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Abstract One of the most critical phases of software
engineering is requirements elicitation and analysis.
Success in a software project is influenced by the quality
of requirements and their associated analysis since their
outputs contribute to higher level design and verification
decisions. Real-time software systems are event driven
and contain temporal and resource limitation con-
straints. Natural-language-based specification and
analysis of such systems are then limited to identifying
functional and non-functional elements only. In order to
design an architecture, or to be able to test and verify
these systems, a comprehensive understanding of
dependencies, concurrency, response times, and resource
usage are necessary. Scenario-based analysis techniques
provide a way to decompose requirements to understand
the said attributes of real-time systems. However they
are in themselves inadequate for providing support for
all real-time attributes. This paper discusses and evalu-
ates the suitability of certain scenario-based models in a
real-time software environment and then proposes an
approach, called timed automata, that constructs a for-
malised view of scenarios that generate timed specifica-
tions. This approach represents the operational view of
scenarios with the support of a formal representation
that is needed for real-time systems. Our results indicate
that models with notations and semantic support for
representing temporal and resource usage of scenario
provide a better analysis domain.

Keywords Real-time Æ Requirements engineering Æ
Scenario-based Æ Time-automata

1 Introduction

Requirements analysis paves the way for high-level
design, generation of test cases for verification, and
supports early architecture reviews. As a result of such
analysis, analysts and architects gain a deeper and
thorough understanding of the system to be engineered.
A popular method of capturing requirements is using a
case-based approach [1]. In this method, requirements
are defined from the perspective of all actors (users as
well as hardware and software) at a hierarchical level.
However, these hierarchical use cases can be analysed at
different granularity levels by separating these use cases
into scenarios thereby providing a deeper understanding
of the system being developed. Weidenhaupt et al. [2]
showed that scenarios depict specific usage instances
between actors and a system. This allows evaluation
of individual, composite and interacting scenarios that
specify user requirements at a granularity level that
details the system’s behaviour.

Real-time software systems consist of event driven
processes and their requirements can be classified into
behavioural requirements and temporal requirements
[3]. Behavioural requirements specify the functionality
of the system and temporal requirements specify timing
constraints of responses from the system to specific
events. Since behavioural requirements of a real-time
system are descriptions of system functionality, they are
easily identified. Temporal requirements, however, may
not be read directly from requirements as several inter-
acting events may define a single temporal requirement.
Thus, expanding the use cases into specific scenarios,
and analysing them allows analysts to clearly under-
stand the nature of the system to be built.

This paper evaluates the suitability of scenario-based
requirements analysis for real-time systems. The study

H. Saiedian is a member of the Information & Telecommunication
Technology Center at the University of Kansas. His research was
partially supported by a grant from the National Science Foun-
dation (NSF).

H. Saiedian (&) Æ P. Kumarakulasingam
Electrical Engineering & Computer Science,
University of Kansas,
Lawrence, KS 66045, USA
E-mail: saiedian@eecs.ku.edu

M. Anan
Sprint Corporation, Overland Park,
KS 66211, USA

Requirements Eng (2005) 10: 22–33
DOI 10.1007/s00766-004-0192-6



applies the methods to an example problem and dis-
cusses the implications of the results. Section 2 discusses
the different scenario-based analysis methods used in
this study. Section 3 discusses the case study example. It
defines the research problem and then applies the chosen
scenario-based models. The strengths and weaknesses of
these methods are discussed and improvements are
suggested where applicable. Section 4lists the contribu-
tions of this work and provides suggestions for further
research on this topic.

2 Scenario-based requirements analysis methods

Several scenario-based methods have been discussed in
the recent literature. This section summarises the
essential elements of the scenario-based methods that
have been chosen in our study.

2.1 Use case (natural language) approach

The most popular scenario-based approach that belongs
to this category is use cases. As part of the UML stan-
dard, use cases are used for eliciting and analysing
functional requirements [1, 4]. Use cases can be
decomposed into scenarios and described using natural
language. This approach is meaningful during the initial
requirements elicitation phase. It simplifies the elicita-
tion and validation due to the use of natural language
and for interaction with the end users. However, this
method does not provide the detail aspects of a real-time
system such as timeliness, resource usage and state ori-
ented behaviour to analysts and designers. In addition,
Glintz [5,6,7] argues that use cases alone are insufficient
to provide functional requirements without modelling
any persistent state. Therefore, natural-language-based
processes are good for defining business processes and
fall short for analysing specifications for real-time sys-
tems and thus we focus on the representations briefly
discussed in the following sub-section. Table 1 (in
Sect. 3), however, includes a column about the strengths
and weaknesses of natural language descriptions.

2.2 State chart representation

Glintz [5,6,7] presents an approach to representing sce-
narios using state charts [8]. This approach provides the
means to represent single as well as composite and
abstract scenarios. Single scenarios can be illustrated as
structured text and state charts. Structured text also
provides for iteration, repetition and distinction between
user inputs and system responses. This allows for hier-
archical as well as detailed level views of the scenarios
resulting in a structure that can be analysed for real-time
system attributes. Figure 1 shows the general model
[5,6,7] of state chart representation. Scenarios are vali-
dated using common state chart validation methods. T
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Regnell et al. [9] extended the use case model with
graphical notations to represent scenarios at different
levels of abstractions. These levels are: environment
level, structural level and event level. At the environment
level, use cases are represented by relating the actors
with their goals for satisfying functional requirements.
The structural level describes a complete use case as a
sequence of episodes that contain sequences, exceptions,
interruptions and repetitions and the event level orders
events in each episode as message sequence charts [10].
Figure 2 shows the three levels of representation [9].

In Fig. 2 use case X at the environment level is chosen
for elaboration as a scenario at the structural level. This
scenario is shown as a graph of connected episodes with
time in the graph progressing downward. Regnell et al.
[9] defined notations to show exceptions, repetitions and
interruptions as episodes with the type identifier of the
episode marked in the top left corner of the episode box.
Figure 3, from Regnell et al. [9], shows an episode
structure with exceptions, repetitions and interruptions.
Interruptions are not connected with the flow of epi-
sodes as they can occur anywhere. They are shown next
to the main episode diagram. Initiation and termination
of a scenario is shown by hexagons labelled with the
name of the pre and post conditions at the top and
bottom of the episode respectively. Exception and
interruption episodes also terminate scenarios. Event
level diagrams show each episode in a scenario as a
message sequence chart. Events are shown on the event
level diagram encapsulated by their episodes, which
illustrate the dependencies between each scenario and its
operating environment properties.

2.4 Use case maps

Use case maps [11] capture behavioural and temporal
requirements of software systems. They provide visual
notations to causally link responsibilities of one or more
use cases. These relationships are then superimposed on
abstract components that represent the structure of the
system. Components can either represent software or
hardware elements. This notation shows the progression
of a scenario along use cases. This allows requirements
analysts to reason about relationships between func-
tional components, their behaviours, and structural
organisation of the system in an explicit manner. Thus,
the paths through the maps allow analysis of the system
[11].

Figure 4 shows an example of a use case map for a
specific scenario, along with some of the primitives
available for describing a scenario path through the
system. A scenario path traverses the system through
components A and B. The scenario path executes up to
component A, and waits for an event to join its path
before proceeding to completion through component B.
Filled circles represent starting points or waiting places

for a stimuli to begin new scenarios and bars depict the
beginning and end of paths, or marks where concurrent
path segments end or begin. The filled circles in Fig. 4
represent a wait on other events or scenarios. These
representations allow use case maps to show scenario
dependencies and interactions and allows reasoning
about scenarios.

2.5 Timed automata approach

It is important that the requirements language is simple
enough to be easily understood, but expressive enough
to fully describe the desired requirements. Formal
methods of requirements specification came into being
as a result of the lack of precision and presence of
ambiguity in narrative requirements specifications. They
have been used to improve the quality of software
specifications by modelling and formalising the
requirements of a system [12, 13].

Formal methods are mathematically based tech-
niques, which work as a fault-avoidance techniques that
can increase dependability by removing errors at the

Fig. 1 State chart representation of a scenario

Fig. 2 Hierarchical use case models with graphical representation:
Environment level (A), Structural level (B), Event level (C)

Fig. 3 Event and structural level representation of episodes



requirements, specification and design stages of devel-
opment. Another main advantage in using this approach
is the ability to structure a set of scenarios.

The main motivation for using formal methods is
to ensure the quality of the system by adhering to the
following attributes:

– Ambiguity: formal methods avoid ambiguity by
making a requirement subject to only one interpreta-
tion.

– Completeness:formal methods achieve completeness
by describing all significant requirements of concern
to the user, including requirements associated with
functionality, performance, design constraints, attri-
butes, or external interfaces.

– Consistency:formal methods make requirements to be
consistent by avoiding conflicts among requirements.

– Verifiability:formal methods provide a finite and cost-
effective process with which a developed software
system can be verified if it meets the requirements.

– Modifiability:formal methods ensure that any changes
to the requirements can be made easily, completely,
and consistently, while retaining the existing structure
and style of the set.

On the other hand, formal methods are not widely
visible for the following limitations:

– Formal specifications are difficult to read and under-
stand

– Formal methods cannot help model all aspects of the
real world

– Correctness proofs are resource-intensive
– Development costs increase (for some companies and

projects)
– Formal specifications can still have errors

Timed automata Formal methods can be used effec-
tively in the specifications of real-time systems but this
advantage comes at the expense of the readability and
effort to write the scenario. Therefore, for simplicity, this
paper will consider a semi-formal representation called
timed automata.

All scenarios described earlier were proven useful to
some degree in requirements engineering. The timed
automata approach, as described in Some et al. [14],
applies timed automata to scenarios with timing con-
strains, which provides an accurate way of considering
user requirements. It uses timed automata as a target
specification language. This approach represents the
operational view of scenarios with the support of a semi-

formal representation that is needed for real-time sys-
tems. It uses operations semantics, and a mapping be-
tween concepts of scenarios, and those of the theory of
timed automata. The major advantage of this approach
is its accuracy, simplicity and readability.

A scenario using the timed automata approach is
composed of interactions and reactions triggered by a
series of operations and conditions (stimuli). The time of
occurrence of scenarios can be constrained by delays and
timeouts. An interaction delay specifies the maximum,
minimum or exact amount of time that must be main-
tained between operations. The timeouts specify the
maximum delay for completion of an interaction or
scenario. Scenarios that involve timing constrains can be
formally represented using the following global con-
strains: Rinitial–delay, Rpre–cond, Rtimeout, Rrepetitions. A
scenario is composed of all possible sets of timed traces
(op1, d1)...(opn, dn) where each opi is an operation and i is
the instant it occurs according to an abstract clock. di is
the clock variable that corresponds to the operation opi,
which will be initialised and associated with different
transition to the state of the next operation [14].

The time of occurrence of operations can be con-
strained by initial interaction delays, the operation’s
timeout, and the scenario’s timeout. Expiry operations
may be associated with timeouts in order to be executed
when the maximum delay passes. Figure 5 shows an
example of scenario represented using the timed auto-
mata approach. This example shows the scenario as a
sequence of operations. Each operation maintains a
clock variable that corresponds to the operation. Each
operation might have temporal constraints or conditions
and it occurs only if they hold.

2.6 Rationale for model selection

We will focus on the four models that were briefly de-
scribed in previous sub-sections.

Real-time systems are event driven, periodic and are
differentiated from other software systems due to its

Fig. 4 Use case map description showing scenario coupling

Fig. 5 Timed automata representation of a scenario
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timeliness and throughput characteristics. Also in these
systems, more than one event could be active at any
given time providing the notion of concurrency. In
addition, any requirements analysis technique needs to
provide for an unambiguous and consistent reading of
the requirements. Another attribute is that these
requirements need to be traceable to hierarchical user
requirements. Therefore the models we have chosen to
compare had to incorporate the concept of events,
concurrency, timeliness and abstraction. In addition,
techniques that supported visual notations were given
preference since they were easier to read, analyse and
automate than natural language or mathematical model
based techniques. The four models we choose to study
provided powerful visual notations to illustrate and
reason about scenarios. These models also supported
real-time characteristics such as event and time repre-
sentation and concurrency. Finally, as discussed above,
the concept of abstraction is provided for in all these
models thus facilitating the study of these requirements
at different levels of hierarchy.

To summarise, these models were selected because:

– The selected models provide visual notations and are
easier to interpret.

– The selected models support representation of sce-
nario interaction facilitating the study of concurrency
in real-time systems.

– The selected models also support real-time charac-
teristics such as event and time representation and
concurrency.

– The selected models provide support for abstraction,
thus facilitating the study of the requirements at dif-
ferent levels of hierarchy.

Evaluation Criteria The chosen models will be evalu-
ated based on the following criteria:

– A model’s representational ability of a real-time sys-
tems characteristics, such as temporal requirements,
concurrency and asynchronous and periodic events.
A real-time software system’s essential characteristic is
that all actions performed by the software meet the
time specifications stated by the requirements. Also,
real-time software systems contain periodic and asyn-
chronous events that influence temporal and functional
specifications. In order to analyse the requirements, the
scenario-based method should provide a mechanism to
specify time and events in scenarios.

– Analysis at different levels of abstraction.
It is well known that complex software systems are
easier to analyse and understand when they are
decomposed in a hierarchal manner. It can be said that
real-time software systems aremore complex since they
have to fulfil functional as well as many non-functional
requirements, such as response time and throughput.
Hierarchal decomposition allows software architects
and software designers to focus on the analysis at their
levels of granularity. For example architects will use
the analysis to select suitable architectures, while

design engineers will select design patterns that satisfy
the requirements. Therefore the ability to provide a
mechanism for specifying abstraction in scenario-
based analysis methods is important.

– Representational and analytical capabilities to deal with
scenario interactions.

Requirements can seldom be represented by individ-
ual scenarios. Real-time software systems consist of
many threads or processes that run concurrently and
these threads and processes synchronise with each other
to accomplish the requested tasks. Then in this instance
many scenarios interact with each other to satisfy a
requirement. Therefore a real-time scenario-based anal-
ysis technique should provide support for representing
multiple scenarios and interactions among them.

The first criteria was selected as it contained the
essential characteristics of a real-time system as described
in next section. The second criteria was selected as it
represents important requirements engineering charac-
teristics. Since an analysis of real-time systems require-
ments would contain many scenarios and since real-time
systems exhibit the nature of concurrency it was essential
to study the capability of the techniques to deal with
dependencies and interactions between scenarios.

3 Case study: remote temperature sensor (RTS)

In this paper, we discuss four of the scenario-based
analysis methods previously illustrated on a real-time
industrial application. This example and the associated
requirements are chosen to highlight the differences be-
tween the four analysis techniques when they are studied
against the following real-time attributes:

– Temporal requirements or timeliness of system re-
sponses

– Illustration of concurrent requirements
– Composition of functional and temporal needs
– Resource usage limitations that affect response and/or

concurrency

3.1 Problem definition

The example chosen is a real-time industrial application
illustrated by Barbacci et al. [15]. This application con-
sists of a remote temperature sensor (RTS), 16 temper-
ature furnaces and 16 computer hosts. The RTS consists
of 16 furnaces and a digital thermometer as shown in

Fig. 6 Structural view of RTS application
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Fig. 6 and periodically updates the hosts with furnace
temperature readings. The host computers may also
request individual readings in an asynchronous manner.
During these requests the furnace is provided its update
rate for future periodic updates. The following list of
requirements are selected from Barbacci et al. [15]. The
authors deem these requirements to contain aspects of
timeliness, concurrency, resource usage and major
system functionality:

– The hosts shall receive periodic readings from the
RTS system at the times specified by each host com-
puter.

– The hosts must receive an initial report of the furnace
temperature within 10 s of sending a request.

– Furnace reading intervals shall be limited from 10 to
90 s.

– The system shall support 16 furnaces and hosts.

Our evaluation begins with the decomposition of
requirements into scenarios, then illustrating them using
the four different analysis techniques, followed by a
discussion of each method’s effectiveness for specifying
real-time system requirements. The following scenarios
are distilled from the requirements stated above and
contain individual, composite and interacting scenarios.

1. A specific host sends a control message and waits for
the initial response. RTS system responds with the
temperature reading within 10 seconds, and updates
the schedule table for future periodic updates.

2. The RTS system periodically updates each host at
their scheduled intervals.

3. Digital thermometer is read by the RTS for a specific
furnace’s temperature.

4. Each host message is acknowledged by the system.

3.2 Analysis

Four models are considered for the study: (1) Closed
state chart and structure text model [5], (2) Hierarchical
use case model [9], (3) Use case maps [11] and (4) Timed
automata approach [14].

These models were chosen for the following reasons:

– Models provided a mechanism to visualise real-time
requirements such as response and throughput times
and capture event driven actions

– Models contained support for representing interacting
and composite requirements and thus provide an
opportunity to specify concurrency between require-
ments

– Dependencies that affect timeliness such as resource
usage can be either illustrated or superimposed on
models

The scenarios defined for the example study can be
composed into the two abstract scenarios listed below.
This composition will hold true throughout the entire
study.

– Host request of a temperature reading from a specific
furnace

– RTS system’s periodic update to all hosts

3.2.1 State chart representation

Using Glintz’s state chart model [5] the two abstract
scenarios are shown in Fig. 7. The Process Host Re-
quest scenario begins when an incoming message is
detected by the RTS system via an interrupt event. The
message is analysed by the system and a message
acceptance or rejection acknowledgment is sent to the
host. If the message is accepted then the schedule table is
updated and the corresponding temperature furnace is
read and forwarded to the host.

Glintz’s method [5] allows for abstraction of ele-
mentary scenarios into a composite abstract scenario.
The Process Host Request abstract scenario is com-
posed of three elementary scenarios: Analyze Message,
Read Furnace Temperature and Send Message. The
state chart of Fig. 8 shows the transitions between these
abstract scenarios and the interconnections and depen-
dencies of scenarios based on the events in the system.
These events are also denoted with conditions under
which they move to the next causal scenario. In Fig. 8,
the system moves to the Read Furnace Temperature
scenario when a valid message is detected. If the message
is not valid, the system moves to the Send Message
scenario. The Read Furnace Temperature scenario
reads the temperature from the specified furnace and
provides the temperature to the system. Glintz’s method
[5] also allows description of each scenario in a struc-
tured text format as shown below:

Type Scenario: Analyze Message

Actor: RTS System

Fig. 7 High level scenarios of the RTS system

Fig. 8 State chart of process host request scenario in RTS
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Normal Flow:

1. System: Host message received.

2. System: Start request timeout timer.

3. System: Read message.

4.1. System: Validate message.

4.2. Identify furnace number and update furnace
period.

5. Request temperature reading.

6. Send temperature reading to host.

Alternative Flow:

4.1’System System validates message.

– if message is invalid then return error message,
terminate; endif.

3’,4’,5’ and 6’ System System sends temperature
reading

– if request timer times-out then send error message,
terminate; endif.

In the above instance the state charts were able to
specify the detail functionality of the application using
elementary and composite scenarios. They were also able
to show the dependencies between scenarios. However,
the temporal specifications of 10 s for request completion
was missing in the model. One can argue that the struc-
ture text description shown above captures this require-
ment, illustrated under the alternative flow section. Since
the timeout can occur in any one of the normal flow steps
it would have to be listed as an alternative for each
normal flow step. This reduces readability and affects the
temporal analysis of the system.

Figure 9 illustrates the Update Hosts scenario.
Updates are performed periodically at the intervals
specified for each host. This scenario begins when the
scheduled update time expires for each host and is then
followed by a temperature reading from a specified
furnace described by the Read Furnace Temperature
scenario. The same scenario is used to read the tem-
perature from all sixteen furnaces. Therefore the
composite scenario Update Hosts repeats each time the

timer expires for every furnace listed in the schedule
table. This information is difficult to represent directly in
the state chart model, but could be listed in the struc-
tured text that follows it.

3.2.2 Hierarchical graphical notation

The second method we study for describing scenario-
based requirements is the traditional use case model
extended with additional graphical notations and hier-
archical views proposed by Regnell et al. [9]. This
notation supports representing requirements at the
environment, structural and event levels. The environ-
ment level is described by conventional use case dia-
grams [1] as shown in Fig. 10. These use cases represent
the high level scenarios in our evaluation. These high
level scenarios, Process Host Request and Update
Hosts are further refined into structural and event levels.

The structural level description of use case Process
Host Request is shown in Fig. 11. There are four epi-
sodes in this use case: (1) analyze message, (2) send error
message, (3) read furnace, and (4) received message. A
message is received by the RTS and is informed of this
message through an interruption. If the message is valid
then the scenario progresses to the next causal episode
read furnace, else the scenario branches to the exception
episode send error message and terminates. We consider

Fig. 9 State chart of update hosts scenario in RTS

Fig. 10 Summary level use cases of RTS system

Fig. 11 Structural level description of scenario process host
request
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episode analyse message for further decomposition at
the event level in Fig. 12. In this figure, a host requests a
temperature reading from its respective furnace. The
RTS system responds to this request. The temporal
requirements of the request are then shown by a timer
activation point, a timeout point and a timer reset point
in the event level diagram. This shows the reader that
this is a time dependent scenario and failure to meet the
timeliness requirement would end in the generation of an
error message. In Fig. 12 the event level diagram coveys
the following information about the system:

– Episode Analyze Message is bounded by response
time constraints.

– Episode Analyze Message can either generate an
exception or proceed to its next causal episode Read
Furnace.

Figures 13 and 14 represent the structural and event
level diagrams of the Update Hosts scenario. Episodes
included in this scenario are: read furnace and send
temperature. The scenario begins with an interrupting
episode that requests a temperature reading from a
specified furnace. The interrupting episode is triggered
when system time is a multiple of any one of the times in
the schedule table. Once the temperature is read, the
RTS system processes the information and forwards the

reading to the appropriate host. This completes the
update for the specific host. However the requirement
states that the system update all sixteen hosts in a peri-
odic manner. This information is not depicted at the
structural level. One can provide the argument that
placing a repetition operator in the read temperature
episode could satisfy this requirement. However as time
progresses downward at the structural level placing this
operator in the read temperature episode would mean
that we are awaiting 16 consecutive interruptions (i.e., 16
read temperature requests) from the system without
sending any readings back to the system. Clearly this
would be an incorrect specification at the structural
level.

The event level diagram of Fig. 14 shows the tem-
poral requirements of episode Read Temperature. The
event begins with a temperature request to the furnace.
The thermometer entity reads the temperature from the
requested furnace and forwards the data to the RTS.
Since our requirements state that the consecutive fur-
nace readings be at least 10 s apart and no more than
90 s apart the message has a conditional parameter:
(last reading time+10 s)<current time<(last reading
time+90 s). This indicates a wait on the furnace reading
and represents a resource limitation.

Therefore, we have shown that the extended graphi-
cal and hierarchical views proposed by Regnell et al. [9]
allows representation of temporal and resource usage.
However the representation fell short in illustrating how
single episodes could be used multiple times at the event
level or structural level.

3.2.3 Use case maps

The next method chosen for evaluation is use case maps.
We have chosen the essential primitives of use case maps
to illustrate our example. Use case maps show related
scenarios or use cases in a map-like diagram. Each sce-
nario in a use case can be shown as a path through the
problem space that traverses structural components [11]
of the system. These paths traverse black box compo-

Fig. 12 Event level description of scenario process host request

Fig. 13 Structural level description of scenario update hosts Fig. 14 Event level description of episode read temperature
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nents of a system. Figure 15 represents the use case map
for Process Host Request. The use case path encoun-
ters a fork at the Analyze Message component that
dictates the occurrence of an alternative flow if the re-
quest message is not successful and a wait condition in
the path at the Read Furnace component shows that the
scenario cannot move forward until a reply from the
thermometer is received. Structural components, forks
and wait states then allow representation of behaviour,
interactions and resource limitations. Then this repre-
sentation could be used for analysing high-level design
decisions and organising the components for handling
interactions and concurrency in the system. However,
elementary notations in use case maps are unable to
represent repetitions of use cases from a system level
perspective, and are limited in that sense.

3.2.4 Timed automata

This new formalised view of representing scenarios using
timed automata, scenarios can be constrained by delays
and timeouts. Figures 16 and 17 show how timed
automata models the two abstract scenarios that have
been identified in the RTS system. Each scenario was
represented as a sequence of operations.

In Fig. 16, the Process Host Request scenario begins
with checking for a pre-condition or set of pre-conditions
that must hold in the system prior to the scenario exe-
cution, some temporal constrains (like number of trials
and timeout). Then, the Process Host Request scenario
executes next operations in the following order: (1) Any
Host can send control messages to RTS system request-
ing for a Furnace temperature, (2) RTS system notifies
Host with the reception of the message, (3) Host receives
the confirmation of the reception, (4) RTS system up-
dates the schedule table with schedule intervals for that
Host, (5) RTS reads the Furnace temperature, and then
either (6) RTS sends temperature to Host if waiting time
is less than 90 s or (7) RTS sends error message to Host if
waiting time is more than 90 s. Each operation maintains
a clock variable d ithat corresponds to the operation and
monitors the abstract clockd for scenario timeouts. Any
operation is dependent on meeting time constrains of the
previous operation d i–1 and the abstract clock, i.e.,
The abstract clock ¼

Pn
i¼1 di.

Similarly, Fig. 17 describes the Update Hosts
scenario. Updates are performed periodically at the
intervals specified for each host. This scenario begins
after scheduled update time (initial delay) expires for the
host. Then, it is followed by a temperature request from

Fig. 15 Use case map for process host request scenario

Fig. 16 Process host request
scenario using timed automata
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a specified furnace described by the Read Furnace
Temperature scenario. This scenario is also called by
Process Host Request to read the temperature from the
furnaces.

This approach can be combined with any previous
scenario approach to represent requirements specifica-
tions at different levels of abstractions in a more accu-
rate way. Figures 18, 19 and 20 show some examples of
how the timed automata approach can be applied to
different scenario approaches described earlier to make
them more formalised and accurate. Clearly, timed
automata approach is accurate, very simple to read and
understand, and provides the support of formal repre-
sentation that is needed for real-time systems.

3.3 Discussion

We have applied four different scenario-based models to
a real-time software system. We analysed two essential
requirements of the system, which were composed of
many elementary scenarios.

The state chart and structure text model was able to
capture the behavioural nature of the system. Temporal
and resource usage elements were difficult to specify
visually, but were structured into a formal text. Com-
position of scenarios allowed the reader to show con-
currency between requirements.

The extended hierarchical use case model illustrated
the scenarios at three levels: environment, structural and
event level. The behaviour of the system was illustrated
at the structural level and the temporal and resource
usage information was shown at the event level. Con-
currency was not explicitly shown except as use cases.

One d of this model is the need to provide tool sup-
port, not only for diagram drawing, but also for auto-
mated analysis and checking. It would be useful to use
formal language notation for system action specifica-

Fig. 17 Update hosts scenario
using timed automata

Fig. 18 Applying timed automata to state chart of process host
request scenario

Fig. 19 Applying timed automata to hierarchical graphical nota-
tion for event level of process host request scenario
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tions. In other words, there is a need to formally define
the syntax and semantics of the presented use case model
in some metadata language, which is an improvement
that was handled using the Timed Automata approach.

Buhr and Casselman [11] use case maps provide a
road map of scenario execution. They show the inter-
acting and dependent nature of all elementary scenarios
involved in the completion of the abstract scenario
Process Host Request. Resource and relative temporal
properties of the scenarios are not shown. Most event
driven events such as interrupts can be shown as forks in
the path, however, assigning temporal properties to
these paths are not possible. This prevents a complete
analysis of the system.

The timed automata approach aimed to formalise
scenarios in a simple, readable, and accurate way to
consider users requirements. Also, it describes the tem-
poral relations between events. The formalism developed
can be used to build an algorithm that generates timed
specifications. This approach can be improved by using
more operation semantics, and mapping between con-
cepts of scenarios, and those of the theory of timed
automata.

Scenario-based analysis of real-time software
requirements provide a level of granularity desired by
analysts and developers to specify and define a real-time
software system. Findings from this work are:

– State charts along with structured text provides
behaviour level analysis of the system and can be ex-
tended to represent temporal properties. Concurrent
scenarios can be shown as abstractions at a higher
level. The model does not show any support for re-
source usage.

– Message chart or sequence based scenario illustrations
provide a more complete mechanism to analyse real-
time systems. The annotation of time, sequences of
scenario interactions and resource usage limitations
are facilitated by this method.

– Use case maps provide a good overall view of all
scenario dependencies and interactions between com-
ponents present in the system. Concurrency can be
represented but temporal properties are limited only if
elementary use case map constructs are used. We
consider this method as a good first starting point for
identifying the relationships between scenarios, fol-
lowed by message sequence charts of each individual
scenario for a complete specification.

– The timed automata approach can be combined with
any of the discussed scenario approaches to represent
requirements specifications at different levels of
abstractions in a formal and accurate way. The timed
automata approach can improve the weaknesses of
the extended hierarchical use case model in defining
the syntax and semantics of the model more formally.
This will provide the support of a formal representa-
tion that is needed for real-time systems.

In order to evaluate and analyse real-time systems, a
comprehensive understanding of various techniques and
approaches is necessary. Table 1summarises major sce-
nario approaches covered in this paper for real software
systems using different representations. The table com-
paratively illustrates different scenario approaches based
on various categories that investigate the validity of an
approach to support real-time systems.

The categories used in the comparison address the
most important attributes that corresponds to the cho-
sen evaluation criteria. Some categories used in the
evaluation such as ‘‘Focus on System Behaviour’’ and
‘‘Real-Time Support’’ will check the model’s ability to
represent real-time systems characteristics. Other cate-
gories such as ‘‘Complexity,’’ ‘‘Granularity’’ and
‘‘Requirements Engineering Role’’ will measure the
model’s ability to analyse requirements at different levels
of abstraction and discuss its representational capabili-
ties to deal with scenario interactions.

Table 1 also shows that some approaches satisfy
certain evaluation criteria for real-time systems but not
all required attributes. For example, the state chart
representation can represent scenarios at various levels
of abstractions but it doesn’t define temporal properties
of the system. Also, hierarchical graphical notation
shows dependency between scenarios and represents
scenarios at different hierarchical levels with some limi-
tations in showing some temporal properties of scenar-
ios. This comparative illustration helps in identifying the
strengths and weaknesses of each approach which leads
to finding ways to improve each approach for different
software systems.

An approach such as timed automata can be combined
with other scenarios such as state chart representation or
use casemaps to construct amodel that is able to represent
real-systems characteristics and represent requirements
specifications at different levels of abstraction.

Our key argument is that an approach that satisfies
our evaluation criteria will be the most effective in
analysing and evaluating real-time systems.

Fig. 20 Applying timed automata to use case map for process host
request scenario
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4 Conclusions

In this paper, we have analysed and evaluated some
methods for analysing scenario-based requirements of
real-time systems. Real-time systems are characterised
by temporal and resource constraints in addition to user
needs. Our study indicates that the message sequence
charts used by Regnell et al. [9] comes close to depicting
a real-time system for complete scenario-based analysis
when it is combined with the timed automata approach.
This new approach will define the syntax and semantics
of the model more formally and provides the support
of a formal representation that is needed for real-time
systems. The use of three different levels in Regnell et al.
[9] model allows the analyst to view and reason about
the systems responses to the scenarios from different
perspectives thus considering the needs of all stake-
holders in a system.

Real-time software systems are characterised by re-
sponse times, periodic and asynchronous events and
resource constraints. Therefore any real-time require-
ments analysis technique should attempt to include these
characteristics in their methods. We have discussed four
such methods above and now provide our recommen-
dations.

State chart and message sequence chart illustrations
allow abstraction and thus allows stake holders of the
system to analyse the system at their level of granu-
larity, which enhances understanding of the system.
Although state charts are able to represent scenarios
and their dependencies to various events there were no
provisions for showing time dependencies of the sce-
nario elements. However, when the state chart model
is combined with the timed automata approach, as
shown in Fig. 18, time dependencies can be then rep-
resented allowing a more thorough and accurate
analysis. Message sequence charts allow the represen-
tation of time, events and scenario interactions. How-
ever the semantics for representing time are very
elementary and does not provide support for analysing
the temporal properties at the macro level. Extending
the message sequence charts with the timed automata
approach provided a rich set of semantics and rela-
tionships to an abstract clock that could be used for
real-time analysis. Finally, message sequence charts
allowed the manipulation of hardware or system re-
sources as shown in Fig. 12 and the state chart method
did not provide semantics for such notations. There-
fore we conclude that extending message sequence
charts with the timed automata approach satisfies
representation and analysis of all real-time character-
istics.

Our work was applied to a uni-processor environ-
ment and thus was devoid of any true multi-threaded
scenarios or concurrent scenarios. Another limitation of
our study is the extent to which use case maps were used
in scenario analysis. It is well known that use case maps
not only provide the means for scenario or requirements

analysis but also provide the bridge between require-
ments analysis and design [11, 16]. Thus use case maps
contain a rich set of notations to annotate interrupt
service requests, processes and threads. We have limited
our use of the notations to paths, forks and joins and
wait states. Finally this work can be extended to multi-
processor based environments to investigate the models
effectiveness in specifying concurrent scenario-based
systems. Another interesting application would be to use
the complete use case maps notation for scenario-based
analysis of real-time systems.
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