
0018-9162/04/$20.00 © 2004 IEEE56 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Using UML-Based
Rate Monotonic
Analysis to Predict
Schedulability

T imeliness is essential in real-time systems,
in which a late response is sometimes
worse than no response at all because the
violation of a single deadline could lead to
loss of life or property. However, as Bran

Selic pointed out in 1999,1 timeliness is only one
aspect of the complexity in these systems—their
interaction with the physical world presents a “fun-
damental complexity that cannot be eliminated.”

To create a predictable system—one in which the
timing behavior always falls within an acceptable
range—designers must know the period, deadline,
and worst-case execution time of each task. System
analysts use an appropriate scheduling algorithm
to ensure the predictablilty of such a system.

The Object Management Group’s adoption of the
UML profile for schedulability, performance, and
timeliness (www.omg.org/technology/documents/
formal/schedulability.htm) has increased interest in
using UML and object-oriented technology to
model and implement real-time systems. Rate
monotonic analysis (RMA) is an extensively
researched and successfully implemented technique
that can be used in conjunction with the UML pro-
file to analyze schedulability in these systems.

PREDICTING SCHEDULABILITY
Research has shown that RMA solves many of

the issues in real-time systems, including predictable
real-time industrial computing systems.2

The major factors that affect real-time system
schedulability include

• the event occurrence pattern—whether the
event is periodic or aperiodic;

• each event’s deadline—whether the deadline is
less than or greater than its period; and

• task interaction—whether tasks need to syn-
chronize with each other or not.

Scheduling algorithms assign priorities to tasks
triggered by the arrival of specific events, as the
“Priorities in Scheduling Tasks” sidebar describes.
These algorithms fall under two main categories.
Static priority algorithms such as RMA and dead-
line monotonic analysis assign a fixed priority to
each task (and the same priority to every execution
of that task). Dynamic priority algorithms such as
earliest-deadline-first and value-added scheduling
assign priorities based on the importance of each
scheduling job, which is continuously reexamined
in the dynamic context of the scheduler.

The original RMA algorithm, developed in the
1970s by Chung L. Liu and James W. Layland, sim-
ply assigned priorities to tasks in the decreasing
order of their monotonic rate. The task with the

The OMG’s recent adoption of the Unified Modeling Language profile for
schedulability, performance, and timeliness has increased interest in using
object-oriented technology to model and implement real-time systems. The
authors present guidelines for applying rate monotonic analysis to ensure
predictability in these systems.

Hossein
Saiedian
The University
of Kansas

Srikrishnan
Raguraman
Kansas State
University

October 2004 57

highest monotonic rate was assigned the highest
priority, and the priorities for the remaining tasks
were assigned in decreasing order.

However, three assumptions in this algorithm
made using it in real-time systems impractical. The
algorithm assumed that all tasks were independent
of one another (noninteracting), that all events were
periodic with their deadlines at the end of their
period, and that all tasks were perfectly pre-
emptible. Subsequent research improved the algo-
rithm by removing these assumptions, making it
suitable for schedulability analysis.3

Periodic tasks without interaction
The schedulability of periodic tasks that do not

interact with each other depends on their compu-
tation time, or processor utilization.

Deadline less than or equal to its period. A set of n
independent, periodic tasks t1, t2, … tn, whose
deadlines are equal to their period, are schedulable
if and only if their combined processor utilization
is less than n(21/n – 1). That is,

C1/T1 + C2/T2 + … + Cn/Tn ≤ Un = n(21/n – 1),

where Ci is the ith task’s computation time, Ti is the
ith task’s period, and Un is the utilization bound for
n tasks. If n = 2, then the utilization bound is 2(21/2

– 1), or 0.828. For n tasks, the utilization bound
degenerates to 0.69, or 69 percent. Consequently,
any periodic task set is schedulable by RMA if the
tasks’ combined utilization is less than 69 percent.

Deadline greater than its period. A basic problem in
many real-time systems is allowing a periodically
initiated response to complete after the next initi-
ation. To analyze schedulability for this situation,
it is necessary to first order the tasks by the increas-
ing monotonic order of their deadlines. It is then
possible to compute the worst-case response time
for each event by applying a completion time test.
If every worst-case response time is less than its
deadline, the tasks are schedulable.

Periodic tasks with interaction
In most real-time systems, the tasks are not inde-

pendent—they synchronize with one another in
a mutually exclusive manner to share a resource.
For example, consider the following scenario
described by Mark H. Klein, John P. Lehoczky, and
Ragunathan Rajkumar.2

Suppose periodic tasks t1, t2, …, tn are arranged
in descending order of priority, and t1 and tn share
a common resource guarded by a semaphore S.
Task tn begins execution and enters a critical sec-

tion using the resource. Task t1 is initiated next,
preempts tn, and begins execution. During its exe-
cution, t1 attempts to use the shared resource and
is blocked on S. Task tn continues execution, but
before it completes its critical section it is pre-
empted by the arrival of one of the tasks, t2, t3, …,
tn – 1. Because none of them uses S, any of these
tasks can execute to completion before tn. This cre-
ates priority inversion, in which a lower-priority
task blocks t1 for a potentially unbounded period
of time.

The solution to this problem is to use priority
inheritance, in which a lower-priority task inherits
the blocked tasks’ maximum priority for the dura-
tion of the blocking period. The Priority Ceiling
Protocol is an implementation of priority inheri-
tance with additional measures to prevent dead-
locks and reduce priority inversion to at most one
critical section of lower-priority tasks.

To analyze schedulability for such a system using
RMA, it is first necessary to determine

• the longest blocking delay for each of the
higher-priority tasks, and

• an allocation policy for the resource—FIFO,
highest lockers, priority inheritance, distrib-

Priorities in Scheduling Tasks

To understand how priorities determine schedulability, consider a real-
time system with two tasks: τ1 with period T1 = 50 ms, and τ2 with period
T2 = 100 ms; the tasks’ deadlines are at the end of their periods. Task τ1

has a computation time C1 equal to 25 ms, and τ2 has a computation time
C2 equal to 40 ms. Assuming that a single processor will execute both
tasks, τ1’s utilization (C1/T1) is 50 percent and τ2’s utilization (C2/T2) is 40
percent. Because their combined utilization is less than 100 percent, the
two tasks are schedulable.

As Figure A shows, the tasks’ schedulability depends on their priority.
Assigning τ1 a lower priority would result in τ1 missing a deadline, but
assigning τ1 a higher priority would result in both tasks executing without
missing a deadline. Researchers have shown that reducing a task’s period
or computation time does not necessarily guarantee schedulability.

Figure A. Schedulability of two tasks, with (1) priority (τ1) < priority (τ2) and
(2) priority (τ1) > priority (τ2). Periods: T1 = 50 ms, T2 = 100 ms; execution time:
C1 = 25 ms, C2 = 40 ms.

50 6540 90 100

Idle

1st τ1 misses
deadline

τ2 completes,
τ1 starts

1st τ1 completes,
2nd τ1 starts

2nd τ1 completes

50 7525 90 100

Idle

(1)

(2)

τ2 τ1 τ1

τ2 τ2τ1τ1

τ2 preempted,
2nd τ1 starts

τ1 completes before
1st deadline, τ2 starts

2nd τ1 completes,
1st τ2 continues

2nd τ1 completes

58 Computer

uted priority ceiling, and so on; priority inher-
itance solves all known problems with task
synchronization.2

The next step is to calculate the worst-case response
time for each task by including the blocking delay
in the completion time test. If every worst-case
response time is less than the deadline, the tasks are
schedulable.

Aperiodic events
Some critical emergency situations in real-time

systems involve aperiodic events, which can be

• bounded—have a known interarrival dura-
tion;

• bursty—have a specific density; or
• unbounded—occur in terms of some proba-

bility function.

Polling is a well-known and predictable tech-
nique for handling such events. However, an
aperiodic event that occurs immediately after the
polling task checks for events must wait for the
entire polling cycle to get serviced.

The need for a periodic polling server and pro-
viding an on-demand response to aperiodic events
led to the development of sporadic servers, which
preserve execution capacity equal to the worst-case
response time to service an aperiodic event.3 The
arrival of such an event triggers a high-priority
interrupt that signals the sporadic server to run.
The system schedules the aperiodic event depend-
ing upon the priority assigned to it by the sporadic

server’s designer. Thus, the system can treat aperi-
odic events as a set of periodic events with their
period equal to their minimum interarrival time.

The aperiodic event’s execution time should be
equal to its worst-case execution time. If there is
more than one aperiodic event, as in bursty or
unbounded arrival patterns, the interrupt handler
queues the events and signals the sporadic server. A
limitation of such servers is excessive system over-
head due to frequent polling for aperiodic events.

Real-time system predictability depends on both
the software’s structure and behavior and key
attributes of the underlying infrastructure. These
describe the quality of service (QoS) that the oper-
ating system, network, and other external re-
sources offer. Because designers must specify the
software at the highest level and as a structure of
interacting dynamic components, object-oriented
design is useful for modeling real-time systems.4

UML PROFILE
The general-purpose Unified Modeling Language

has a broad enough base to capture all the intrica-
cies of real-time systems. The UML profile for
schedulability, performance, and time stereotypes
core UML elements and adds semantics that sup-
plement, but do not violate, its general semantics.

As Figure 1 shows, the profile is partitioned into
hierarchically organized subprofiles dedicated to
specific aspects of analysis. At the core of the pro-
file is a general-resource framework that acts as a
common base for other specialized subprofiles.
This framework consists of three packages:

• RTresourceModeling contains general con-
cepts such as action, event, response, scenario,
and execution engine. Each concept has a
UML-equivalent notation and contains attrib-
utes to quantify offered and required QoS.

• RTtimeModeling contains a framework for
representing time and related mechanisms.
For schedulability analysis, the most fre-
quently used elements are clocks and timers
to send triggers at a specified interval.

• RTconcurrencyModeling contains extensions
to incorporate concurrency in actions, re-
sponses, and shareable resources.

Within the UML profile, SAProfile describes a
specialized framework to analyze real-time situa-
tions for schedulability that

• determines if the entire system is schedulable—
that is, if it can meet all of the deadlines defined

Figure 1. UML
profile. The general-
resource modeling
framework acts as
a base for other
specialized
subprofiles.

General-resource modeling framework

Analysis models Infrastructure models

<<profile>>
RTresourceModeling

<<profile>>
RTconcurrencyModeling

<<profile>>
RTtimeModeling

<<profile>>
SAProfile

<<profile>>
PAprofile

<<profile>>
RSAprofile

<<import>><<import>>

<<import>><<import>> <<import>>

<<import>>

<<modelLibrary>>
RealTimeCORBAModel

October 2004 59

for individual scheduling jobs; and
• helps determine how to improve the system,

such as suggesting ways to make an entity
schedulable and to maximize system usage.

SAProfile is designed to work with most popu-
lar scheduling analysis techniques. It extends exist-
ing UML elements with appropriate stereotypes
and uses tags to quantify key attributes of real-time
concepts. Table 1 lists some frequently used stereo-
types and their associated UML elements. Model-
ers can use SAProfile to perform rate monotonic
schedulability analysis on real-time systems.

USING THE UML PROFILE TO APPLY RMA
The UML profile aids in schedulability analysis

using either static or dynamic scheduling tech-
niques. Although using the profile can generate an
overwhelming amount of detail, a one-to-one map-
ping between the real-time terminology and the cor-
responding UML element (stereotype or tag) helps
manage this potential complexity.

Real-time situations
System analysts generally decompose large real-

time systems into smaller units that they analyze
independently, and then perform a separate analy-
sis of task interactions. A real-time situation encap-
sulates timing constraints for part of or, in some
cases, an entire system. With SAProfile, analysts
can stereotype an object diagram or interaction dia-
gram as <<SASituation>> to use as a context for
schedulability analysis.

Events. The stereotype <<SATrigger>> represents
characteristics of incoming events, known as trig-
gers in UML. Any message can be represented as
an event. The stereotype’s most important tag,
SAOccurrence, defines event arrival patterns,
which can be periodic, bounded, bursty, irregular,
or unbounded.

Responses and actions. Every event is associated
with a response, which is generally implemented
as a method of a class and stereotyped as <<SA-
Response>>. A response is a sequence of actions,
and it defines the root of the action sequence. Each
action is stereotyped as <<SAAction>>. Because a
response is essentially an action, it inherits all the
attributes of an action.

The SAPriority and SAAbsDeadline tags rep-
resent the priority and absolute deadline, respec-
tively, of a response. The tag RTduration indicates
the response’s average computation time, which
should be equal to the sum of the durations of each
constituent action. The SAWorstcase tag represents

the response’s worst-case duration, which can be
computed during schedulability analysis.

A response can include actions that might inter-
act with other responses by sharing resources in a
mutually exclusive manner. This inevitably results
in lower-priority tasks blocking higher-priority
tasks, which severely impacts schedulability. The
SABlocking tag quantifies the maximum wait time
for a task to acquire resources. The SAUtilization
tag represents a percentage of the response’s uti-
lization of resources.

Tasks. A task is a combination of an event and
its associated response. It is generally represented
as a class or as an object and can be stereotyped as
<<SASchedulable>>. Figure 2 illustrates a simple
real-time situation including a task, a response,
and an action. The task and the execution engine
have a dependency relationship that is stereotyped
as <<GRMDeploys>>.

Resources. The UML profile defines a schedula-
ble resource as “an active, protected resource that
executes an action and may be shared by other con-
current actions.” A resource generally is repre-
sented as an object or a class and can be stereotyped
as <<SAResource>>. The tag SAAccessControl
indicates the policy for controlling concurrent
attempts to acquire the resource; its value is an enu-
meration of FIFO, PriorityInheritance, Highest-
Lockers, NoPreemption, and DistributedPriority-
Ceiling. A schedulable resource and the execution
engine have a dependency relationship that is
stereotyped as <<SAOwns>>.

Execution engine QoS. The processor that executes
schedulable tasks plays a crucial role in schedula-

Table 1. SAProfile stereotypes commonly used to represent a real-time
system.

Stereotype Real-time concept UML element(s)

<<SASituation>> Real-time situation Interaction diagram, object diagram
<<SATrigger>> Event Message
<<SAResponse>> Response Method
<<SAAction>> Action Method
<<SASchedulable>> Task Class
<<SAResource>> Resource Class
<<SAEngine>> Processor Class

Figure 2. Simple
real-time situation
including a task, a
response, and an
action.

DisplayDevice

�writeData()

<<SASchedulable>>
PlantMonitor

�refreshData()

<<SASituation>>

<<SAAction>>
{RTduration=(10,'ms'),
SABlocking=5,'ms')}

Clock <<SAResponse>>
{RTduration=(25,'ms'),
SAPriority=1,
SAAbsDeadline=(100,'ms')}

60 Computer

bility analysis. Key QoS attributes of the execution
engine include context-switch time, scheduling pol-
icy, processor rate, and priority range. Most real-
time situations have only one execution engine that
is represented as a class or node and stereotyped
as <<SAEngine>>.

Representing time in diagrams
When analyzing real-time situations, it is often

important to clearly identify when critical events
occur. For hard deadlines, an interaction diagram
can model a trigger’s start and end times and its
response. The UML profile extends the sequence
diagram to include “timing marks” to better visu-
alize an event’s start and end times. A collabora-
tion diagram helps to visualize situations that
involve a set of triggers and responses. These dia-
grams also can visualize concurrent behavior.

<<SATrigger>>
{RTstart=(0,'ms'),
RTend=(4.5,'ms')}

displayData()

<<RTEvent>>
{RTstart=(10,'ms'),
RTend=(14.5,'ms')}

<<SAResponse>>
{RTstart=(4.5,'ms'),
RTend=(10,'ms')}

SensorInterface

displayData()

DisplayDevice

(a)

SensorInterface DisplayDevice

(b)

{0 ms}

{14.5 ms}

{4.5 ms}

{10 ms}

Figure 3. Two
equivalent sequence
diagrams showing
different notions of
time. (a) Timing
details via
stereotypes (as part
of profiles), further
enhanced by means
of a UML
“constraint” box.
(b) Minimal timing
detail, with a focus
on active lifelines.

Other robot
control

Displays data from the
other three nodes and
provides command
interface

<<processor>>
Node 2

<<network>>
FDDI

<<processor>>
Node 4

<<processor>>
Node 1

<<processor>>
Node 3

Analyzes
sensor
information

(a)

DisplaySystem

�int main()

Node1Display
Device

Node1Interface

Node2DataDisplayer

�displayData()

Node2Interface

Node3DataDisplayer

�displayData()

Node3InterfaceCommonDisplay
Device

<<processor>>
Node 4

<<GRMDeploys>>

Clock

11

1 1 1 11

1

1

Node1DataDisplayer

�displayData()

(b)

Figure 4. Real-time
robotics application.
(a) Deployment view
shows the fiber-
distributed data
interface (FDDI)
network and four
processing nodes.
(b) Node 4 display
processor
specification.

Figure 3 shows two equivalent sequence diagrams.

CASE STUDY
A case study in which a collaboration diagram

represents a real-time situation demonstrates the use
of UML real-time profile elements for schedulability
analysis. The case study—originally described by
Klein, Lehoczky, and Rajkumar2—involves an appli-
cation in which a robot system uses a distance sen-
sor that measures the shape of pipes by moving
around. As the deployment view of the system in
Figure 4a shows, the application has a fiber-distrib-
uted data interface network with four processing
nodes: Nodes 1, 2, and 3 are dedicated to robotics
processing, while node 4 has an operator’s console
for sending commands to the other three nodes and
displaying their system data measurements.

The system is required to meet each task’s dead-
line on each node. For illustration purposes, this
example considers schedulability only for node 4,
which performs a data display function. The dis-
play system in node 4 contains three tasks—τ1, τ2,
and τ3—to display data sent from the other three
nodes. Tasks τ1 and τ3 share a common display
device, while τ2 has a dedicated display device.
Table 2 lists the timing requirements for the node
4 tasks. A scheduler assigns each job to its execu-
tion engine according to a scheduling policy.

The UML diagrams illustrate the suitability of

the profile for performing rate monotonic schedu-
lability analysis. Tasks τ1, τ2, and τ3 are schedulable
jobs that will be executed in node 4. A scheduler
will assign each schedulable job to its execution
engine depending on a scheduling policy. Figure 4b
shows the UML structural representation for the
display processor system in node 4.

DisplaySystem, the aggregate class that repre-
sents the system, runs on a single processor in node
4. It contains various classes that aid in displaying
system data from each of the three nodes. Note that
this class diagram is a descriptor diagram, not an
instance-based diagram. In the class diagram, a
realization relationship (stereotyped as <<GRM-
Deploys>>) exists between the node and the
DisplaySystem, meaning that the DisplaySystem is
deployed in the node 4 execution engine. There are
many more such realization relationships at the
instance level.

Each of the three classes—Node1Displayer,
Node2Displayer, and Node3Displayer—is an
active, protected resource that executes an action to
display data. These classes correspond to tasks τ1,
τ2, and τ3 in Table 2..

Two real-time situations, each stereotyped
as <<SASituation>>, provide a context for schedu-
lability analysis: displaying data without task
interaction and displaying data with task synchro-
nization.

October 2004 61

<<SATrigger>>{RTat=('Periodic',100,'ms')}
displayData()

<<SAResponse>>
{RTduration=(61,'ms'),
SAWorstCase=(101,'ms')}

<<CRConcurrent>>
<<RTTimer>>
{RTPeriodic,
{RTduration=(100,'ms')

Clock

getData()

<<SASchedulable>>

Node1DataDisplayer

showData()

Node1Interface Node1DisplayDevice

<<SAAction>>
{RTduration=(15,'ms')}

<<SAAction>>
{RTduration=(46,'ms')}

Figure 5. Sequence
diagram for
displaying node 1
data. <<RTClock>>
sends a trigger to a
Node1Displayer
object at constant
100-ms intervals.
Node1Displayer
responds by
displaying data
from node 1, with a
worst-case response
time of 101 ms.

Table 2. Timing requirements for node 4 tasks.

Task Time Execution Deadline Priority Blocking Resource
period (Ti) time (Ci) (Di) (Pi) delay (ms) sharing

Display node 2 (τ1) 80 20 80 High 5 Yes (with τ3)
Display node 1 (τ2) 100 61 200 Medium 5 No
Display node 3 (τ3) 300 30 300 Low None Yes (with τ1)

62 Computer

Displaying data without task interaction
Sequence diagrams are useful for providing a

detailed description of triggers and responses.
Figure 5 is a sequence diagram for displaying node
1 data, which corresponds to task τ2 in Table 2. A
clock, stereotyped as <<RTClock>>, sends a trig-
ger to a Node1Displayer object at constant 100-
ms intervals. Node1Displayer responds to the
trigger by displaying data from node 1—
<<SAResponse>> – Node1Displayer::display-
Data()—which has a worst-case response time of
101 ms. Similar sequence diagrams can be drawn
for tasks τ1 and τ3.

As Table 2 indicates,

• Node2Display (τ1) and Node3Display (τ3)
have their deadlines at the end of their period,

• Node1Display (τ2) has its deadline after the
end of its period, and

• the event arrival pattern is periodic (<<RT-
Clock>>).

The first step in determining system schedulabil-
ity is to calculate the utilization bound of tasks τ1

and τ3. According to RMA, the Node2Display and
Node3Display tasks are schedulable if Σ Ci/Ti ≤
U*, where 1 ≤ i ≤ n and U* = n(21/n– 1). Calculating
the summation, (20/80) + (30/300) = 0.35, which
is ≤ U* = 0.828 (n = 2). Therefore, tasks τ1 and τ3

are schedulable.
Because the deadline for Node1Display task (τ2)

is greater than its period, determining whether it is
schedulable requires applying a completion time
test to calculate the worst-case response time.

<<SASituation>>

Clock

Clock
<<SASchedulable>>

Node1Displayer

Clock

<<SATrigger>>
{SASchedulable=true,
RTAt=('periodic',100,'ms')}
<<SAResponse>>
{SAAbsDeadline=
(100,'ms')}
A.1:displayData()

Node1Interface

<<SAAction>>
{RTduration=(15,'ms')}
A.1.1.1:getData()

<<SAResponse>>
{SAPriority=2,
SABlocking=(5,'ms'),
SAWorstcase=(106,'ms')}
A.1.1:main()

<<SAAction>>
{RTduration=(46,'ms')}
A.1.1.2: showData()

<<SAResource>>
{SACapacity=1,
SAAccessControl='FIFO'}

Node1DisplayDevice
<<SAResource>>
{SACapacity=1,
SAAccessControl='PriorityInheritance'}

CommonDisplayDevice

<<SAAction>>
{RTduration=(20,'ms')}
B.1.1.2:showData()

<<SATrigger>>
{SASchedulable=true,
RTAt=('periodic',80,'ms')}
<<SAResponse>>
{SAAbsDeadline=
(80,'ms')}
B.1:displayData()

<<SASchedulable>>
Node2Displayer

<<SAResponse>>
{SAPriority=1,
SABlocking=(5,'ms'),
SAWorstcase=(25,'ms')}
B.1.1:main()

Node2Interface

<<SAAction>>
{RTduration=(5,'ms')}
B.1.1.1:getData()

<<SAAction>>
{RTduration=(25,'ms')}
C.1.1.2:showData()

Node2Interface

<<SAAction>>
{RTduration=(5,'ms')}
C.1.1.1:getData()

<<SASchedulable>>
Node2Displayer

<<SAResponse>>
{SAPriority=3,
SAWorstcase=(293,'ms')}
C.1.1:main()

<<SATrigger>>
{SASchedulable=true,
RTAt=('periodic',300,'ms')}
<<SAResponse>>
{SAAbsDeadline=
(300,'ms')}
C.1:displayData()

Figure 6.
Collaboration
diagram for task
synchronization
scenario, with
blocking delays.
Triggers from a
concurrently
executing clock
periodically execute
three schedulable
resources. Two of
the tasks also share
the resource
CommonDisplay-
Device.

Performing this calculation involves a four-step
process. Letting i = 2,

Step 1: Compute the first approximation
S0 = Bi + Σ Cj, where 1 ≤ j ≤ 2 and Bi is the
blocking delay of the ith job S0 = 0 + 20 +
61 = 81 ms.

Step 2: Set a counter k to 1
Step 3: Calculate the next approximation until

Sn+1 = Sn

Sn+1 = Bi + kCi + Σ ceiling (Sn/Tj), where 1 ≤
j ≤ i – 1
S1 = 0 + 61 + 2(20) = 101 ms
S2 = 0 + 61 + 2(20) = 101 ms

Step 4: Determine the response time, Ei,k. If the
response time is greater than the period,
then increment k and go to step 3.
Ei,k = Sn – Ti (k – 1)
E2,1 = 101 – 61(0) = 101 ms

Because the worst-case response time for Node1-
Displayer is less than the absolute deadline of 200
ms, task τ2 is also schedulable.

Displaying data with task synchronization
If two or more tasks must be synchronized to

share a single resource, Klein and colleagues3 sug-
gest determining a blocking delay for each task and
applying a Priority Inheritance Protocol because of
the potential for an unbounded priority inversion.
As the blocking delay column in Table 2 indicates,
the maximum blocking delay for tasks τ1 and τ2 is
5 ms. Although task τ2 does not share any resource,
it still incurs a 5-ms blocking delay due to potential
priority inversion.

Collaboration diagrams help to visualize a set
of triggers and responses scheduled on a single
processor. In the diagram in Figure 6, triggers from
a concurrently executing clock periodically exe-
cute three schedulable resources. Two of the tasks
also share the CommonDisplayDevice resource.
The diagram includes annotations for the block-
ing delays for the responses to the Node1Displayer
and Node2Displayer tasks.

The analyst, optionally with the aid of a tool, can
perform the completion time test again to determine
whether the three tasks are schedulable in this situ-
ation. Blocking delays must be considered while per-
forming the test. The completion time test reveals
that the worst-case response time is 25 ms for task
τ1, and 106 ms for task τ2. The worst-case response
time for task τ3, which does not incur blocking, is
293 ms. The worst-case time for each task is less than
its deadline, thus all three tasks are schedulable.

B ecause real-time system designs share many
commonalities with the object-oriented design
paradigm, modelers have experienced a rela-

tively smooth transition in the adoption of UML-
based designs for real-time systems. Although no
currently available commercial tools strictly com-
ply with the UML profile, new applications such
as Tri-Pacific Software’s RapidRMA (www.tripac.
com/html/prod-toc.html) aim to fill that gap.
Computer-aided software engineering tools are
invaluable for analyzing a real-time situation for
its schedulability and suggesting improvements in
maintaining a balanced system. However, even
with CASE tools, real-time designers who use the
UML profile for RMA must be prepared to con-
tend with a great deal of detail. �

References
1. B. Selic, “Turning Clockwise: Using UML in the Real-

Time Domain,” Comm. ACM, vol. 42, no. 10, 1999,
pp. 46-53.

2. M.H. Klein, J.P. Lehoczky, and R. Rajkumar, “Rate-
Monotonic Analysis for Real-Time Industrial Com-
puting,” Computer, Jan. 1994, pp. 24-33.

3. M. Klein et al., A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis
for Real-Time Systems, Kluwer Academic, 1993.

4. B.P. Douglass, Real-Time UML: Developing Efficient
Objects for Embedded Systems, 2nd ed., Addison-
Wesley, 1999.

Hossein Saiedian is a professor and associate chair
in the Department of Electrical Engineering and
Computer Science, and a member of the Informa-
tion and Telecommunication Technology Center at
the University of Kansas. His research interests
include software process improvement, object tech-
nology, and software architecture. Saiedian
received a PhD in computer science from Kansas
State University. He is a senior member of the
IEEE, and a member of the IEEE Computer Soci-
ety and the ACM. Contact him at saiedian@
eecs.ku.edu.

Srikrishnan Raguraman is a software engineering
consultant specializing in object-oriented design.
He received a BE in computer science from Madras
University, India, and is currently completing an
MSE at Kansas State University. Raguraman is a
member of the IEEE Computer Society. Contact
him at sri@ksu.edu.

October 2004 63

