
0018-9162/05/$20.00 © 2005 IEEE September 2005 43

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Test-Driven Development:
Concepts, Taxonomy,
and Future Direction

T he test-driven development strategy
requires writing automated tests prior to
developing functional code in small, rapid
iterations. Although developers have been
applying TDD in various forms for several

decades,1 this software development strategy has
continued to gain increased attention as one of the
core extreme programming practices.

XP is an agile method that develops object-ori-
ented software in very short iterations with little
upfront design. Although not originally given this
name, TDD was described as an integral XP prac-
tice necessary for analysis, design, and testing that
also enables design through refactoring, collective
ownership, continuous integration, and programmer
courage.

Along with pair programming and refactoring,
TDD has received considerable individual attention
since XP’s introduction. Developers have created
tools specifically to support TDD across a range of
languages, and they have written numerous books
explaining how to apply TDD concepts. Re-
searchers have begun to examine TDD’s effects on
defect reduction and quality improvements in aca-
demic and professional practitioner environments,
and educators have started to examine how to inte-
grate TDD into computer science and software
engineering pedagogy. Some of these efforts have
been implemented in the context of XP projects,
while others are independent of them.

TEST-DRIVEN DEVELOPMENT DEFINED
Although its name implies that TDD is a testing

method, a close examination of the term reveals a
more complex picture.

The test aspect
In addition to testing, TDD involves writing auto-

mated tests of a program’s individual units. A unit
is the smallest possible testable software component.
There is some debate about what exactly constitutes
a unit in software. Even within the realm of object-
oriented programming, both the class and method
have been suggested as the appropriate unit.
Generally, however, the method or procedure is the
smallest possible testable software component.

Developers frequently implement test drivers and
function stubs to support the execution of unit tests.
Test execution can be either a manual or automated
process and can be performed by developers or des-
ignated testers. Automated testing involves writing
unit tests as code and placing this code in a test har-
ness or framework such as JUnit. Automated unit
testing frameworks minimize the effort of testing,
reducing a large number of tests to a click of a but-
ton. In contrast, during manual test execution devel-
opers and testers must expend effort proportional
to the number of tests executed.

Traditionally, unit testing occurred after devel-
opers coded the unit. This can take anywhere from
a few minutes to a few months. The unit tests might
be written by the same programmer or by a desig-
nated tester. With TDD, the programmer writes the
unit tests prior to the code under test. As a result,
the programmer can immediately execute the tests
after they are written.

Test-driven development creates software in very short iterations with
minimal upfront design. Poised for widespread adoption, TDD has become
the focus of an increasing number of researchers and developers.

David Janzen
Simex LLC

Hossein
Saiedian
University
of Kansas

44 Computer

The driven aspect
Some definitions of TDD imply that it is

primarily a testing strategy. For example, in
JUnit in Action (Manning Publications,
2003), Vincent Massol and Ted Husted stated
that

Test-driven development (TDD) is a program-
ming practice that instructs developers to write
new code only if an automated test has failed,
and to eliminate duplication. The goal of TDD
is ‘clean code that works.’

However, according to XP and TDD pioneer
Ward Cunningham, “Test-first coding is not a test-
ing technique.” TDD is known by various names
including test-first programming, test-driven
design, and test-first design. The driven in test-dri-
ven development focuses on how TDD leads analy-
sis, design, and programming decisions. TDD
assumes that the software design is either incom-
plete or pliable and open to changes. In the context
of XP, TDD subsumes many analysis decisions. The
customer should be “on-site” in XP. Test writing is
one of the first steps in deciding what the program
should do, which is essentially an analysis step. The
Agile Alliance offers another definition that cap-
tures this idea (www.agilealliance.org/programs/
roadmaps/Roadmap/tdd/tdd_index.htm):

Test-driven development (TDD) is the craft of pro-
ducing automated tests for production code, and
using that process to drive design and program-
ming. For every tiny bit of functionality in the pro-
duction code, you first develop a test that specifies
and validates what the code will do. You then pro-
duce exactly as much code as will enable that test
to pass. Then you refactor (simplify and clarify)
both the production code and the test code.

To promote testing to an analysis and design step
the practice of refactoring must be introduced.
Refactoring changes the structure of an existing
body of code without changing its external behav-
ior. A test may pass, but the code may be inflexible
or overly complex. By refactoring the code, the test
should still pass but the code will be improved.

Understanding that TDD is more about analysis
and design than it is about testing is one of the most
challenging conceptual shifts for new adopters of
the practice. Program testing has traditionally
assumed the existence of a program. The TDD idea
that a test can be written before the program or that
test can aid in deciding what program code to write

and what that program’s interface should look like
is a radical concept for most software developers.

The development aspect
Intended to aid in constructing software, TDD

is not in itself a software development methodol-
ogy or process model. It is a practice, a way of
developing software to be used with other prac-
tices, in a particular order and frequency and in the
context of a process model. TDD has emerged
within a particular set of process models. It can be
applied as a microprocess within the context of
many different process models.

TDD produces a set of automated unit tests that
provide some side effects in the development
process. The practice assumes the automated tests
will not be thrown away once a design decision is
made. Instead, the tests become a vital component
of the development process, providing quick feed-
back to any changes to the system. If a change
causes a test to fail, the developer knows immedi-
ately after making the change, while the test is still
fresh in the developer’s mind. Among the draw-
backs, that developer must now maintain both the
production code and the automated tests.

TDD’S HISTORICAL AND MODERN CONTEXTS
Despite the lack of attention in undergraduate

curriculum and inconclusive reports of usage in
industry, a wide range of software tools exist to sup-
port testing, making TDD’s emergence possible.

Software development methodologies
A software development process or methodol-

ogy defines the order, control, and evaluation of the
basic tasks involved in creating software. Software
process methodologies range in complexity and
control from largely informal to highly structured.
Developers classify these methodologies as pre-
scriptive or agile and label the specific types as
waterfall, spiral, incremental, or evolutionary.

When an organization states that it uses a par-
ticular methodology, it often applies a combination
of smaller, finer-grained methodologies on a pro-
ject scale instead. For example, an organization
might apply an incremental development model,
building small, cumulative slices of a project’s fea-
tures. In each increment, the developers could apply
a waterfall or linear method of determining require-
ments, designing a solution, coding, testing, and
then integrating. Depending on the size of the incre-
ments and the waterfall’s time frame, the process
could be labeled differently, with potentially very
different results in terms of quality and developer

TDD assumes
that the software
design is either

incomplete
or pliable
and open

to changes.

September 2005 45

satisfaction. If we break a software project into N
increments where Ii represents each increment, then
the equation Σi = 1

N Ii can represent the entire project.
If N is reasonably large, we can label this as an
incremental project. However, if N ≤ 2, we would
label this as a waterfall project.

If the increments require modifying a significant
amount of overlapping software, we can say that
our methodology is more iterative in nature.
Specifically, for project P consisting of code C and
iterations I=Σi = 1

N Ii, if Ci is the code affected by iter-
ation Ii, and if project P is iterative, then Ci ∩ Ci + 1

≠ Θ for most i such that 1 < i < N.
Similarly, with incremental and waterfall ap-

proaches, we expect a formal artifact, such as a spec-
ification document, for documenting the increment’s
requirements. If the artifact is informal—say, some
whiteboard drawings or an incomplete set of UML
diagrams and was generated quickly—we would be
working in the context of an agile process. The
approach and perspective of the architecture or the
design would cause us to label the process aspect-
oriented, component-based, or feature-driven.

Some individual software developers and smaller
teams apply even finer-grained models such as the
personal software process or the collaborative soft-
ware process. The time, formality, and intersection
of the steps in software construction can determine
the way developers categorize a process method-
ology.

The order in which construction tasks occur influ-
ences a project’s label and its quality. Natural and
logical, the traditional ordering is requirements elic-
itation, analysis, design, code, test, integration,
deployment, and maintenance. We could, however,
consider some possible reorderings even though
most do not make sense. For example, we would
never maintain a system that hasn’t been coded.
Similarly, we would never code something for which
we have no requirements.

Requirements do not necessarily imply formal
requirements. A requirement can be as simple as an
idea in a programmer’s head. Programmers have
applied the prototyping approach when require-
ments are fuzzy or incomplete. With this approach,
we may do very little analysis and design before cod-
ing, but ultimately might have to discard the proto-
type even though it was a useful tool in determining
requirements and evaluating design options.

When we closely examine the design, code, and
test phases, we see many finer-grained activities.
For example, various types of testing take place,
including unit, integration, and regression testing.
The timing, frequency, and granularity of these tests

can vary widely. Some testing can be con-
ducted early—concurrent with other coding
activities. Test-driven development reorders
these steps to an advantage. By placing fine-
grained unit tests before just enough code to
satisfy that test, TDD can affect many aspects
of a software development methodology.

TDD’s historical context
Test-driven development has emerged in

conjunction with the rise of agile process
models. Both have roots in the iterative, incre-
mental, and evolutionary process models used as
early as the 1950s. In addition, tools have evolved
to play a significant role in supporting TDD.

Early test, early examples. Research on testing has
generally assumed the existence of a program to be
tested, implying a test-last approach. Moving tests
from the end of coding to the beginning, however,
is nothing new. Software and test teams commonly
develop tests early in the software development
process, often with the program logic. The evalu-
ation and prevention life-cycle models integrated
testing early in the software development process
nearly two decades ago. Introduced in the 1980s,
the Cleanroom approach to software engineering
included formal verification of design elements
early in the development process. Some claim that
NASA’s Project Mercury applied a form of TDD as
early as the 1950s.1

Prior to the introduction of XP in 1998, little had
been written about the concept of letting small
incremental automated unit tests drive software
development and design processes. Despite the lack
of published documentation, many developers have
probably used a test-first approach informally. Kent
Beck claims he “learned test-first programming as
a kid while reading a book on programming. It said
that you program by taking the input tape ... and
typing in the output tape you expect. Then you pro-
gram until you get the output tape you expect.”2

Some argue that TDD merely gives a name and
definition to a practice that has been sporadically
and informally applied for some time. TDD is more
than this. As Beck states, XP takes the known best
practices and “turns the knobs all the way up to
ten.”2 Many developers might have been thinking
and coding in a test-first manner, but TDD does
this in an extreme way: always writing tests before
code, making tests as small as possible, and never
letting code degrade. TDD fits within a process
model, and the development of incremental, itera-
tive, and evolutionary process models has been vital
to its emergence.

The order
in which

construction
tasks occur
influences a

project’s label
and its quality.

46 Computer

Iterative, evolutionary, and incremental develop-
ment. Iterative development involves repeat-
ing a set of development tasks, generally
on an expanding set of requirements.1

Evolutionary approaches involve adaptive
and lightweight iterative development.

Being adaptive refers to using feedback from
previous iterations to improve the software.
Being lightweight refers to the lack of complete
specifications at the beginning of development,
thus allowing feedback from previous itera-
tions and from customers to guide future iter-
ations. Lightweight can also refer to other

aspects such as a process’s level of formality and
degree of documentation. The spiral model is an evo-
lutionary approach that incorporates prototyping
and the cyclic nature of iterative development with
risk-driven-iterations and anchor point milestones.
The incremental model produces a series of releases,
called increments, that provide more functionality
with each increment.

TDD developed within the context of such itera-
tive, incremental, and evolutionary models. TDD
works because these approaches provide the pre-
requisite process models. Beck claims that to imple-
ment XP, developers must apply all of the
incumbent practices—leaving some out weakens the
model and can cause it to fail.3 TDD requires that
design decisions be delayed and flexible to influence
software design. Each new test might require refac-
toring and a design change. Automated tests give
programmers the courage to change any code and
the information they need to know quickly if some-
thing has broken, enabling collective ownership.

Automated testing
Software tools have become important factors in

the development of modern software systems. Tools
ranging from compilers, debuggers, and integrated
development environments to modeling and com-
puter-aided software engineering tools have
improved and increased developer productivity.

Tools have played an important role in the emer-
gence of TDD, which assumes the existence of an
automated unit testing framework. Such a frame-
work simplifies both the creation and execution of
software unit tests. Test harnesses, basically auto-
mated testing frameworks, provide a combination
of test drivers, stubs, and interfaces to other sub-
systems. Often such harnesses are custom-built,
although commercial tools do exist to assist with
test harness preparation.

Erich Gamma and Kent Beck developed JUnit,
an automated unit testing framework for Java.

Essential for implementing TDD with Java, JUnit
is arguably responsible for much of TDD and XP’s
wide popularity. JUnit-like frameworks have been
implemented for several different languages, cre-
ating a family of frameworks referred to as xUnit.

Generally, xUnit lets a programmer write sets of
automated unit tests that initialize, execute, and
make assertions about the code under test.
Individual tests are independent of one another so
test order does not matter. The programmer reports
the total number of successes and failures. xUnit
tests are written in the same language as the code
under test and thus serve as first-class clients of the
code, while tests can actually serve as documenta-
tion for it.

On the other hand, because developers imple-
ment xUnit in the target language, that language
determines the tool’s relative simplicity and flexi-
bility. For example, JUnit is simple and portable
partly because it takes advantage of Java’s porta-
bility through the bytecode/virtual machine archi-
tecture. It uses Java’s ability to load classes
dynamically and exploits Java’s reflection mecha-
nism to automatically discover tests. In addition,
JUnit provides a portable graphical user interface
that has been integrated into popular integrated
development environments such as Eclipse.

A wide range of additional tools have emerged to
support automated testing, particularly in Java.
Some tools simplify the creation of mock objects,
or stubs. The stubs replace the needed collaborat-
ing objects so that developers can test a particular
object. They can use other tools such as Cactus and
Derby with JUnit to automate tests that involve
J2EE components or databases.

The proliferation of software tools that support
TDD shows that it has widespread support and will
likely become an established approach. JUnit’s sim-
plicity and elegance have been a significant factor
in TDD’s use, particularly in the Java community.
Programmers can develop unit tests easily and exe-
cute large test suites with a single button click,
yielding quick results about the system’s state.

Early testing in academia
The undergraduate computer science and soft-

ware engineering curriculum provides one indica-
tor of a software practice’s widespread acceptance.
Sometimes academia has led practice in the field,
sometimes it has followed. Software engineering,
iterative development, and TDD all seem to follow
this latter model.

Much software engineering research originated
in academia and then found its way into common

TDD developed
within the
context of
iterative,

incremental,
and evolutionary

models.

September 2005 47

practice. The undergraduate computer science and
software engineering curriculum, however, tends
to reflect or even lag behind common practice in
industry. The choice of programming language has
commonly followed business needs. Process mod-
els developed in practice later become reflected in
curricula.

The 1991 ACM Curriculum Guidelines recom-
mended giving fewer than eight hours each of lec-
ture and lab time to iterative development processes
and verification and validation. The 2001 guide-
lines recommended giving an even smaller amount
of time to development processes and software val-
idation—two and three hours each, respectively.

Undergraduate texts give little attention to com-
parative process models. Texts provide limited cov-
erage of software design and testing techniques.
The topics of software design and testing are often
relegated to a software engineering course that may
not be mandatory for all students.

Extreme programming’s place in undergraduate
education has been the topic of much debate. Some
argue strongly for using XP to introduce software
engineering to undergraduates. Others argue that XP
and agile methods offer only limited benefits. Given
the different opinions on using XP in the undergrad-
uate curriculum, TDD has received limited exposure
at this level. Some educators have called for increased
design and testing coverage. Others see TDD as an
opportunity to incorporate testing in the curriculum,
rather than relegating it to an individual course.

TDD tools have, however, found their way into
early programming education. BlueJ, a popular
environment for learning Java, incorporates JUnit
and adds help for building test cases at an early
stage in a programmer’s learning cycle. Proponents
have advocated using JUnit for early learning of
Java because it abstracts the bootstrapping mech-
anism of main(), allowing the student to concen-
trate on the use of objects early.

TDD has yet to achieve widespread acceptance in
academia, at least partly because faculty who do
not specialize in software engineering are not likely
to be familiar with it. TDD instructional materials
that target undergraduate courses remain basically
nonexistent.

Recent context
XP and agile methods have received much atten-

tion in the past few years. Even though conclusive
documentation is lacking, anecdotal evidence indi-
cates that TDD usage is rising.

Agile methods. These methods clearly have roots
in the incremental, iterative, and evolutionary

methods. Pekka Abrahamsson and col-
leagues4 provide an evolutionary map of
nine agile methods and describe how they
focus on simplicity and speed while empha-
sizing people over processes.

Probably the most well-known agile
method, XP is often used in combination
with other agile methods such as Scrum. XP
proposes using TDD as an integral compo-
nent for developing high-quality software.
The highly disciplined practice of TDD and
the simple, lightweight nature of agile
processes give rise to an interesting conflict.
Potential TDD adopters often express concern
regarding the time and cost of writing and main-
taining unit tests. Although he concedes that auto-
mated unit tests are not necessary for absolutely
everything, Beck insists that XP cannot work with-
out TDD because it provides the glue that holds
the process together.3

Adoption measures. Measuring the use of a partic-
ular software development methodology is hard.
Many organizations might be using the method-
ology without talking about it. Others might claim
to be using a methodology when in fact they are
misapplying it. Worse yet, they might be advertis-
ing its use falsely. Surveys might be conducted to
gauge a method’s usage, but often only those who
are much in favor or much opposed to the method-
ology will respond.

A 2002 survey reported that out of 32 survey
respondents across 10 industry segments, 14 firms
used an agile process.5 Of these, five were in the
e-business industry. Most of the projects using agile
processes were small, involving 10 or fewer partic-
ipants and lasting one year or less. A 2003 survey
reported that 131 respondents claimed they used an
agile method.6 Of these, 59 percent claimed to be
using XP and implied they were using TDD. Both
surveys revealed positive results from applying agile
methods, with increases in productivity and qual-
ity and reduced or minimal changes in costs.

XP has accumulated a substantial body of litera-
ture. Most of this involves the promotion of XP or
explains how to implement it. Many experience
reports present only anecdotal evidence of XP’s ben-
efits and drawbacks. Although the existence of these
reports indicates that XP is being adopted in many
organizations, it remains unclear if these same orga-
nizations will continue to use XP over time or, if
they have, if they will move on to other methods.

Although XP’s popularity implies a growing
adoption of TDD, we have no idea how widely it is
being used. Organizations may be using XP with-

XP proposes
using TDD as
an integral
component

for developing
high-quality
software.

48 Computer

out adopting all of its practices or they may be
applying the practices inconsistently. On a project at
ThoughtWorks, Jonathan Rasmusson, an early XP
adopter, estimates one-third of the code was devel-
oped using TDD.7 In the same report, Rasmusson
stated, “If I could only recommend one coding prac-
tice to software developers, those who use XP or
otherwise, it would be to write unit tests.”

In this ThoughtWorks project, developers used
16,000 lines of automated unit tests on 21,000 lines
of production code. Many tests were written in
both test-first and test-last iterations.

Despite the possibility of adopting XP without
it, TDD seems to be a core XP practice. Anecdotal
evidence indicates that TDD is commonly included
when only a subset of XP is adopted.

The use of xUnit testing frameworks provides
another possible indicator of TDD’s use. JUnit, the
first such framework, has enjoyed widespread pop-
ularity (www.junit.org). No JUnit adoption statis-
tics are directly available. The Eclipse core
distribution, a popular integrated development
environment primarily used for Java development
includes JUnit. A press release issued in February
2004 on the Eclipse Web site states that the Eclipse
platform has recorded more than 18 million down-
load requests since its inception. Although dupli-
cate requests from the same developer can occur,
the figure is still substantial. Certainly not all
Eclipse developers use JUnit, nor do all JUnit
adopters use TDD, but it is likely that the popu-
larity of XP, JUnit, and Eclipse combined implies a
certain degree of TDD adoption.

EVALUATIVE TDD RESEARCH
Since the introduction of XP, many practitioner

articles and books on applying TDD have been
written. There has been relatively little evaluative
research on the benefits and effects of TDD, how-
ever.

Research on TDD can be categorized broadly by
context. In particular, TDD research is classified as
industry if the study or research was conducted pri-
marily with professional software practitioners. It
is classified as academia if the practitioners are pri-
marily students and the work takes place in the con-
text of an academic setting. Academic research also
includes studies in which students work on a pro-
ject for a company but in the context of an acade-
mic course.

TDD in industry
A few evaluative research studies have been con-

ducted on TDD with professional practitioners.
North Carolina State University seems to be the only
source of such a study to date. Researchers at NCSU
have performed at least three empirical studies on
TDD in industry settings involving fairly small
groups in at least four different companies.8-10 These
studies examined defect density as a measure of soft-
ware quality, although some survey data indicated
that programmers thought TDD promoted simpler
designs. In one study, programmers’ experience with
TDD varied from novice to expert, while program-
mers new to TDD participated in the other studies.

These studies showed that programmers using
TDD produced code that passed 18 percent to 50
percent more external test cases than code pro-
duced by corresponding control groups. The stud-
ies also reported less time spent debugging code
developed with TDD. Further, they reported that
applying TDD had an impact that ranged from
minimal to a 16 percent decrease in programmer
productivity—which shows that applying TDD
sometimes took longer. In the case that took 16 per-
cent more time, researchers noted that the control
group wrote far fewer tests than the TDD group.

Table 1 summarizes these studies and labels each
experiment as either a case study or a controlled
experiment.

TDD in academia
Several academic studies have examined XP as a

whole, but a few focused on TDD. Although many
of the TDD studies published in academic settings
are anecdotal, the five studies shown in Table 2
specifically report on empirical results. When refer-
ring to software quality, all but one11 study focused
on the ability of TDD to detect defects early. Two
of the five studies reported significant improvement
in software quality and programmer productiv-
ity.11,12 One reported a correlation between the
number of tests written and productivity.13 In this
particular study, students using test-first methods
wrote more tests and were significantly more pro-
ductive. The remaining two studies14,15 reported
no significant improvement in either defect density
or productivity.

All five of these relatively small studies lasted a
semester or less and involved programmers who had
little or no previous experience with TDD.

Table 1. Summary of TDD research in industry.

Number of Number of
Study Type companies programmers Quality effects Productivity effects

George8 Controlled experiment 3 24 TDD passed 18% more tests TDD took 16% longer
Maximilien9 Case study 1 9 50% reduction in defect density Minimal impact
Williams10 Case study 1 9 40% reduction in defect density No change

FACTORS IN SOFTWARE PRACTICE ADOPTION
A variety of factors play into the widespread

adoption of a software practice. These include
motivation for change, economics, availability of
tools, training and instructional materials, a sound
theoretical basis, empirical and anecdotal evidence
of success, time, and even endorsements of the prac-
tice by highly regarded individuals or groups.

These factors complicate TDD’s current state.
Current software development practice provides a
clear motivation for change and thus TDD seems
poised for growth. Software development involves
a complex mix of people, processes, technology,
and tools that struggle to find consistency and pre-
dictability. Projects continue to go over schedule
and budget, which makes practitioners eager to find
improved methods.

Tool support for TDD is strong and improving
for most modern languages. Tools such as JUnit,
MockObjects, and Cactus are mature and widely
available. Much of this tool development has tar-
geted Java, an increasingly popular language in
both commercial applications and academia.

Economic models have noted the potential for
positive improvements for XP and TDD, but rec-
ognized that additional research is needed. This is
especially true regarding speed and defects and
when TDD is combined with pair programming.
The interplay between academic and industry prac-
titioners for acceptance is an interesting one.
Research indicates that it takes five to 15 years for
academic development to succeed in commercial
practice—and the reverse holds true. Research
shows how TDD can improve programming ped-
agogy, yet few instructional resources exist. The
JUnit incorporation into BlueJ and the corre-
sponding programming textbook indicates
improvement may be on its way, however.

The adoption of TDD faces many challenges.
First, TDD requires a good deal of discipline on the
programmer’s part. Hence, programmers may
require compelling reasons before they try it.
Second, TDD is still widely misunderstood, per-
haps because of its name, but many still think erro-
neously that TDD addresses testing only, and not
design. Third, TDD doesn’t fit every situation.
Developers and managers must determine when to
apply TDD and when to do something else.

Additional research and the availability of train-
ing and instructional materials will likely play an
important role in determining how widespread
TDD will become.

UNDERSTANDING TDD’S EFFECTS
Further research must be done to determine and

understand TDD’s effects. To date, research has
focused on TDD as a testing technique to lower
defect density. Empirical studies should be con-
ducted to evaluate TDD’s effect on software design
quality and to examine characteristics such as
extensibility, reusability, and maintainability.

Even with the focus on defect density, there have
been only a small number of studies conducted,
and those on only small samples. One industry
study with more than 10 participants involved a
small application that took only one day to com-
plete. The results were suspect because the control
group wrote a minimal number of tests.

The few academic studies that have examined
defect density produced inconsistent results. The
largest study reported a 54 percent reduction in
defect density with beginning programmers. Two
other reasonably large studies with advanced pro-
grammers did not provide any significant reduc-
tion in defect density. One study hinted at better
designs.

Future studies should consider the effectiveness
of TDD at varying levels in the curriculum and the
programmer’s maturity. The studies can also exam-
ine how TDD compares to test-last methods that
fix the design ahead of time, as well as iterative test-
last methods that build an emergent design.

XP-EF,16 a framework for consistently conducting
and assessing case studies on XP projects, currently
under development, seems appropriate for adapta-
tion into a TDD case studies framework. Given such
a framework, researchers can conduct multiple case
studies and controlled studies. Programmer produc-
tivity and software quality should be examined.
Adoption issues such as learning curves, suitability
and fit, and motivation must be addressed.
Additionally, research is needed to examine the
effects of combining TDD with other practices such
as pair programming and code inspection.

Both industry and academic settings can benefit
from more research. In particular, academic stud-

September 2005 49

Table 2. Summary of TDD research in academia.

Number of
Controlled experiment programmers Quality effects Productivity effects

Kaufmann11 8 Improved information flow 50% improvement
Edwards12 59 54% fewer defects n/a
Erdogmus13 35 No change Improved productivity
Müller14 19 No change, but better reuse No change
Pančur15 38 No change No change

50 Computer

ies need to examine whether TDD improves or at
least does not hinder learning. Can TDD be incor-
porated into the undergraduate curriculum in a
way that improves students’ ability to design and
test? If so, then TDD must be written into appro-
priate student texts and lab materials.

E ven if XP fades in popularity, TDD may persist.
Additional research is needed on TDD’s ability
to improve software quality and on its place in

undergraduate computer science and software engi-
neering curricula. If TDD finds its way into acade-
mia, students could enter software organizations
with increased discipline and improved software
design and testing skills, increasing the software
engineering community’s ability to reliably produce,
reuse, and maintain quality software. ■

References
1. C. Larman and V.R. Basili, “Iterative and Incremen-

tal Development: A Brief History,” Computer, June
2003, pp. 47-56.

2. K. Beck, “Aim, Fire,” IEEE Software, Sept./Oct.
2001, pp. 87-89.

3. K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

4. P. Abrahamsson et al., “New Directions on Agile
Methods: A Comparative Analysis,” Proc. 25th Int’l
Conf. Software Eng. (ICSE 03), IEEE CS Press, 2003,
pp. 244-254.

5. D.J. Reifer, “How Good are Agile Methods?” IEEE
Software, July/Aug. 2002, pp. 16-18.

6. Shine Technologies, “Agile Methodologies Survey
Results,” 17 Jan. 2003; www.shinetech.com/
download/attachments/98/ShineTechAgileSurvey2003-
01-17.pdf?version=1.

7. J. Rasmusson, “Introducing XP into Greenfield Pro-
jects: Lessons Learned,” IEEE Software, May/June,
2003, pp. 21-28.

8. B. George and L. Williams, “A Structured Experiment
of Test-Driven Development,” Information and Soft-
ware Technology, vol. 46, no. 5, 2004, pp. 337-342.

9. E.M. Maximilien and L. Williams, “Assessing Test-
Driven Development at IBM,” Proc. 25th Int’l Conf.
Software Eng. (ICSE 03), IEEE CS Press, 2003, pp.
564-569.

10. L. Williams, E.M. Maximilien, and M. Vouk, “Test-
Driven Development as a Defect-Reduction Prac-
tice,” Proc. 14th Int’l Symp. Software Reliability Eng.
(ISSRE 03), IEEE Press, 2003, pp. 34-45.

11. R. Kaufmann and D. Janzen, “Implications of Test-
Driven Development: A Pilot Study,” Companion of

the 18th Ann. ACM Sigplan Conf. Object-Oriented
Programming, Systems, Languages, and Applica-
tions, ACM Press, 2003, pp. 298-299.

12. S.H. Edwards, “Using Test-Driven Development in
the Classroom: Providing Students with Automatic,
Concrete Feedback on Performance.” Proc. Int’l
Conf. Education and Information Systems: Tech-
nologies and Applications (EISTA 03), Aug. 2003;
http://web-cat.cs.vt.edu/grader/Edwards-EISTA03.
pdf.

13. H. Erdogmus, M. Morisio, and M. Torchiano, “On
the Effectiveness of Test-First Approach to Program-
ming,” IEEE Trans. Software Eng., Mar. 2005, pp.
226-237.

14. M.M. Müller and O. Hagner, “Experiment about
Test-First Programming,” IEE Proc. Software, IEE
Publications, 2002, pp. 131-136.

15. M. Pančur et al., “Towards Empirical Evaluation of
Test-Driven Development in a University Environ-
ment,” Proc. Eurocon 2003: The Computer as a
Tool, The IEEE Region 8, vol. 2, 2003, pp. 83-86.

16. L. Williams, L. Layman, and W. Krebs, Extreme Pro-
gramming Evaluation Framework for Object-Ori-
ented Languages, v. 1.4, tech. report TR-2004-18,
North Carolina State Univ., 2004.

David Janzen is the president of Simex LLC, a con-
sulting and training firm, and an associate profes-
sor of computer science at Bethel College. He is
currently a PhD candidate at the University of
Kansas, where he received an MS in computer sci-
ence. Janzen is a member of the IEEE Computer
Society and the ACM. Contact him at david@
simexusa.com.

Hossein Saiedian is a professor and associate chair
in the Department of Electrical Engineering and
Computer Science, and a member of the Informa-
tion and Telecommunication Technology Center at
the University of Kansas. His research interests
include software process improvement, object tech-
nology, and software architecture. Saiedian received
a PhD in computer science from Kansas State Uni-
versity. He is a senior member of the IEEE, and a
member of the IEEE Computer Society and the
ACM. Contact him at saiedian@eecs.ku.edu.

September 2005 51

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX

