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features o f t war e  m e t r i c s

Does Test-Driven 
Development Really 
Improve Software 
Design Quality?

David S. Janzen, California Polytechnic State University, San Luis Obispo 

Hossein Saiedian, University of Kansas

TDD is first and 
foremost a design 
practice. The question 
is, how good are the 
resulting designs? 
Empirical studies 
help clarify the 
practice and answer 
this question.

S oftware developers are known for adopting new technologies and practices on the 

basis of their novelty or anecdotal evidence of their promise. Who can blame them? 

With constant pressure to produce more with less, we often can’t wait for evidence 

before jumping in. We become convinced that competition won’t let us wait.

Advocates for test-driven development claim 
that TDD produces code that’s simpler, more co-
hesive, and less coupled than code developed in a 
more traditional test-last way. Support for TDD is 
growing in many development contexts beyond its 
common association with Extreme Programming. 
Examples such as Robert C. Martin’s bowling game 
demonstrate the clean and sometimes surprising de-
signs that can emerge with TDD,1 and the buzz has 
proven sufficient for many software developers to 
try it. Positive personal experiences have led many 
to add TDD to their list of “best practices,” but for 
others, the jury is still out. And although the litera-
ture includes many publications that teach us how 
to do TDD, it includes less empirical evaluation of 
the results.

In 2004, we began a study to collect evidence 
that would substantiate or question the claims re-
garding TDD’s influence on software.

TDD misconceptions 
We looked for professional development teams 

who were using TDD and willing to participate in 
the study. We interviewed representatives from four 
reputable Fortune 500 companies who claimed to be 
using TDD. However, when we dug a little deeper, 
we discovered some unfortunate misconceptions:

Misconception #1: TDD equals automated test-
ing. Some developers we met placed a heavy 
emphasis on automated testing. Because TDD 
has helped propel automated testing to the fore-
front, many seem to think that TDD is only 
about writing automated tests. 
Misconception #2: TDD means write all tests 
first. Some developers thought that TDD in-
volved writing the tests (all the tests) first, 
rather than using the short, rapid test-code it-
erations of TDD. 

Unfortunately, these perspectives miss TDD’s pri-
mary purpose, which is design. Granted, the tests 
are important, and automated test suites that can 
run at the click of a button are great. However, 

■

■
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from early on, TDD pioneers have been clear that 
TDD is about design, not the tests.2

Why the confusion regarding TDD? We propose 
two possible explanations. 

First, we can blame it on the name, which in-
cludes the word “test” but not the word “design.” 
But, alas, “test-driven development” seems to be 
here to stay. We’re unlikely to revert to earlier, 
more accurately descriptive names such as “test-
driven design.”

A second source of confusion is the difference 
between internal and external quality. Several 
early studies focused on TDD’s effects on defects 
(external quality) and productivity.3 Many re-
sults were promising although somewhat mixed. 
Boby George and Laurie Williams reported fewer 
defects but lower productivity.4 Hakan Erdog-
mus, Maurizio Morisio, and Marco Torchiano 
reported minimal external quality differences but 
improved productivity.5 Adam Geras, Michael 
Smith, and James Miller reported no changes in 
productivity, but more frequent unplanned test 
failures.6 The emphasis on external quality is 
valid and beneficial, but it can also miss TDD’s 
primary focus on design. 

Matthias Müller addressed internal quality in a 
recent case study comparing five open-source and 
student TDD projects with three open-source non-
TDD projects.7 (The study incorrectly identified 
one TDD project, JUnit, as being non-TDD, and 
it didn’t confirm whether two projects, Ant and 
log4j, were TDD or non-TDD.) Although Müller 
focused on a new metric to gauge testability, he 
indicated that software developed with TDD had 
lower coupling, smaller classes, and higher testabil-
ity, but less cohesiveness.

Despite the misconceptions about TDD, some 
of the traditional test-last development teams we 
interviewed reported positive experiences with au-
tomated testing, resulting in quality and productiv-
ity improvements. Other test-last teams reported 
frustrations and eventual abandonment of the ap-
proach. We believed that focusing on internal qual-

ities, such as simplicity, size, coupling, and cohe-
sion, would emphasize TDD’s design aspects and 
help clarify how to use it. 

TDD in a traditional  
development process 

We wanted to examine TDD independent 
of other process practices, but we had to select a 
methodology to minimize independent variables. 
We chose to study TDD in the context of a some-
what traditional development process based on the 
Unified Process.8 The projects in this research were 
relatively short (typically three to four months). We 
believe the process we used could be repeated as it-
erations in a larger evolutionary process model, but 
we didn’t study this.

Figure 1a illustrates a traditional test-last flow 
of development. This process involves significant 
effort in specifying the system architecture and 
design before any significant software develop-
ment. Such an approach does not preclude some 
programming to explore a prototype or prove a 
concept, but it assumes that no significant produc-
tion software is constructed without a detailed de-
sign. Unit testing occurs after a unit is coded. We 
asked test-last programmers in the study to use an 
iterative approach in which the time from unit con-
struction to unit testing was very short (seconds or 
minutes rather than weeks or months). 

Figure 1b illustrates the test-first development 
flow. In this approach, the project identifies some 
high-level architecture early, but that design doesn’t 
proceed to a detailed level. Instead, the test-first 
process of writing unit tests and constructing the 
units in short, rapid iterations allows the design to 
emerge and evolve.

Neither of these flows makes any assumptions 
about other process practices.

Study design and execution
We designed our study to compare the test-first 

TDD approach with a comparable but reversed test-
last approach. In particular, programmers in both 

TestDetailed design

Code
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design/architecture
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Unit testCode

RefactorCode

(a)

TestUnit test
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Figure 1. Development 
flow: (a) traditional test-
last and (b) test-driven 
development/test-first 
flow.
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the test-first and test-last groups wrote automated 
unit tests and production code in short, rapid itera-
tions. We conducted pre-experiment surveys to en-
sure no significant differences existed between the 
test-first and test-last groups in terms of program-
ming experience, age, and acceptance of TDD. The 
only difference was whether they wrote the tests 
before or after writing the code under test.

We selected a development group in one com-
pany to conduct three quasi-controlled experi-
ments and one case study. (We call the studies 
quasi-controlled because the teams weren’t ran-
domly assigned.) We selected this group because 
of their willingness to participate in the study, to 
share project data, and to use TDD as an integral 
part of design. Developers voluntarily participated 
as part of their regular full-time work for the com-
pany, which assigned all projects and used the re-
sults in production.

In addition, we conducted two quasi-con-
trolled experiments in undergraduate and gradu-
ate software engineering courses at the University 
of Kansas during the summer and fall of 2005. 
Nineteen students worked in teams of three or 

four programmers each. Both courses involved the 
same semester-long project. 

Table 1 summarizes the studies. The three in-
dustry quasi-controlled experiments involved five 
similar but distinct projects completed by overlap-
ping groups of five developers. The “Teams” col-
umns in table 1 identify these developers with the 
letters A through E and indicate how the teams 
overlap on projects. All industry developers had 
computing degrees and a minimum of six years’ 
professional development experience. The projects 
were all Web applications completed in Java, devel-
oped as part of the team’s normal work domain, 
and completed in three to 12 months each.

Companies are rarely willing to commit two 
teams to develop the same system just to see which 
approach works better. So, to make things fair, 
we interleaved the approaches and mixed up their 
order in completing individual projects. The first 
quasi-experiment involved a test-last project with 
no automated tests, followed by a second phase 
of the same project completed with a test-first 
approach. The test-first project used the Spring 
framework. We labeled this comparison INT-TF 

Table 1
Study profile

Study*
Experiment 
Type

Test-First Test-Last

Classes LOC
Teams†/ 
experience*

Technologies/ 
real world? Classes LOC

Teams†/ 
experience

Technologies/ 
real world?

INT-TF Quasi- 
controlled

28 842 A/>5 years J2EE, Spring/
real world

18 1,562 A/>5 years J2EE/real world

ITL-TF Quasi- 
controlled

28 842 A/>5 years J2EE, Spring/
real world

21 811 AB/>5 years J2EE/real world

ITF-TL Quasi- 
controlled

69 1,559 ABC/>5 years J2EE, Spring, 
Struts/real 
world

57 2,071 BC/>5 years J2EE, Spring, 
Struts/real 
world

ICS Case study 126 2,750 ABC/>5 years J2EE, Spring, 
Struts/real 
world

831 49,330 ABCDE‡/ 
>5 years

J2EE, Spring, 
Struts/real 
world

GSE Quasi- 
controlled

19 1,301 Two teams of 
3 participants/ 
0–5 years

Java/ academic 4 867 One team of  
3 participants/ 
>5 years

Java/academic

USE Quasi- 
controlled

28 1,053 One team of  
3 participants/
novice

Java/academic 17 1,254 Two teams  
of 3 and 4 
participants/
novice

Java/academic

Unique totals 173 5,104 12  
participants

N/A 852 51,451 15  
participants

N/A

* INT-TF (industry no-tests followed by test-first), ITL-TF (industry test-last followed by test-first), ITF-TL (industry test-first followed by test-last), ICS (industry case study), GSE (graduate software engineering), USE (undergraduate 
software engineering).

† A, B, C, D, and E identify five developers to show overlap between teams.
‡ One of the early test-last projects had additional developers.
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for “industry no-tests followed by test-first.” The 
second quasi-experiment involved a test-last project 
followed by a test-first project. Again, the test-first 
application used the Spring framework; we labeled 
this comparison ITL-TF for “industry test-last fol-
lowed by test-first.” The third quasi-experiment 
involved a test-first project followed by a test-last 
project. Both projects used the Struts and Spring 
frameworks along with object-relational mapping 
patterns and extensive mock objects in testing; we 
labeled this comparison ITF-TL for “industry test-
first followed by test-last.”

The case study, labeled ICS, examined 15 soft-
ware projects completed in one development group 
over five years. The 15 projects included the five 
test-first and test-last projects from the industry 
quasi-experiments. The group had completed the 
remaining 10 projects prior to the quasi-experiment 
projects. We interviewed the developers from these 
10 projects and determined that all 10 used a test-
last approach. All 15 case study projects were com-
pleted in three to 12 months with less than 10,000 
lines of code by development teams of three or fewer 
primary developers. Six projects were completed 
with no automated unit tests; six projects, with au-
tomated tests in a test-last manner; and three proj-
ects, with automated tests in a test-first manner. All 
projects used Java to develop Web applications in a 
single domain.

We labeled the academic studies GSE for “grad-
uate software engineering” and USE for “under-
graduate software engineering.” We divided the 
student programmers into test-first and test-last 
groups and gave them the same set of programming 
requirements for the semester-long project—specif-
ically, to design and build an HTML pretty-print 
system. The system was to take an HTML file as 
input and transform the file into a more human-
readable format by performing operations such as 
deleting redundant tags and adding appropriate 
indentation. 

Students self-selected their teammates, and we 
compared the results from pre-experiment surveys 
to ensure that no statistically significant differences 
existed between the teams in preparation or bias. 
In particular, we established Java experience as a 
blocking variable to ensure that each team had a 
minimum and balanced skill set. In every case, the 
teams were fairly balanced and didn’t change dur-
ing the study. All but one student in the GSE study 
had at least one year of professional development 
experience. Students in the USE study were all ju-
niors or seniors.

We developed TDD and automated testing 
training materials and delivered them in conjunc-
tion with each study. We gave the training to the 
industry participants in summer 2004. The test-
first and test-last projects began in fall 2004 and 
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ran through spring 2006. Although the develop-
ers might have experienced some learning curve 
with TDD during the first few months, we be-
lieve the project durations and total time elapsed 
established sufficient experience in the test-first 
projects. 

The software engineering courses involved rel-
atively short training sessions (about two hours) 
dedicated to automated unit testing and TDD top-
ics. Some students noted challenges with applying 
TDD at first. We observed undergraduate students 
in a lab setting and provided additional informal 
instruction as needed to keep them writing au-
tomated tests. The industry training consisted of 
a full-day course on automated unit testing and 
TDD. We carefully presented the materials for both 
test-first and test-last approaches to avoid introduc-
ing any approach bias. 

Analyzing the studies
We used several popular software metrics to 

evaluate the artifacts from the study. Although 
experts differ regarding the most appropriate met-
rics, particularly in areas such as coupling9 and co-
hesion,10 we selected a representative set that are 
widely calculated and reported.

We began our analysis by considering whether 
the programmers in our studies actually wrote au-
tomated unit tests. We informally monitored devel-
opers during the studies through brief interviews 
and observed code samples. The post-experiment 
survey asked developers to anonymously report 
whether they used the prescribed approach. In all 
the studies but one, programmers reported using 
the approach they were instructed to use (test-first 
or test-last). The one exception was a team in the 
undergraduate software engineering course. De-
spite being instructed to use a test-first approach, 
the team reported using a test-last approach, so we 
reclassified them into the test-last control group. 

Figure 2a reports each study’s average line cover-
age. This measure indicates the percentage of lines 
of code that the automated test suites execute. Not 
surprisingly, line coverage is rather low in the stu-
dent studies and some test-last teams failed to write 
any automated tests. In their post-survey comments, 
several student test-last team members reported 
running out of time to write tests. In contrast, pro-
fessional test-last developers in the ICS, ITL-TF, and 
ITF-TL studies reported more faithful adherence to 
the rapid-cycle “code-test-refactor” practice.

In every study but the last one, the test-first 
programmers wrote tests that covered a higher 
percentage of code. The test-last control group in 
the INT-TF study performed only manual test-

ing, so the group had no line coverage. In the case 
study, we omitted test-last projects with no auto-
mated tests from the line-coverage percentage cal-
culation to avoid unfairly penalizing the test-last 
measures. In all the studies, we found additional 
testing metrics such as branch coverage and num-
ber of assertions to be generally consistent with 
the line-coverage results.

In the final study, when the same professional 
developers completed a test-last project after having 
completed a test-first project earlier, they increased 
their average line coverage. Average branch test cov-
erage (Boolean expressions in control structures) 
was actually a bit lower at 74 percent for test-last 
while the test-first project achieved 94 percent. We 
observed a similar phenomenon in a separate study 
with beginning programmers.11 In that study, stu-
dent programmers who used the test-first approach 
first wrote more tests than their test-last counter-
parts. However, on the subsequent project, when 
students were asked to use the opposite approach, 
the test-last programmers (those who used test-first 
on the first project) again wrote more tests. Could 
it be that the test-first approach has some sort of 
a residual effect on a programmer’s disposition to 
write more tests? If so, we wonder whether this ef-
fect would diminish over time. 

Impact on code size 
The simplest software metric is size. Figure 2b 

reports lines of code per module (generally a class). 
In all studies, test-first programmers wrote smaller 
modules than their test-last counterparts. The case 
study was the only study with enough classes to 
analyze the data statistically. A two-sample, two-
tailed, unequal variance t-test indicated that the 
difference in ICS lines of code per module was sta-
tistically significant with p < 0.05. Unless stated 
otherwise, we use this same test and criteria when 
claiming statistical significance. 

Similarly, test-first programmers tended to write 
smaller methods on average. Figure 2c reveals that 
test-first programmers’ average method size in lines 
of code was below the test-last averages in all but 
the last two industry studies (ITL-TF and ITF-TL). 
The use of simple one-line accessor methods af-
fects these differences. The ITF-TL study had the 
most striking difference with nearly 40 percent of 
the methods in the test-last project being simple 
one-line accessors. In contrast, only 11 percent of 
the test-first methods were simple accessors. Inlin-
ing the one-line accessor methods strengthens the 
claim that test-first programmers write smaller 
methods on average. 

Finally, figure 2d indicates that the test-first  
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programmers wrote fewer methods per class in all 
but the ITL-TF study (the difference was very slight 
in the USE study). 

In summary, the data shows a possible tendency 
for test-first programmers to write smaller, simpler 
classes and methods. 

Impact on complexity 
Size is one measure of complexity: smaller classes 

and methods are generally simpler and easier to un-
derstand. Other common complexity measures in-
clude counting the number of independent paths 
through code (cyclomatic complexity) and mea-
suring the degree of nesting (nested block depth). 
More branches, paths, and nesting make code more 
complex and therefore more difficult to understand, 
test, and maintain. 

We report three metrics to compare the com-
plexity differences between the test-first and test-last 
projects. Weighted-methods complexity measures 
the sum of cyclomatic complexities for all methods 
in a class. In figure 3a, we see that test-first pro-
grammers consistently produced classes with lower 
complexity in terms of the number of branches and 
the number of methods. The ICS and ITF-TL dif-
ferences were statistically significant. The consis-
tently simpler classes by test-first programmers isn’t 
surprising considering the earlier report of fewer 
methods per class. 

The remaining two metrics, cyclomatic com-
plexity per method and nested block depth (NBD) 
per method, measure whether individual methods 
are more or less complex. Figures 3b compares 
cyclomatic complexity per method, and figure 3c 
compares NBD per method. The method-level dif-
ferences are less consistent than those at the class-
level. Cyclomatic complexity per method was lower 
in the test-first projects in four of the six studies. 
The difference was statistically significant in ICS 
and INT-TF. In the two studies where the test-last 
methods were less complex, the difference was 
small and the method complexity was low for both 
test-first and test-last methods. The difference in 
the ITF-TL study was statistically significant, but 

we question the difference, given the earlier discus-
sion on accessor methods in this study.

NBD comparisons were similar. The test-first 
projects had lower NBD in three studies. In the 
remaining three studies, the test-last projects had 
lower NBD, but the values are low and the differ-
ences are small.

We think the complexity metrics point to a ten-
dency of test-first programmers to write simpler 
classes and sometimes simpler methods.

Impact on coupling
The tendency of test-first programmers to imple-

ment solutions with more and smaller classes and 
methods might generate more connections between 
classes. Figure 4a shows the coupling between ob-
jects (CBO), which measures the number of connec-
tions between objects. Half the studies had a lower 
CBO in the test-first projects, and half were lower 
in the test-last projects. The average CBO values 
were acceptable in all the studies; none of the differ-
ences were statistically significant. The maximum 
CBO for any class was acceptably low (12 or fewer) 
for all the projects except two test-last ICS projects 
(CBO of 28 and 49) and the two projects in the ITF-
TL study. Interestingly, the test-first project in the 
ITF-TL study had a class with a CBO of 26 and the 
test-last project had a class with a CBO of 16, both 
of which might be considered unacceptably high.

Figure 4b reports differences in another cou-
pling measure: fan-out per class. Fan-out refers to 
the number of classes used by a class. Not surpris-
ingly, the results are similar to those for CBO. The 
differences are small—not statistically significant—
and the values are acceptable.

Two additional metrics seem informative when 
considering coupling: the average number of method 
parameters (PAR) and the information flow (IF = 
fan-in2 * fan-out2), where fan-in refers to the num-
ber of classes using a particular class. In all but the 
GSE study, PAR was higher in the test-first projects. 
This difference was statistically significant in all the 
industry studies. In all but the ITL-TF study, IF was 
higher in the test-first projects. 
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The PAR and IF measures indicate a high vol-
ume of interaction and data passing between units 
in the test-first projects. This could reflect the in-
creased testing discussed earlier. Test-first develop-
ers often report writing more parameters to make 
a method easier to configure and test. The higher 
IF values in the test-first projects might indicate 
high reuse (fan-in). 

We were curious about whether the possible in-
creased coupling was good or bad. Coupling can 
be bad when it’s rigid and changes in one module 
cause changes in another module. However, some 
coupling can be good, particularly when it’s con-
figurable or uses abstract connections such as in-
terfaces or abstract classes. Such code can be highly 
flexible and thus more maintainable and reusable.

Many test-first programmers make heavy use 
of interfaces and abstract classes to simplify test-
ing. For instance, the dependency-injection pat-
tern12 is popular among TDD developers, and it’s 
central to frameworks such as Spring,13 which sev-
eral projects in our study used. To check this out, 
we looked at several abstraction metrics, including 
Robert Martin’s abstractness measure (RMA),1 
number of interfaces implemented (NII), number 
of interfaces (NOI), and number of abstract classes 
(NOA) in all the projects. Our evaluation of these 
measures didn’t give a conclusive answer to whether 
the test-first approach produces more abstract de-
signs. However in most of the studies, the test-first 
approach resulted in more abstract projects in terms 
of RMA, NOI, and NII. 

The coupling analysis doesn’t reveal clear an-
swers. It appears that test-first programmers might 
actually tend to write more highly coupled smaller 
units. However, possible increases in abstractness 
might indicate that the higher coupling is a good 
kind of coupling, resulting in more flexible soft-
ware. The coupling question needs more work. 

Impact on cohesion
Cohesion is difficult to measure. The most 

common metrics look at the sharing (or use) of at-
tributes among methods. We elected to use Brian 

Henderson-Sellers’ definition of lack of cohesion of 
methods, LCOM5,14 because it normalizes cohe-
sion values between zero and one. In addition, sev-
eral popular tools calculate LCOM5.

Figure 4c reports LCOM5 measures for the 
studies. LCOM is an inverse metric, so lower values 
indicate better cohesion. The chart indicates that 
cohesion was better in the test-first projects in half 
the studies (ICS, ITL-TF, and ITF-TL) and worse in 
the other half. The difference was statistically sig-
nificant in only two studies (ICS and ITF-TL).

One known problem with most cohesion met-
rics is their failure to account for accessor meth-
ods.10 Most cohesion metrics, including LCOM5, 
penalize classes that use accessor methods. The use 
of accessor methods is common in Java software, 
and all the study projects involved Java.

To gauge the impact of this concern, we calcu-
lated the percentage of accessor to total methods in 
all but the ICS studies. The test-first projects had 
an average of 10 percent more accessors in all but 
the ITF-TL study. It seems plausible that correcting 
for the accessor problem would bring the test-first 
cohesion metrics in line with the test-last measures. 
We were nevertheless unable to substantiate claims 
that TDD improves cohesion.

Threats to validity 
Like most empirical studies, the validity of our 

results is subject to several threats. In particular, the 
results are based on a small number of developers. 
Team selection wasn’t randomized, and participants 
knew that we were comparing TDD and non-TDD 
approaches, leading to a possible Hawthorne effect. 
Furthermore, in the industry experiments, it was 
nearly impossible to control all variables except the 
use or non-use of TDD, while keeping the projects 
real and in-domain. 

We made every effort to ensure that the TDD 
and non-TDD teams were applying the approach 
assigned to them. We interviewed developers during 
the projects and at their conclusion. We observed 
the undergraduate academic teams in a lab setting 
and examined multiple in-process code samples to 
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and cohesion between 
objects per project: 
(a) coupling between 
objects per project,  
(b) fan-out per class, 
and (c) lack of cohesion 
of methods.
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see that automated unit tests were written in step 
with production code. Still, developers could have 
misapplied the TDD and non-TDD approaches at 
some points. We look forward to additional stud-
ies in varied domains that will increase the results’ 
validity and broaden their applicability. 

B y focusing on how TDD influences design 
characteristics, we hope to raise awareness 
of TDD as a design approach and assist 

others in decisions on whether and how to adopt 
TDD. Our results indicate that test-first program-
mers are more likely to write software in more and 
smaller units that are less complex and more highly 
tested. We weren’t able to confirm claims that TDD 
improves cohesion while lowering coupling, but we 
anticipate ways to clarify the questions these design 
characteristics raised. In particular, we’re working 
to eliminate the confounding factor of accessor us-
age in the cohesion metrics.
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