
IEEE Communications Magazine • March 2008106 0163-6804/08/$25.00 © 2008 IEEE

REAL-TIME SYSTEMS AND
OPEN STANDARDS

As the information technology field has grown in
maturity and sophistication, so has the complexi-
ty of the systems on which it depends. A key
enabler of interoperability and agility in modern
distributed systems is the use of open standards
for data definition and software interoperation.
Open standards play a large role overall in soft-
ware design, providing benefits such as vendor
neutrality and community development in disci-
plines ranging from graphical display definitions
to standardized network protocols. By leveraging
standardized definitions of data and behavioral
interfaces, systems designers were able to decou-
ple software components from long-lived depen-
dence on implementation details. Unfortunately,
such flexibility can come at an unacceptable cost
in performance. This performance cost is among
the greatest risks in maintaining reliable real-
time performance and represents a real dilemma
to the designers of strict real-time systems. The
focus of this research is on soft real-time services
and the emerging Web services standards for

message delivery, data definition, and integra-
tion standards.

A soft real-time system is one which con-
forms to an average or best-case response time
requirement, as opposed to guaranteeing a mini-
mum or worst case requirement as in hard real-
time systems [1]. A soft real-time service
guarantee can be defined more formally as a sta-
tistical confidence that some maximal delivery
time can be maintained between a system stimu-
lus event and any given end user of that system
[2]. This maximum occasionally can be exceeded,
but with a statistically bounded frequency.

Real-time systems, in general, and particular-
ly, soft real-time systems, stand to gain substan-
tial interoperability and extensibility with the
inclusion of abstract middleware in their design
and implementation. Middleware in any system
provides a means to separate high-level software
components from lower-level implementation
details. This separation of concerns promotes
extensibility and reuse, as well as simplification
of maintenance, all of which would be more dif-
ficult in a tightly integrated system. A key
enabler of interoperability and agility in modern
non-real-time systems is the use of open stan-
dards for data definition and software interoper-
ation. The use of standards-based design has
been practiced for several decades. Early efforts
included the Object Management Group’s com-
mon object request broker architecture
(CORBA) specification, the component object
model supported by Microsoft, and boutique
efforts such as [3] and [4]. More recently, the
specifications developed by W3C and Oasis rep-
resent some of the most ambitious work to date
in common interface and data definition stan-
dardization. All of these efforts were undertaken
with the common goal of providing a method for
software components to intercommunicate with-
out the requirement of a common language,
operating system, or programming model.

By leveraging these standard definitions, sys-
tems designers can decouple software compo-
nents from long-lived dependence on
implementation details. In turn, this provides for
flexibility and interoperability that might other-
wise be impossible. Unfortunately, such flexibility
can come at an unacceptable cost in performance.
This performance cost is among the greatest risks
in maintaining reliable real-time performance and

ABSTRACT

The objective of this research is to study the
application of Web services technology in dis-
tributed real-time data delivery systems, as well as
to determine the appropriate contexts in which
such a design can be considered. We focus on dis-
tributed real-time systems and more specifically,
on distributed soft real-time systems, which stand
to benefit most from the use of Web services tech-
nology. We provide a means to evaluate the inclu-
sion of Web services-based middleware in
real-time system design. The decision to use the
standardized data representation and communica-
tions protocols of Web services can bring tremen-
dous value and benefit to both the service provider
and the end user of a real-time system; however,
the temporal performance of such systems is a
critical factor. This research examines the most
significant general performance considerations
applicable to such systems and more specifically,
provides a model to be used in the determination
of whether a given system configuration can meet
a specific soft real-time performance target.

WEB SERVICES IN TELECOMMUNICATIONS, PART II

Hossein Saiedian, ITTC, University of Kansas

Shawn Mulkey, University of Kansas

Performance Evaluation of Eventing
Web Services in Real-Time Applications

SAIEDAN LAYOUT 2/21/08 1:45 PM Page 106

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:08 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2008 107

represents a real dilemma to the designers of
such systems. The use of such standards would
promote component reuse and both internal and
external interoperation, thereby, reducing both
development and maintenance; but designers of
real-time systems have as their highest priority to
maintain established and bounded system perfor-
mance for the system consumers.

The standardized protocols examined in this
research include established and emerging Web
services standards that were approved or are
under consideration by the W3C or similar bodies.
The foundational standards analyzed include the
XML for data description, Simple Object Access
Protocol (SOAP) for message transport, HTTP
for client-server interaction, and well-established
protocols such as TCP/IP to provide lower-level
support functions. All of these protocols serve to
normalize communication across heterogeneous
computer systems and network topologies. The
popularity of Web services in distributed systems
largely is due to the ubiquitous support for the
standards on which they are based. Nearly every
operating system and programming framework
provides low-level support for the protocols used
in standardized Web services (e.g., TCP/IP sock-
ets, XML parsing, etc.). Unfortunately, this ubiq-
uity comes at the cost of performance as the most
common and typically least optimized standards
typically are employed in the most open systems.

The cost of performance, and particularly
performance variability, must be considered seri-
ously when Web services are included in any sys-
tem design [5]. In addition to these foundational
protocols, several extended protocols were devel-
oped to support real-time functionality and
other associated features. The protocols most
applicable to real-time systems are the ones that
enable asynchronous communication and include
the WS-Notification system proposed by IBM et
al. in [6] and the WS-Eventing protocol pro-
posed by Microsoft et al. in [7]. The use of asyn-
chronous messaging is required both for reasons
of performance and for the ability to use the
interrupt-driven or publish-subscribe [8] pattern
of behavior common in real-time systems. The
WS-Notification and WS-Eventing protocols are
relatively new but so far have shown the most
promise toward establishing a general method of
providing asynchronous messaging using stan-
dardized host and client interfaces [9]. Note that
the term [[eventing Web services]] as used in
this analysis refers to both protocols and to the
general class of asynchronous Web service-based
messaging that they represent.

THE ANALYSIS MODEL
A central goal of this research was to develop a
model considering quantifiable factors that could
affect the performance of a real-time system
using eventing Web services as its notification
mechanism. Eventing Web services are those
that asynchronously pass events from a publisher
to a subscriber as described in the WS-Notifica-
tion and WS-Eventing specifications. Enumera-
tion and analysis of factors affecting performance
in these systems is a key step in the adoption of
any technology in a software system but is espe-
cially important in real-time applications, where
the overall correctness of the system is deter-

mined in part by the timeliness and stability of
system responses. The three general classifica-
tions of performance factors used in this model
are listed in Table 1.

The first category is the network transport
system used to deliver data through the distribu-
tion network. For most Web services, the most
common transport is HTTP, which is typically
based on the TCP/IP protocol, which itself forms
the foundation of most Internet technologies.
The second category of performance classifica-
tion is the data model used to represent data
and the context in which it is consumed. The
sustained performance of any Web services-
based system is particularly sensitive to the data
model used because the underlying XML encod-
ing used to represent the data model grows
quickly as a function of its size [10]. The final
category for organizing performance factors are
the external processing elements (EPEs), which
are not concerned strictly with transporting data,
but with transformation or other interaction with
the data. The search for EPEs is facilitated by an
examination of the SOAP message structure, as
individual SOAP header elements typically map
directly onto these extra capabilities. Other
external processing must be derived from a
deeper study of the system or from requirements
analysis. The performance factors of many com-
ponents of Web services-based systems have
been studied individually, and the EPE provides
a way to bundle each one as an element to the
performance evaluation of eventing Web ser-
vices in real-time systems. These classifications
of eventing Web services performance factors
were compiled into a set of formulas that are
organized using these high-level principles. In
addition to message latency, a method for classi-
fying performance variability was introduced that
builds on the statistical models for confidence
and tolerance intervals [11]. These intervals can
be used to reason about expected system perfor-
mance and therefore structure a service level
agreement between a provider and a consumer.

EXPERIMENT RESULTS AND ANALYSIS

EXPERIMENT OVERVIEW
The general concepts and specific performance
model previously described were implemented
and analyzed via a series of controlled tests con-
ducted over several weeks. The purpose of these
experiments was to deepen the general under-
standing of performance constraints in Web ser-
vices-based real-time systems, as well as to test
the viability of the formulas developed in this

n Table 1. Performance analysis model components.

Model component Description

Transport protocol Communications overhead including transmission
time and communication protocol handling

External processing
elements

Extra processing required for meta-data functionality
(e.g., security)

Data model Size and detail of the data model including meta-data
constructs (e.g., internationalization)

SAIEDAN LAYOUT 2/21/08 1:45 PM Page 107

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:08 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2008108

research. Therefore, the outcome of the analysis
is a set of qualitative discoveries regarding the
systems under study, as well as a quantitative
framework for reasoning about the feasibility of
such systems in real-world applications. The pur-
pose of these experiments and the subsequent
analysis was not to determine the raw limits of
acceptable real-time performance, but rather to
determine the factors that are the most relevant
to the performance of a given system, and in
which contexts eventing Web services-based real-
time systems can be applied reliably.

EXPERIMENTAL APPLICATION
The application used in the experiments is a sim-
plified version of a soft real-time system actually
deployed in the financial data services industry.
In the original system, trade and quote events
occur in various stock exchanges, and these
events are transmitted via a proprietary, man-
aged distribution, wide-area network to each
client’s local network. The distribution system
typically is rigidly controlled and rigorously pro-
visioned so that factors such as latency and
bandwidth are virtually always kept within
acceptable means. Therefore, the latency intro-
duced by the wide-area component of the system
is considered constant in this research and not
considered further. The client LAN may not be
similarly provisioned and almost certainly is not
dedicated to the application providing this par-
ticular data. The local network also is likely to
be utilizing mainly commodity hardware and
software protocols that may not be optimized for
real-time usage. It is in this uncontrolled and
heterogeneous environment in which these
experiments take place and indeed, in which
Web services are most often prescribed.

To provide input for the simulation, a set of
data was captured from an actual real-time feed
over random one-hour intervals (while the mar-
kets were open) over the course of several weeks.
Several one-hour intervals were selected from
these random traces and from these, either three-
or ten-minute slices were selected from each and
used as input to the simulation. The simulation
consisted of a server that could replay these
events at roughly the same intervals as the origi-
nal stream. The server software that replayed the
exchange events would broadcast into the local

network using either a direct TCP/IP protocol or
the higher level, but more widely consumed,
HTTP transport. The data would be encoded
either in a direct binary format or as XML and
then packaged according to the appropriate mes-
saging standards (i.e., WS-Notification and WS-
Eventing). The direct TCP/IP mode of
transmission either would send the bytes directly
in a binary stream using proprietary encoding,
which the clients would then decode, or using the
XML-based standard in WS-Notification, but
without the connection overhead of HTTP.

EXPERIMENT APPLICATION EXTENSIONS
To demonstrate the technique of EPE analysis,
several simulated external functions were devel-
oped for this research. The first was a simulation
of authentication by performing a series of modu-
lar arithmetic operations on a character string of
constant length that the publisher placed in a
message header element. The client then parsed
this string and reversed the operation to perform
the authentication. The second extension required
the publisher to place a URL string in a message
header element that the client read when con-
suming the message. The client then made an
HTTP request for this URL and consumed what-
ever data was returned (which was of a random
length for every call). This feature represents a
data reference or routing type of function where
the client is required to consult more than one
network source before consuming the data. Each
of these components emulate the application of
Web services extensibility in the form of metadata
headers that indicate extra processing required by
the client in order to consume the message.

BASELINE EXPERIMENTS
The first set of experiments established a base-
line for performance across the three primary
system configurations (i.e., direct binary, direct
XML, and Web services over HTTP). A single
server published notification data to ten clients
distributed among three different PCs.

The illustration in Fig. 1 visually depicts the
drastic differences in both the absolute perfor-
mance figures of direct binary versus XML-based
encoding demonstrated in the experiments and
also shows the relatively high degree of variability
in the XML-based system. This variability could
be attributed to a variety of factors, but one
important indication is that the process of XML
serialization is resource intensive (i.e., CPU and
memory) for both the clients and the publishers
in the system, and the non-determinism in those
resources can contribute a great deal to the per-
formance of the application. A similar broad con-
clusion is that growth in message size as a result
of XML encoding also contributes to the perfor-
mance volatility by increasing resource require-
ments required for multiple message packets, as
well as increasing the likelihood that message
resends will be required.

Performance comparisons between the direct
binary methods and the XML alternatives pre-
sent a strong case for the more compact binary
format in real-time systems; however, there is a
broad class of soft real-time applications that
require bounded real-time performance but may
tolerate a relatively high delay and some variabil-

n Figure 1. Baseline performance and variability.

Event time system Upper confidence Lower confidence Total tolerance
Direct binary 3.18 3.76 16.52
Direct XML 117.96 124.74 283.63
WS-notification 194.14 201.18 350.66

10 clients baseline

Pu
b

av
er

ag
e

Net
wor

k a
ve

ra
ge

20

Ti
m

e
(m

s)

0

40

60

80
100

120

Clie
nt

 av
er

ag
e

Pu
b

std
v

Net
wor

k s
td

v

Clie
nt

 st
dv

WS notification
Direct XML
Direct binary

SAIEDAN LAYOUT 2/21/08 1:45 PM Page 108

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:08 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2008 109

ity in mean event delivery time. The data associ-
ated with Fig. 1 also lists the confidence interval
and tolerance levels for the baseline experiment
as calculated via the performance model.

The confidence interval holds close to the
original cumulative average, which is principally
due to the large sample size. The tolerance
interval exhibits a wide latitude from the mean,
which appropriately captures the volatility intro-
duced by the binary XML and Web services-
based systems. Note that every confidence
interval presented in this section is given at the
95 percent level, and the tolerance is given at 99
percent confidence for 90 percent one-sided cov-
erage. Figure 1 also indicates the overall varia-
tion and volatility in the baseline. Recall that the
tolerance interval provides a statistical view of
performance given the data set provided. This
implies that a practical application of this pro-
cess should be conducted over several experi-
ment repetitions to ensure a sufficient level of
accuracy. For the purpose of this research, these
tolerances provide the first point in a trend of
performance that highlights the variability intro-
duced by the Web services-based protocols.

HEAVY LOAD
The second experiment set used the same param-
eters as the first in each case, but the number of
clients was doubled from 10 to 20. Such a change
in a distributed application often meets with
unexpected results as the requirements for
resources such as network bandwidth and server
CPU cycles increase dramatically. Table 2 pre-
sents the basic performance statistics for the
heavy load experiment. The raw data shows a
relatively sharp change in throughput for the
eventing Web services-based system, but little
change for the other two cases at this load level.
The increase in this last case is localized mainly
to the publisher, which speaks partly to the
queuing of notifications over additional HTTP
connections and also to the extra processing
required to prepare each message. Table 2 also
provides the confidence and tolerance intervals

for the heavy load case. The tolerance intervals
are relatively unchanged except in the Web ser-
vices case in which the extra publisher process-
ing requires an incremental increase in total
event delivery time.

WIDE AREA NETWORK
For the wide-area network test, the baseline
experiments were conducted as before, except
that the server was in an office 230 miles away
and was connected to the clients via a private T1
communications line. Note that due to limited
server availability, this test was conducted only
for the direct binary and Web services eventing-
based test cases. Because of the networking
hardware between the sites and the unpre-
dictable traffic encountered during the test, this
experiment had a higher degree of variability in
the results. The basic performance statistics are
given in Table 3, and the tolerance intervals for
the wide-area case also are provided. The propa-
gation time over a network of this distance is
much higher relative to the local network base-
line, but propagation time of the various mes-
sage sizes alone does not account for the sharp
increase in network processing time for both
cases studied. This leaves the network processing
nodes (routers, gateways, etc.) and connection
management (including packet loss) as factors
affecting network performance. The overhead in
managing an HTTP connection also is evident in
the network processing time and total through-
put for the Web services case. The extreme per-
formance variation illustrated by the tolerance
times underscores the concept that a Web ser-
vices-based eventing system likely is best
deployed at the network edge (i.e., on the client
LAN) and that compact proprietary encoding
and protocols should be used within the greater
distribution network. This arrangement main-
tains the benefits of standards-based communi-
cation and data representation between
providers and external consumers but increases
the cost of change within a provider’s distribu-
tion system.

n Table 2. Heavy load performance and tolerance.

Eventing system Mean publisher
time

Mean network
time

Mean client
time

System
throughput

Upper
confidence

Lower
confidence

Total
tolerance

Direct binary 0.60 1.33 2.91 5.77 4.262978 5.455196 33.3905

Direct XML 41.30 25.45 51.66 5.30 115.1768 121.6695 273.8026

WS-notification 153.50 91.19 21.74 2.01 261.975 270.9157 460.7882

n Table 3. Wide area performance and tolerance.

Eventing system Mean publisher
time

Mean network
time

Mean client
time

System
throughput

Upper
confidence

Lower
confidence

Total
tolerance

Direct binary 27.83 37.95 1.62 5.38 63.64 71.17 247.63

Direct XML 48.62 157.15 74.20 0.41 272.32 287.64 613.11

WS-notification 153.50 91.19 21.74 2.01 261.975 270.9157 460.7882

SAIEDAN LAYOUT 2/21/08 1:45 PM Page 109

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:08 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2008110

EXTERNAL PROCESSING
EXPERIMENTS

The analysis formulas described in the performance
model provide a means to incorporate EPEs into
the overall calculation of performance boundaries
and variability. The application of the formula also
includes two standard EPEs that represent the pub-
lisher and client overhead specific to translating
data to and from the appropriate eventing Web ser-
vices format. Beyond these two persistent process-
ing elements, any number of extra behaviors can be
applied. The formula represents these as a simple
additive increase in performance overhead and
variability; however, more complicated interactions
can be represented by extending the formula or by
consolidating several EPEs into one composite fac-
tor that can be added to the others.

The tests discussed in this section performed
two separate EPEs that emulate message authenti-
cation and metadata inclusion as discussed in the
application overview section. In each case, an extra
header element was inserted into the SOAP mes-
sage (or raw stream in the direct case) that pro-
vides the relevant context for the given process. In
the authentication case, the server would mask a
string representing a name and password and then
perform a set of modular operations that emulate
encryption. The resulting string would be placed in
the authentication header. The client would detect
this header, reverse the operation, and verify the
string. This EPE clearly has both a server and
client component, and both were combined into a
single performance factor. The reference data EPE
was constructed by requiring the server to add a
SOAP or raw header containing a URL, and then,
upon detection of the header, the client would

retrieve the data associated with the URL via a
simple HTTP GET call. The data returned from
the URL was a random length string between four
and 4096 bytes in length. The client would verify
that four or more bytes were returned from the
call and then continue processing.

The two actions tested required heavy system
resources in the form of CPU and memory for the
authentication case and network communication
for the metadata case. Furthermore, the process of
capturing these shared physical resources generated
a certain amount of uncertainty as did the context
switching that occurred as a result. The associated
uncertainty in these cases is clearly demonstrated
by examining the standard deviation around the
mean for these processes as illustrated in Fig. 2.

In all cases, the measured tolerances indicate a
dramatic increase in variability that can be prob-
lematic for a real-time system. A system required
to include such capabilities would require a broad
service level agreement relative to the raw perfor-
mance capabilities of the basic message delivery
system. Not every extra service creates such over-
head and instability; however, the common prac-
tice of including these elements in non-real-time
Web services contexts indicates the need to under-
stand these factors and to consider them before
casually including such features.

DATA MODEL MODIFICATION
The final set of experiments considers the impact
of data model selection on eventing Web service
performance. The organization and representa-
tion of data is important in a distributed comput-
ing system, but in the case of eventing Web
services, the incremental increase in XML-relat-
ed performance cost is potentially much higher
than a comparable change in a simple binary sys-
tem, and therefore, the selection of data model is
a more serious exercise when considering the use
of Web services. These experiments manipulated
the data model by changing the update pattern
from only the changed values to all fields in the
record. Such a representation is common in doc-
ument-style Web services in which communica-
tion of data is performed using a static set of
fields passed from one service to the next [12].

Table 4 illustrates the basic performance dif-
ferences in each distribution system using the
full record data model. Each component in the
distribution requires extra time to process the
extra data and in the XML-based systems, has
the added burden of encoding and decoding the
data between native representation and the inef-
ficient text-based representations. The direct
XML and true Web services system also are con-
strained by the fact that the message text must
be fully parsed and interpreted using string com-
pare and copy operations. This performance
data can be compared with that illustrated in
Fig. 2, which represents the standard data model
(transferring only the changed fields).

CONCLUSIONS AND
FURTHER RESEARCH

CONCLUSIONS
Web services are one of the latest evolutions of
abstract middleware systems and have been estab-

n Figure 2. EPE performance deviations.

W
S-

N au
th

100

Ti
m

e
(m

s)

0

200

300

400

500

EPE performance variation

W
S-

N m
et

a d
at

a

W
S-

N b
as

eli
ne

Dire
ct

au
th

Dire
ct

m
et

a d
at

a

Dire
ct

ba
se

lin
e

EPE StnDev
Total average

n Table 4. Performance statistics using full record model.

Eventing system
Mean
publisher
time

Mean
network
time

Mean
client time

System
throughput

Direct Binary 0.89 2.01 6.31 2.38

Direct XML 33.77 21.46 70.71 2.38

WS-Notification 156.10 92.29 55.58 1.23

SAIEDAN LAYOUT 2/21/08 1:45 PM Page 110

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:08 from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2008 111

lished using the commonplace SOAP and HTTP
protocols with data encoding utilizing the XML
syntax and structure. This set of ubiquitous and
open technologies give Web services the capabili-
ty of functioning over heterogeneous network,
hardware, and software topologies. However, this
adaptability comes at a significant performance
cost as the data and communication protocols
must be translated from compact proprietary for-
mats to the often inefficient text-based standards
used by Web services. The analysis and experi-
mental results presented throughout this research
are intended to provide a functional guide for
practitioners who may wish to utilize real-time
Web services in addition to promoting further
research as the underlying technology evolves.
The experiments conducted in this research high-
light some key findings with regard to the use of a
Web service platform in real-time systems:
• The performance of Web services-based sys-

tems is chiefly constrained by the process-
ing overhead of the XML-based message
and data encoding scheme and the ineffi-
ciency of HTTP as a real-time transport.

• Web services systems are best used at the
edge of a network and not as a part of the
core distribution.

• Usage of eventing Web services standards
in real-time systems is viable, as long as the
extended behaviors and data model remain
reasonably constrained.

• The tolerance level for a Web services-based
system grows rapidly compared to propri-
etary alternatives as a result of extra system
load or other processing requirements.
The purpose in considering Web services as

application middleware in a given real-time sys-
tem is to extend the lifespan or usefulness of
that system by basing its interactions on stan-
dardized interfaces and data definitions. This
goal can be achieved in varying degrees by imple-
menting all or part of the standards embodied by
the Web services specifications. The system tol-
erance guarantees can be reduced to a more
acceptable level by replacing key elements of the
architecture with proprietary alternatives while
retaining other standardized components. For
instance, the inefficient HTTP protocol could be
replaced by a direct TCP/IP variant, while the
message and data encoding is still based on
SOAP and XML. This would reduce the overall
value of the system in terms of adaptability, but
can be a viable consideration if the performance
of HTTP is simply too poor to consider in the
context of a given service level agreement (SLA).
An SLA typically defines not just performance
expectations, but penalties to the provider if
those expectations are not met. This considera-
tion may require compromises in the adoption of
standardized protocols. In any event, the move
towards ubiquitous data and interface standards
for real-time systems undoubtedly will serve to
extend their reach in today’s heterogeneous dis-
tributed applications.

FUTURE WORK
The specifications that allow for the use of Web
services technology in real-time systems are rela-
tively new and therefore, so is the study of their
performance capabilities. This research presents

a framework for reasoning about the capacity of
such systems in various application contexts, but
it is kept open-ended so that more refined mod-
els can be plugged into the analysis. The existing
research into low-level aspects of distributed sys-
tem performance, as well as analysis of higher
level constructs could be used to refine the
model and provide specific insights into the per-
formance constraints of such systems. The proto-
cols on which Web services are based are
themselves subject to change and evolution as
application contexts are better understood. In
addition to the underlying transport protocols
such as HTTP, the high-level messaging proto-
cols such as SOAP and WS-Notification would
benefit from extension to directly support real-
time systems. Indeed, if eventing Web services
are to become the preferred future platform for
all distributed applications, issues such as quality
of service negotiation and scheduling priorities
must be addressed.

REFERENCES
[1] M. Moore and A. Pruitt, Principles of Real-Time Soft-

ware Engineering, Wall & Emerson, 1998.
[2] G.C. Buttazzo, Soft Real-Time Systems: Predictability vs.

Efficiency, Springer, 2005.
[3] K. Balasubramanian et al., “A Platform-Independent

Component Modeling Language for Distributed Real-
Time and Embedded Systems,” Proc. 11th IEEE Real-
Time and Embedded Technology and Apps. Symp., San
Francisco, CA, 2005.

[4] A. Kanevsky, A. Skjellum, and J.Watts, “Standardization
of a Communication Middleware for High-Performance
Real-Time Systems,” Proc. Wksp. Middleware for Dis-
trib. Real-Time Sys. and Svcs,. San Francisco, CA, 1997,
pp. 206–13.

[5] A. Arsanjani et al., “Web Services: Promises and Com-
promises,” ACM Queue, vol. 1, no. 1, 2003, pp. 48–58.

[6] S. Graham and B. Murray, Web Services Base Notifica-
tion 1.2; http://docs.oasisopen.org/wsn/2004/06/
wsnWSBaseNotification-1.2-draft-03.pdf, June 2004

[7] D. Box et al., WS-Eventing; http://ftpna2.bea.com/pub/
downloads/WS-Eventing.pdf, Aug. 2004

[8] D. Schmidt and C. O’Ryan, “Patterns and Performance
of Distributed Real-Time and Embedded Publisher/Sub-
scriber Architectures,” J. Sys. and Software, vol. 66, no.
3, 2003, pp. 213–23.

[9] S. Vinoski, “More Web Services Notifications,” Internet
Computing, vol. 8, no. 3, 2004, pp. 90–93.

[10] S. Vaughan-Nichols, “XML Raises Concerns as It Gains
Prominence,” IEEE Comp., vol. 36, no. 5, 2003, pp. 14–16.

[11] R. C. H. Cheng and W. Holland, “Calculation of Confi-
dence Intervals for Simulation Output,” ACM Trans.
Modeling and Comp. Simulation, vol. 14, no. 4, 2004,
pp. 344–62.

[12] E. Newcomer, Understanding Web Services, Addison-
Wesley, 2002.

BIOGRAPHIES
SHAWN MULKEY received his M.S. in computer science from
the University of Kansas in 2006. He is currently director of
information technology at myFreightWorld.com, a freight
brokerage tools and service company, and the co-owner of
Melete Web Solutions, an online development company.
He has previously worked as a software engineer and
architect in the financial services and telecommunications
industries.

HOSSEIN SAIEDIAN [SM] (saiedian@ku.edu) received his Ph.D.
from Kansas State University in 1989. He is currently a pro-
fessor of software engineering in the Department of Elec-
trical Engineering and Computer Science at the University
of Kansas (KU), and a member of the KU Information and
Telecommunication Technology Center (ITTC). His primary
area of research is software engineering. He has over 100
publications on a variety of topics in software engineering
and computer science. His research in the past has been
supported by the NSF, as well as regional foundations.

If eventing Web

services are to

become the

preferred future

platform for all

distributed

applications, issues

such as quality of

service negotiation

and scheduling

priorities must

be addressed.

SAIEDAN LAYOUT 2/21/08 4:53 PM Page 111

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 19, 2009 at 13:08 from IEEE Xplore. Restrictions apply.

