

Subscription Change of Address

Send change-of-address requests
for magazine subscriptions to
address.change@ieee.org. Be sure
to specify IEEE Software.

Membership Change of Address

Send change-of-address requests
for IEEE and Computer Society
membership to member.services@
ieee.org.

Missing or Damaged Copies

If you are missing an issue or you
received a damaged copy, contact
help@computer.org.

Reprints of Articles

For price information or to order
reprints, send email to software@
computer.org or fax +1 714 821
4010.

Reprint Permission

To obtain permission to reprint
an article, contact the Intellectual
Property Rights Office at
copyrights@ieee.org.

how to reach us

