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Abstract

Despite its widespread use in the software architecture community, architectural views and relationships among them are poorly defined.

A solid taxonomy of views is a critical factor in tackling this problem since it must adopt an unambiguous definition of views and provide

rigorous criteria for classification. Nevertheless, the existing taxonomies of views fail to eliminate vagueness surrounding the definitions of

views and their inter-relationships mainly due to their informal nature. One of the most significant consequences of these failures is inability

to systematically define new views in support of domain-specialization. This paper is an attempt to resolve these outstanding problems

by proposing a sound framework for creating new, customized taxonomies of views in a repeatable manner, based on the formal concept

of refinement.
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1. Introduction

Modern software systems are often so complex that they

can be incomprehensible in their entirety. Stakeholders

involved in developing such non-trivial systems rely on

powerful abstraction mechanisms that present highly

specialized information relevant only to their interest. The

concept of views is one of these abstraction mechanisms and

is especially popular in the field of software architecture.

Perry and Wolf [28] consider an architectural view as a

mechanism to reveal many different facets of a software

architecture. Soni et al. [33] show the significance of distinct

structures addressed in architectural views as a means of

accomplishing separation of concerns. More specifically,

IEEE defines an architectural view as a representation of a

whole system from the perspective of a related set of concerns

[17]. Similar definitions are repeated in the literature as in the

case of Bass et al. [4] and Clements et al. [7].

None of these definitions are rigorous enough to precisely

define what constitutes a valid or unique view not to mention

the relationships among multiple views. Our paper is
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an attempt to address this lack of rigor by proposing a

novel framework for creating more formal taxonomies as a

solution. Refinement is the core principle used in developing

this framework.We believe that one can extract a conceptual

common denominator retaining the most primitive and

fundamental building blocks for specification among an

infinite set of all the possible views and refer to it as the

baseline view. The baseline view captures minimal

information on a software architecture and plays the role of

the origin from which the rest of views are derived through

refinement.

The idea of the baseline view is not entirely new and

originates from research in architecture interchange

languages that provide a generic interchange format for

architectural designs. Garlan et al. [12] observe that

architecture description methods (especially, languages-

based ones) mostly exist in isolation and are not compatible

with one another. They propose a language denoted as

ACME, featuring a common set of essential specification

constructs shared (and minimally required) by any viable

language dedicated to describing software architectures.

This notion of the least common denominator is certainly

applicable to view descriptions and inspired the authors to

develop the concept of the baseline view.

Garlan et al., however, do not provide solutions for

handling the excess architectural information beyond
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Fig. 1. Kruchten’s 4C1 views.
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the scope of ACME, and they mostly ignore it. This paper

adopts most of the primitive specification building blocks

identified by Garlan et al., but unlike ACME provides a

mechanism to harness their expressive power through

applying additional constraints so that they can describe

the excess architectural information that was not originally

describable. The end results of this process are derived views.

The notion of applying constraints to specification

constructs to enhance the precision of a specification

method has been successfully used in Medvidovic et al.’s

[25] research to use a general-purpose modeling language

for describing software architectures.

From a practitioner’s point of view, the lack of rigor

found in the current practice of modelling and specifying

archictectural views, means difficulty in adopting the

concept of views as a viable software engineering tool.

When stakeholders are not able to agree upon (1) whether a

specification qualifies to be an architectural view, (2) what

differentiates one view from the other, (3) how exactly the

constructs of one view are mapped to those of the other, one

cannot expect the large-scale use of views to be repeatable

any longer.

Repeatability is of great importance in specifying and

analyzing views because without it no one will be able to

definitively construe the precise meaning of a certain view.

Even with an assumption that every one from the same

category of a stakeholder community perfectly understands

the syntax and semantics of a language used to describe an

architectural view, a significant problem of miscommunica-

tion potentially exists among people from disparate stake-

holder communities using slightly different languages, which

leads to inconsistencies between two or more specifications.

Repeatability is one of the most critical preconditions for

preventing these inconsistencies from occurring.

In fact, part of the problem is that practitioners are often

unaware of and overlook these deficiencies, which eventually

lead to some serious consequences including ambiguous,

inconsistent, and indecipherable view specifications. Not

realizing that these negative results stem from inability to

properly use the concept of views (but not from inherent flaws

in the concept itself), themanagementmay quickly decide that

the notion of views is not mature enough for industrial

application. After all, some of the most important intended

benefits of using views are removing ambiguity, reducing

confusion, and facilitating communication among stake-

holders. If an argument erupts on whether a class diagram is

a detailed design or architectural description (since the use of a

class diagram is suggested by Kruchten [21] to document one

of his 4C1 views, that is, the logical view), one’s confidence

toward views evaporates rather quickly. This is especially true

in an environment, where multiple people maintain a view,

exposing the integrity of a view to the forces of erosion and

degradation.

In addition, the problem of the ad hoc view descriptions

prevents one from introducing a new view to cope with

domain specialization in an efficient and standardized
fashion. To incorporate a variety of special, concrete

stakeholder concerns that is not easily foreseeable, in

diverse problem domains, one must have an extensible

taxonomy of views to which a new view can be easily

defined and added when necessary. Our framework provides

systematic mechanisms for both defining a new view and

making it part of an existing taxonomy.

The organization of this paper is as follows. Section 2

reviews the existing taxonomies of views and points out their

deficiencies. Section 3 introduces the idea of a baseline view

and proposes a refinement-based framework for creating

extensible taxonomies of views. Section 3.1 provides a

definition of the baseline view. Section 3.2 discusses how the

baseline view is refined and how it branches into other unique

views. It also describes the criteria that make those derived

views unique. Section 4 presents a well-known existing

taxonomy in the baseline/derived view framework we

propose and examines its consequences. Section 5 provides

examples of using the concept of the baseline and derived

views to rigorously define views and their relationships.

A discussion of further research and concluding remarks in

Section 6 rounds out the paper.
2. Related approaches

Currently, several taxonomies of views exist [21,33,14,

18,16,7,29]. Among them, one of the oldest and most well-

known is Kruchten’s 4C1 view model [21], which is

summarized in Fig. 1. A primary criterion used in

Kruchten’s taxonomy of views is the specific concerns of

various stakeholders in a software development project. In

his approach, a scenario [20] is a common thread that ties

different views together and provides a shared context.

Kruchten advocates the use of a subset of models defined

in the Unified Modeling Language (UML) specification [27]

as notational mechanisms to document his 4C1 views. For

example, he recommends a class diagram to represent the

logical view. The 4C1 views are also incorporated into the

Rational Unified Process (RUP) [23].

Soni et al. [33] propose a similar set of views. They also

have four views denoted as the conceptual (describing

architectural structures consisting of major design elements

and their relationships), module interconnection (functional

decomposition and layers), execution (dynamic run-time



J. Ryoo, H. Saiedian / Information and Software Technology 48 (2006) 456–470458
structures), and code views (file structures in a development

environment).

More recently, Clements et al. [7] developed their own

taxonomy of views that refines Kruchten’s 4C1 view

concept by means of styles. They categorize views into three

major groupings including module, component-and-con-

nector, and allocation. Their categorization is similar with

that of Kruchten’s except for the fact that they combine

physical and development views into the allocation view-

type. Kruchten’s process and logical views are comparable

to the component-and-connector and module viewtypes.

The mapping from the taxonomy of Kruchten to that of

Clements et al. is not done at the same abstraction level. The

module viewtype in the Clements et al.’s taxonomy, for

example, is just an abstract label referring to a category of

views showing how a software system is structured as a set

of implementation units [7]. The module viewtype is further

refined into concrete views such as the decomposition, uses,

layered, and class views. The fact that the individual views

of Kruchten can be mapped to the abstract categorization of

the Clements et al.’s views implies that the latter is more

fine-grained than the former.

The core of Clements et al.’s contribution lies in that they

map concrete architectural styles to views and establish

notational conventions for each style as shown in Fig. 2.

Although more mature than Kruchten’s and others, the

taxonomy still lacks:

† the rigorous definition of a view,

† the unambiguous criteria used in the classification of

views,

† traceability rules governing the ultimate relationships

between views belonging to different categories, and

† principles addressing ways to create a new view and

relate it to an existing taxonomy.
3. A refinement-based taxonomy of views

In this section, we propose a new kind of taxonomy of

views quite unlike conventional classification. It is based on

an observation that every view can originate from a single

root view denoted as the baseline and is the result of

continual refinement through the application of more

constraints to either the baseline view or other less refined
Fig. 2. Clements et al.’s t
views stemming from the baseline view. Fig. 3 visualizes

the refinement-based taxonomy of views.
3.1. A definition of the baseline view

Each view records a snapshot of decisions made by an

architect. The nature of these captured decisions, when

considered in terms of the degree of their uniqueness, can

range from highly esoteric to extremely common.

For example, it is possible that one invents a completely

new architectural mechanism of which no one is aware. On

the other hand, an architecture of one’s choice can turn out

to be fairly mundane. Architectures using well-known

patterns [32] (such as client–server, pipe-and-filter, etc.)

belong to this latter category.

In the same context, there are a set of views that tend to

be more open-ended and capable of supporting almost any

type of architectural decision-making while there are those

limited to capturing only certain architectural decisions. For

the simplicity of our discussion in this paper, we refer to the

former as a generic view and the latter as a derived view.

Kruchten’s 4C1 views are excellent examples of

dominantly generic views. Regardless of the problem

domain and its scale, the 4C1 views are nearly always

relevant. After all, one can hardly imagine a software-

intensive system without its logical, physical, process, or

development aspect. Table 1 provides short definitions for

Kruchten’s 4C1 views.

Compared with Kruchten’s 4C1 views, Clements et al.’s

views are more fine-grained and refined. Some of their

views (especially, the views belonging to the component-

and-connector view type) even enforce architectural styles,

thereby limiting the kinds of architectures specifiable in

them. A view meant for architectures conforming to the

pipe-and-filter style is most likely ill-suited for describing a

client–server architecture (Fig. 2).

Medvidovic et al. [25] report a similar trend in their

discussion of Architecture Description Languages (ADLs)

[26]. They point out that an ADL such as Wright [3] does

not enforce the rules of a particular style while another ADL

denoted as C2 [24] does so.

Note that one cannot invariably claim that a view is

absolutely generic or derived. In other words, the terms

(both generic and derived) have a strong connotation of

being relative. Therefore, it is theoretically possible to set up
axonomy of views.



Fig. 3. The refinement-based taxonomy of views.

Table 2

Definitions of the baseline view constructs

Construct Definition

Component A locus of computation or data storage

Connector An abstraction of communication or interactions

between two or more components

Port A directional interface (in, out, or inout) between a

component and a connector

Configuration The attachments of components and connectors to

eventually form an architectural topology

Protocol Dynamic interactions between two or more com-

ponents specified using events occurring in prescribed

sequences
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the most generic baseline (hence the name baseline view)

and define derived views relative to the baseline view.

For the past decade, researchers strove to identify a

common denominator for all the existing ADLs since they

believed that it would enable the exchange of specifications

among disparate ADLs. ACME [12] is the direct result

of this effort. Additional efforts are made by Dashofy et al.

[9,10] to extend the ACME research and develop an

eXtensible Mark-up Language [6] (XML)-based ADL

(xADL). Both ACME and xADL provide excellent ideas

on what could be the bare minimum set of constructs in

specifying software architectures and serve as a basis to

implement the baseline view concept introduced earlier.

Components and connectors are the most important

building blocks in ACME and xADL. Thus, we define the

most fundamental constructs in the baseline view as

components and connectors. We also let both components

and connectors have zero or more ports that are interfaces to

other components and connectors.

Components, connectors, and ports by themselves are

not sufficient to specify even the most rudimentary

software architecture. One still needs to define the

mappings between component and connector ports, and

configuration plays this role.

Constructs described so far are static in nature, and they

are meant to retain structural information. To specify the

behavioral aspect of a software architecture, one needs, at a

minimum, ways to specify events and a sequence in which

the events occur [11]. This paper adopts the connector-

oriented specification approach [2,1] that advocates tying

the behavioral aspect of a software architecture to
Table 1

Definitions for Kruchten’s 4C1 views

View name Definition

Logical Shows the correspondence between functional

requirements and high-level conceptual solutions

Physical Describes the mapping(s) of the software onto the

hardware and reflects its distributed aspect

Process Captures the concurrency and synchronization

aspects of the design

Development Describes the static organization of the software in its

development environment
connectors. We refer to the behavioral specification

(involving events and sequences) in a connector as a

protocol. We provide the detailed definition of each baseline

view construct in Table 2.

In summary, the baseline view embodies the minimal

requirements for any valid views. Its relation to derived

views is similar to that of an abstract class to the

corresponding concrete descendants in an object-oriented

design specification. For example, an abstract class provides

a common conceptual base for its specialized sub-classes

and is never instantiated. Analogously, the baseline view

acts as the origin of any arbitrary derived view and is not

directly used to specify a stakeholder-specific architectural

view. It is a logical reference point whose existence is

essential for unambiguously and compactly defining other

views by avoiding repeating the same definitions of

constructs and constraints. A formal definition of the

baseline view is provided in Section 5.
3.2. Refinement of the baseline view and different

dimensions involved in making an architectural view unique

From the baseline view proposed in Section 3.1, one

can create derived views by applying additional

constraints to one or more of the modeling constructs

of the baseline view. For example, a plain layered view

(an architectural style mapped to the module view

category of the Clements et al.’s taxonomy of views in

Fig. 2) can be derived from the baseline view by adding

the following constraints:

† For components, c1 and c2 communicating through a

connector, the communication is always uni-

directional, especially in the direction of an upper

layer component c1 toward either the same or its

directly lower layer counterpart, c2.

Therefore, components in the layered view conform to

the anti-symmetry rule which forces an upper layer

component to always use a component belonging to the

same or a lower layer, but not the other way around.

One can also replace this natural language description of

constraints with one specified in first order predicate logic
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expressions (as demonstrated in our example in Section 5)

or a formal language such as Z [19].

A derived view can be further specialized by imposing

more constraints, implying that derived views can be created

not only from the baseline view, but also from one or more

other derived views. Using thismechanismof derivation, one

can create an infinite number of views tailored for his or her

own context of architectural specification.

Many researchers propose their own set of views

(for instance, those discussed in Section 3). Despite the

differences in the actual presentation of these views, they all

share relatively common criteria to categorize their views.

Although few of them formally define relationships among

different kinds of views in terms of the baseline view and its

derived views, one can still use some of these criteria to

develop constraints that can be used for creating derived

views. This paper looks into them in the following sections.

3.2.1. Disciplines in software development

Generally speaking, a software application goes through

multiple iterations of several well-defined disciplines

throughout its lifetime (regardless of methodologies used

to develop it, such as Rational Unified Process [22], the spiral

model [5], the waterfall model [31], etc.). Although there

exist differences in their nomenclature depending on the

development life cycle methodology of one’s choice, these

disciplines are classified largely into requirements, analysis,

design, implementation, testing, customer-support, config-

uration/change management, project management, etc.

Each of these disciplines represents a stakeholder who, in

turn, demands corresponding architectural views. The

information conveyed in these views is mostly about the

artifacts of a given discipline. For instance, those

participating in a production support stakeholder role (in

the context of an industrial strength software development

environment) can greatly benefit from views such as

deployment or implementation in Fig. 2. This is because

they are responsible for deploying code, monitoring and

responding to issues, and ultimately finding resolutions. The

artifacts addressed in the deployment view include

deployment scripts, property files, configuration files,

processes, threads, etc. The implementation view is

associated with source code, property files, configuration

files, etc. Note that the two views sometimes describe the

same artifacts but in different contexts.

3.2.2. Orientation toward static vs. dynamic nature

of software

The structural aspect of a software architecture often

affects the runtime behavior of software. In this case, it

makes little sense to make a definite statement on whether a

view is strictly static or dynamic. As a result, one can only

decide the overall orientation of a view toward either the

static or dynamic aspect of a software architecture.

However, it is possible to distinguish views involving

runtime components and connectors from those associated
with non-rune time elements. Therefore, in this paper, views

are referred to as dynamic when they only contain runtime

architectural elements. Otherwise, they are labeled as static.
3.2.3. Quality attributes

Views can be used to verify and validate whether a

software architecture conforms to a certain quality

requirement. The development view in Fig. 1, for example,

helps reasoning about software reuse, portability, and

security while the physical view reveals a system’s

conformance to availability, reliability, performance, and

scalability [8].
3.2.4. The domain

Certain views become more useful in a highly specialized

domain. Views highlighting the concurrency and parallelism

of a system are beneficial to the development of a distributed

system because they can help spot a problem such as a

deadlock. Beside the generic views applicable to an arbitrary

domain, more specialized (customized) views can enhance

the ability of stakeholders to ensure the satisfactory

implementation of a proposed software architecture.
3.2.5. The scope and granularity

The fact that views implement the notion of separation of

concerns implies that a view has an inherent tendency to

avoid covering the entirety of a software architecture. This

idea of intentional incompleteness can be further examined

in terms of two orthogonal concepts: scope and granularity.

Scope dictates the breadth of a view. We define the breadth

as the ratio of the number of depicted components

(as defined in Section 3.1) in a given view to all the

known components of a software architecture at an

abstraction level to which the view pertains. More precisely,

S Z
Ncv

Nca

where S, Ncv, and Nca stand for the scope of a view, the

number of components found in a view, and the number of

all the known components. The scope of a view is referred to

as monolithic when SZ1. It is partial when S!1. While

scope represents the coverage aspect of a view, granularity

deals with its level of abstraction. In this paper the

granularity of a view is defined as:

G Z
Ncam

Ncah

where G and Ncah are granularity and the number of all the

known components when the view is monolithic. Ncam is the

minimum value among the available numbers of all the

known components. The maximum value of granularity is 1.

The value becomes smaller as one drills down to more

details of a software architecture and describes them in a

view. Here, we make an assumption that a view has at least

one component.
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4. Specifics of the new taxonomy

In principle, the new taxonomy described so far does not

dictate where in its hierarchy each derived view must fit.

Neither does it prescribe the details of the views. Rather, it is

a meta-taxonomy that gives a rise to new taxonomies

conforming to a paradigm built upon concepts such as the

baseline, derived views, refinement, and constraints (all

explained in Sections 3, 3.1, and 3.2). The details necessary

to form a tangible taxonomy are left up to a development

organization that adopts the meta-taxonomy. The emphasis

on macro-scale factors embodied in the meta-taxonomy is

due to our finding that the usefulness of a view lies in how

customizable it is for the need of those interested. There is,

of course, the danger that this flexibility might be abused.

For example, an inexperienced user can come up with an

unnecessarily flat or steep taxonomy as shown in Fig. 4.

Here we revisit the views of the Clement’s et al.’s

taxonomy [7] and redefine them in the framework of our

meta-taxonomy to:

† provide a standard procedure through which new

domain-specific taxonomies can be created,

† make a ready-made set of views available for those

willing to follow the principles of our meta-taxonomy,

but not wanting to develop their own taxonomy, and

† discourage one from formulating the ill-formed taxo-

nomies depicted in Fig. 4.

We regard a taxonomy as the consequence of the

repeated creation of views in a systematic way. The same

train of thought leads us to a conclusion that the distinctive
Fig. 5. The four de
specifics of different taxonomies are the results of applying

a set of constraints (discussed in Section 3.2) to the baseline

view and its descendants in a certain sequence. Note that

what decides the overall topology of a taxonomy and the

contents of its constituent views is not only the type of the

constraints, but also the order in which they are applied.

Our effort to redesign the Clements et al.’s taxonomy

takes full advantage of these ideas. As a result, each view is

scrutinized concerning:

† the required constraints to refine the baseline view into

the derived view under scrutiny and

† a sequence in which these constraints are imposed.

The first constraint we use is whether all the architectural

elements in a view are either logical or physical. Typically

identified by the design discipline, the logical elements are

defined as the conceptual (initially existing only in the

imagination of stakeholders) abstractions of a desired

system structure and its behavior. On the contrary, the

physical elements are the abstractions of the tangible

implementations of the logical elements. They are produced

during the implementation discipline and directly traceable

to concrete objects in the real world, such as source code

snippets, application servers, self-contained software com-

ponents, etc.

Static versus dynamic is the second constraint. The static

elements of a view distill only the topology of an

architecture while their dynamic counterparts represent the

run-time behavior projected on top of the static elements.

With these two basic constraints, one can come up with

the four unique derived views shown in Fig. 5.

Views belonging to the module view type in the Clements

et al.’s taxonomy can be placed under the physical:static

node in the taxonomy shown in Fig. 5 since modules in these

views are defined as implementation units of software [7]. To

form the decomposition view, one needs to refine the

constructs of the baseline view using the constraints

summarized in Table 3 in addition to those of physical:

static. We give distinctive names to the refined components

and connectors for a convenient reference. The descriptions

of the constraints for this and ensuring views are adapted

from Clements et al. [7]. In a similar fashion, the uses view

can be derived and its constraints are summarized in Table 4.
rived views.



Table 3

Additional constraints for the decomposition view

Refined

baselines

construct

New name Constraints

Component Module N/A

Connector Decompo-

sition

A part/whole relationship between the

submodule A-the part and the aggrega-

tion module B-the whole

Configur-

ation

N/A No loops are allowed. A module cannot

be part of more than one module

Table 5

Additional constraints for the generalization view

Refined baseline

construct

New name Constraints

Component Module N/A

Connector Generalization An is-a relationship can be

established between two partici-

pating components

Table 6

Additional constraints for the pipe-and-filter view

Refined base-

line construct

New

name

Constraints

Component Filter A component has at least one input port or
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The layered view can be refined from the uses view by

adding the constraints shown in Table 12.

Finally, the generalization view is formed from the

physical:static view in Fig. 5 with the additional constraints

in Table 5.

Views falling into the category of the component-and-

connector view type can be associated with the physical:

dynamic node in Fig. 5 because the types of components and

connectors involved have run-time presence such as

processes, objects, clients, servers, and data stores [7].

Table 6 shows assumed constraints in the pipe-and-filter view.

One can formally specify the protocol of a pipe using an

ADL like Wright [2,1] as shown below (adapted from

Medvidovic et al. [25]):

connector PipeZ
role WriterZwrite/Writerlclose/O
role ReaderZ
let ExitOnlyZclose/O
in let DoReadZ(read/Reader,read-eof/ExitOnly)

in DoReadlExitOnly

glueZlet ReadOnlyZReader.read/ReadOnly,Reader.

read-eof/Reader.close/O,Reader.close/O
in let WriteOnlyZWriter.write/WriteOnly , Writer.

close/O
in Writer.write/glue , Reader.read/glue , Writer.

close/ReadOnly,Reader.close/WriteOnly

Wright is an ADL specializing in describing dynamic

structures involved in a software architecture in terms of

behavioral characteristics of components and their inter-

actions. In Wright, interactions between components are

embodied in an independent specification construct

(namely, a connector). Both components and connectors

are associated with a type that has its own instances.
Table 4

Additional constraints for the uses view

Refined base-

line construct

New

name

Constraints

Component Module N/A

Connector Uses Module A uses module B if A depends on

the presence of a correctly functioning B in

order to satisfy its own requirements
Wright uses a subset of communicating sequential

processes (CSP) [15], a formal language developed by

Hoare to model concurrency. CSP uses notations such as,,

l and O to represent state transitions (deterministic choice,

non-deterministic choice, and a successful event). For

instance, the expression

WriterZwrite/Writerlclose/O

states that Writer either keeps writing or closes the pipe, and

the decision on whether it needs to continue writing or to

stop is made non-deterministically.

The role sections of the specification describe the

dynamic behavior of two different types of filters (namely,

those reading and writing) in isolation, which is useful, in

addition to the static constraints for components in Table 6,

for identifying components compatible with the pipe-and-

filter view. The glue specification presents scenarios

(summarized by the UML state transition diagram in

Fig. 6 adapted from Medvidovic et al. [25] on how a pipe

accommodates the interactions of filters and how pipes and

filters work together in general.

In the figure, Reader.read represents an event that

triggers a Reader to start reading while Writer.write is

another event making a Writer begin writing. There are also

other events closing a pipe for either reader or writer. From

an unknown state, a transition to states labeled as ReadOnly,

WriteOnly, and glue deterministically occurs depending on

what event (namely, read, write, and close) precedes the

state transition.
one output port. It reads streams of data from

its input port, transforms them, and writes

them to its output port.

Connector Pipe A connector has one input port and one output

port. It conveys streams of data from one filter

to another.

Port N/A The directionality of ports are either in or out.

Configuration N/A The out ports of filters are connected to the in

ports of pipes. The in ports of filters are

connected to the out ports of pipes.



Fig. 6. UML state transition diagram of the pipe connector.

Table 8

Additional constraints for the client–server view

Refined base-

line construct

New name Constraints

Component Clients and

Servers

N/A

Configur-

ation

N/A Once designated as a server (or a client),

a component cannot change its role

Protocol N/A Servers are components providing a

service. Clients are components request-

ing a service. Only a client can invoke the

service of a server

Table 9

Additional constraints for the communicating-processes view

J. Ryoo, H. Saiedian / Information and Software Technology 48 (2006) 456–470 463
Some of the scenarios depicted in Fig. 6 include:

† one filter reading while another writing,

† one filter reading while another ceasing to write,

† one filter writing while another ceasing to read, etc.

As one adds more scenarios to a protocol, the affected

view becomes more refined, subsequently resulting in more

derived views. We realize that the static structural

constraints found in the pipe-and-filter view (Table 6) are

sufficient to distinguish it from other views in Fig. 2. Of

course, the protocols dictating the behavior of pipes are

what distances the pipe-and-filter view further away from

the rest of non-pipe-and-filter-related views. As a result, we

do not discuss the details of protocols in the remaining

descriptions of views classified as part of the component-

and-connector view type unless the structural constraints

fail to make them unique.

Another view belonging to the component-and-con-

nector view type is the peer-to-peer view. Client–and–server

view can be derived from the peer-to-peer view (Table 7) by

adding the constraints in Tables 8.

Regarding the constraint for the configuration of the

client–server view, note that this constraint is applied to the

configuration instead of a component. If the same constraint

is applied to a component, the affected component will be

restricted to assuming only a single role at a time, which is

not realistic (what if a component acts as a server on one

side and behaves as a client on the other?). Configuration

identifies an interface of a component (not the entire

component) as a server or client. Since a component can
Table 7

Additional constraints for the peer-to-peer view

Refined baseline

construct

New

name

Constraints

Component Peer Components are code units (for

example, classes or a set of classes)

Protocol N/A One component can invoke the service

of the other
have multiple interfaces, it can assume multiple roles (both

server and client).

When the roles of a client and a server are, respectively,

limited to requesting and providing services to create, read,

update, and delete data on a persistent platform, the client–

server view is further refined into a primitive type of the

shared-data view. These specialized clients and servers are

referred to as shared-data accessors and repositories. A more

sophisticated variety of the shared-data view enriches the

protocol of the basic shared-data view by allowing changes

in the repositories to trigger a wide range of services

(including requesting the data-centric operations mentioned

above) from accessors.

The communicating processes view also belongs to the

component-and-connector view type. Table 9 lists the

constraints relevant to the communicating process view.

The last we discuss in the component-connector view

type is the publish-subscribe view whose constraints include

those in Table 10.

The views that are part of the allocation view type can be

connected to the physical:static node in Fig. 5 since:

† the implementation view describes the correlation

between modules and a file system containing the

modules,

† the work assignment view describes the correlation

between modules and (human) resources responsible for

the development of the modules, and

† the deployment view describes the correlation between

the concurrent units of processing (usually processes)
Refined base-

line construct

New

name

Constraints

Component N/A Components are the concurrent units of

processing including processes and threads

Protocol N/A Components communicate with each other.

Communicating is more than simply

requesting and providing services. It also

includes activities such as exchanging data,

passing messages, synchronization, control,

etc



Table 10

Additional constraints for the publish-subscribe view

Refined base-

line construct

New name Constraints

Component Publisher/

subscriber

N/A

Connector Message/

event bus

N/A

Protocol N/A Components designated as publishers

send a category of messages/events to a

centralized connector, which eventually

forwards them to other subscribed com-

ponents
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and the environmental elements of varying degree of

granularity.

We assume that the correlations involved in each view

are inherently static and specify the arbitrary configurations

of components and connectors. Therefore, the existence of

dynamic components (the concurrent units of processing) in

the deployment view is an insignificant factor in deciding

whether an entire view is static or dynamic. However, the

deployment view may also be categorized as physical:

dynamic once the correlation itself is the function of time or

other external influences. In this case, it is necessary to

specify the protocol of the affected view.

Fig. 11 depicts the final taxonomy, which is apparently

skewed. That is, the logical:static and logical:dynamic views

do not have any children. What we conclude from this

observation is that the Clement’s et al.’s taxonomy either

lacks the logical views in general or simply ignores the

boundaries between physical and logical views, therefore,
Fig. 7. An ad hoc view of
using physical views to describe their logical counterparts,

too.
5. Examples

In this section, we present tangible examples showing

how a real-life software development organization can

benefit from our meta-taxonomy for architectural views to

establish its own domain-specific taxonomy complete with a

clear definition for each unique view type involved and its

relationships with others.

The organization in our example is composed of

stakeholders participating in development efforts compliant

with the Java 2 Platform, Enterprise Edition (J2EE) standard

[34]. J2EE defines a standard architecture for a platform

used in developing component-based, multi-tier enterprise

information systems (EISs).

The main purpose of the J2EE platform is to reduce

complexity involved in EIS development by relying on

standardized, modular components called Enterprise

Java Beans (EJBs) and by automatically providing

services to ensure reliability, scalability, security, and

availability without requiring complex programing from

its users.

The major J2EE stakeholders and the details of their roles

are summarized in Table 13.

Fig. 7 (adapted from [33]) depicts an ad hoc view of the

J2EE platform to which many of software practitioners are

accustomed through numerous meetings, where they draw

boxes and lines in their impromptu discussions of a software

architecture.
the J2EE platform.
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The ultimate goal in these exercises is to provide a quick

overview of a software architecture under scrutiny. This

type of view is effective in a sense that it satisfies the need of

conveying ideas in an intuitive manner. However, the view

is inherently ambiguous because there is an ample room for

personal interpretation even after an explanation is given by

the author himself or herself. The ambiguity worsens when

only the graphical form of the view is documented leaving

out the original intentions of its creator, which is commonly

the case.

If there exists a systematic, repeatable standard of

unambiguously communicating what constitutes a unique

view and its semantic nuances, one can alleviate the

problem of misinterpretation because the standard tells

how to interpret a view. In other words, a view specification

accompanied by a view definition provides helpful

information to understand a view description and greatly

reduces the probability of misunderstanding.

This is exactly what our meta-taxonomy of views is for:

providing a compact definition of a view. Once a stable set

of views frequently used for an organization emerges, the

definition can be kept at a single location and maintained by

a single authority. The presenter of a view can simply refer

to its name, and the audience is advised to consult the

definition.

Assume that a common concern across all the

stakeholders in Table 13 is identifying logical components

and the static uses dependency relationships between them.

For this goal, one may define a view (Vuses_def) as follows.

First, we formally define the baseline view:

Scsrt Z fComp;Conn;Conf ;Port;Protg (1)

where Scsrt is composed of specification constructs, Comp,

Conn, Conf, Port, and Prot, which, respectively, represent sets

of components, connectors, configurations, ports, and

protocols as defined in Section 3.1.

Expressions (2)–(7) are a minimum set of constraints

imposed upon Scsrt and necessary to define the baseline

view.

Cb1 :cx2Comp†dy2Port†hasðx; y; 0Þ (2)

Cb2 :cx2Conn†dy2Port†hasðx; y; 2Þ (3)

Cb3 :cx2Port†in_directionðxÞnout_directionðxÞ

n inout_directionðxÞ (4)

Cb4 :cx2Comp†staticðxÞ0ldy2Conn†dynamicðyÞ (5)

Cb5 :hasðx;yÞ :x2Connoy2Prot†has$ðx;yÞ0cx†

cz2Comp†dynamicðxÞodynamicðzÞ (6)

Cb6 :cx;y2Port†d!z2Conf†mapped_to_byðx;y;zÞ (7)
Cb7 :cx2V†d!y2Conf†hasðx;yÞ (8)

They state that:

† each component has zero or more ports (2),

† each connector has two or more ports (3),

† the direction of each connector communication/interac-

tion is in, out, or inout (4),

† an explicit connector exists only when all the com-

ponents in a view are dynamic (5).

† a protocol is used only when all the components and

connectors in a view are dynamic (6),

† one port is mapped to the other by a unique configuration

(7), and

† each view has only one configuration (8).

Therefore, the baseline view definition (Bdef) consists of

specification constructs (Scsrt) and constraints (Cb) as in

expressions, (9) and (10).

CbZfCb1;.;Cb7g (9)

Bdef ZðScsrt;CbÞ (10)

Now, every time one wants to define a new view, he or

she can reuse this baseline view definition as in expression

(11). A new view is defined in terms of the baseline view

and a set of additional constraints (Cd). In this case, we

define a logical: static: uses view (Vuses_def). Expression (12)

simply states that there is no common constraint between

the baseline view and the newly derived view.

Vuses_def ZðBdef ;CdÞ (11)

CbhCdZ: (12)

Cd consists of:

Cd1 :cx2Comp†logicalðxÞ (13)

Cd2 :cx2Comp†staticðxÞ (14)

Cd3 :cx2Comp†dy2Comp†ðusesðx;yÞ4usesðy;xÞ

oðxsyÞ (15)

and CdZ{Cd1, Cd2, Cd3}, where logical(x) and static(x) are

predicate logic expressions that become true when x is a

logical and static specification construct belonging to Scsrt.

Expressions, (13) and (14) state that all the components are

logical and static. uses(x, y) is a predicate logic expression

that becomes true when x depends on the presence of a

correctly functioning y in order to satisfy its own

requirements. Expression (15) states that every component

either uses or is used by every other component and that a

component is not allowed to use itself.

When Vuses_def is applied to the ad hoc view in Fig. 7, a

new structure emerges as shown in Fig. 8. A summary of

notations used in the figure is provided in Table 11. To

simplify the drawing, we limited the scope (S!1 according



Table 12

Additional constraints for the layered view

Refined base-

line construct

New name Constraints

Component Layer N/A

Connector Allowed to

Use

N/A

Configur-

ation

N/A Anti-symmetry (If layer A uses layer B,

layer B cannot use layer A and is the

same or lower layer of layer A.)

Fig. 8. The logical:static:uses view.
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to Section 3.2.5) of our view so that we consider only the

Java messaging service (JMS) [34] standard of the J2EE

platform out of many such as JTA, JAXR, etc. (as shown in

Fig. 7). JMS is a standard service provided by a J2EE

container that allows asynchronous communication

between components.

Note that expressions, (11)–(15) concisely and precisely

define the view and remove the ambiguity associated with

the ad hoc view. The relationship between the new view and

the baseline view is given in expression (11).

As discussed in Section 4, another common view denoted

as the layered view (Table 12) can be derived from the uses

view. In Clements et al.’s taxonomy, both the uses and

layered views are physical: static, but in this example, we

allow the logical: static versions of them.

The layered view definition Vlayered_def is given using the

expressions (16)–(19).

Vlayered_defZðBdef ;Cd_uses;Cd_layeredÞ (16)

CbhCd_useshCd_layeredZ: (17)

Cd_uses is equivalent to Cd in expressions (11) and (12).

Cd_layered contains:
Table 11

The notations in Fig. 8 and their meanings

Notation Meaning

Component

Connector

Port for an outbound communi-

cation/interaction

Port for an inbound communi-

cation/interaction

Ports participating in a duplex

communication/interaction
Cd_layered1cx2Comp†d!k2fNg†layerðxÞZk (18)

Cd_layered2cx;y2Comp†usesðx;yÞ0layerðxÞ

RlayerðyÞ (19)

and Cd_layeredZ{Cd_layered1, Cd_layered2}. Expression (18)

states that each component is defined in exactly one layer

while (19) says that each component uses others situated

only on the same layer or lower layers. When applied to the

logical: static: uses view in Fig. 8, Vlayered_def makes another

architectural structure surface as shown in Fig. 9.

Here we provide the natural language definitions of the

predicates. One can add more rigor by formally defining

them. In addition, depending on the domain, different

definitions may exist for the same predicate.

Although semantically far different, the formal specifica-

tion of the implementation view in the Clements et al.’s

taxonomy is very similar with that of the logical: static: uses
Fig. 9. The logical:static:layered view.



Table 13

The major J2EE stakeholders and the details of their roles (adapted form

Roman et al. [30])

Stakeholder Description

Bean provider The role of a bean provider is supplying reusable,

commercial off-the-shelf software components called

enterprise beans, especially designed for the use in a

J2EE environment. Enterprise beans are not complete

business solutions, but can be deployed and

assembled to form a complete application.

Application

assembler

The application assembler figures out what enterprise

beans are necessary to build a specific business

solution and how they fit together. The role involves

developing glue code that combines enterprise beans

and writing domain-specific enterprise beans. The

application assembler is the consumer of the

enterprise beans produced by the bean provider role.

EJB deployer After the application assembler finishes developing a

new application, the EJB deployer deploys the source

code into the production environment. The responsi-

bilities of this stakeholder include: (1) resolving

environment issues associated with deploying a J2EE

application, (2) identifying application flaws and

separating them from the environment problems, (3)

ensuring security, (4) providing suggestions for

purchasing new hardware to improve performance,

etc.

System adminis-

trator

Administrators maintain the J2EE platform and

software components installed on it, and monitor

them for any problems in the production environment.

Container provi-

der

The container provider supplies an implementation of

the J2EE platform standard. The platform acts as a

middle-ware and provides a means to manage and

access the enterprise beans.
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view as shown below.

Vimp_def ZðBdef ;Cd_impÞ (20)

CbhCd_impZ: (21)

Cd_imp consists of:

Cd_imp1 :cx2Comp†moduleðxÞ4fileðxÞ (22)

Cd_imp2 :cx2Comp†physicalðxÞostaticðxÞ (23)

Cd_imp3 :cx2Comp†dy2Comp†ðcontainsðx;yÞ

4containsðy;xÞÞoðxsyÞ (24)

Cd_imp4 :cx;y2Comp†containsðx;yÞ0moduleðxÞ

ofileðyÞ (25)

and Cd_impZ{Cd_imp1,.,Cd_imp4}.

Expressions ((22)–(25)) state that:

† a component is either a module or file (22),

† all the components are physical:static (23),

† every component either contains or is contained by every

other component (24),

† a component is not allowed to contain itself (24), and

† a file must contain a module, not the other way around

(25).

In addition to the general concerns addressed by the

logical:static:uses, logical:static:layered, and physical:sta-

tic:implementation views, an individual stakeholder in

Table 13 needs more specialized views capturing his or

her own unique set of concerns. For example, an application

assembler wants to know what aspect of J2EE he or she has

to deal with to fulfill his or her responsibilities. One can

develop a customized view for this purpose as specified in

expressions (26)–(39).

Vasb_def ZðBdef ;Cd_asbÞ (26)

CbhCd_asbZ: (27)

Cd_asb consists of:

Cd_asb1 :cx2Comp;y2Conn†logicalðxÞologicalðyÞ (28)

Cd_asb2 :cx2Comp;y2Conn†dynamicðxÞ

odynamicðyÞ (29)

Cd_asb3 :cx2Comp†clientðxÞ4ejbðxÞ (30)

Cd_asb4 :cx2Conn†ejb_containerðxÞ (31)

Cd_asb5 :cx2Comp†ejbðxÞ0session_beanðxÞ

4entity_beanðxÞ4message_driven_beanðxÞ (32)
Cd_asb6 : connectedðx;yÞ0x;y2Z (33)

Cd_asb7 :cx2Comp†d!y2R†is_homeðyÞ (34)

Cd_asb8 :cx2Comp†d!y2R†is_remoteðyÞ (35)

Cd_asb9 :cx2Comp†d!y2R†is_contextðyÞ (36)

iCd_asb10 :cx2Conn†d!y2R†is_homeðyÞ (37)

Cd_asb11 :cx2Conn†d!y2R†is_remoteðyÞ (38)

Cd_asb12 :cx2Conn†d!y2R†is_contextðyÞ (39)

and Cd_asbZ{Cd_asb1,.,Cd_asb6}.

Expressions (28)–(39) state that:

† all the components and connectors are logical (28),

† all the components and connectors are dynamic (29),

† the components are either clients or EJBs (30),

† all the connectors are EJB containers (31),

† EJB is session, entity, or message-driven bean (32),

† Only two ports of the same type can be connected (33),

† A client has one port whose type is Home (34),

† A client has one port whose type is Remote (35),

† A client has one port whose type is Context (36),



Fig. 10. A customized view for an application assembler.
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† An EJB container has one port whose type is Home (37),

† An EJB container has one port whose type is Remote

(38), and

† AnEJB container has one port whose type isContext (39).

Since the view is dynamic (expression (29)), protocols

for the EJB container must be specified. For example,

the following interactions occur every time the use of an

EJB is requested by a client:

† the EJB container instantiates the requested bean,

† the EJB container gives a context to the bean,

† the bean stores the context for later use,

† the EJB container executes the business logic on the

bean, and

† the bean uses the context if necessary.

The context is a gateway a bean can use to access the

environment information and limited behavior of an

EJB container. One of the simplest instances of Vasb_def is

depicted in Fig. 10.

In this section, the authors have provided concrete

examples demonstrating how one can apply the baseline
Fig. 11. The final
and derived view concepts to rigorously defining architec-

tural views and specifying their instances. From the

examples it is apparent that one can further improve the

clarity of a view definition by formally defining the axioms

(for instance, the definition of uses(x, y)) presented in the

form of first-order logic expressions.

Employing more formalism removes ambiguity, but it

does not automatically increase the comprehensibility of

the specifications themselves. Hall [13] states that there

are three ways to make formal specifications more

comprehensible.

† Paraphrase the specification in natural language.

† Demonstrate consequences of the specification.

† Animate the specification.

Animating the specification in the context of defining

views may be infeasible due to the fact that the formal

specifications in this case are mostly definitions of

constraints, which is difficult to visualize. However, one

can boost the understandability of individual view specifica-

tions by using consistent graphical notations.
6. Concluding remarks and further research

The main contribution of this paper is the proposal of a

framework for creating refinement-based taxonomies of

views. We established the concept of the baseline view and

defined a rigorous model of the baseline view, which is
taxonomy.



J. Ryoo, H. Saiedian / Information and Software Technology 48 (2006) 456–470 469
a fundamental conceptual basis in developing derived views

through refinement.

The highlights of our approach include:

† mechanisms to unambiguously define a view in a

repeatable manner,

† a novel theory to systematically create an unlimited

set of new views and establish seamless relationships

between the new views and an existing taxonomy,

and

† an ability to check the validity of a view by inspecting

whether a view has any discrepancies against its

definition.

Currently, we are investigating ways to extend our meta-

taxonomy into a full-blown view description language. The

essential building blocks (the baseline view constructs/con-

straints and an extension mechanism) for specifying a view

are distilled to our meta-taxonomy framework and provide a

good starting point to build the metamodel of such a

language.

One of the foreseeable advantages of a language dedicated

to describing architectural views is its ability to automate the

process of validating an instance of a view against its original

definition. For flexibility, our framework does not designate a

uniform formalism to describe the additional constraints

required to define a derived view. We have also limited the

scope of our paper so that we do not sidetrack our discussion

into the problem of developing standardized canonical or

graphical notations. However, standardization in notations

and constraint specification is mandatory to achieve the

automatic validation of an instance of a view, and the view

description language will be an indispensable tool for

standardization.

The view description language will also facilitate the

adoption of ourmeta-taxonomy framework and the exchange

of view specifications between different organizations.
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