
John Reinke 1 and

Hossein Saiedian 2

1 Sprint, USA

2University of Kansas, USA
Department of EECS, School of

Engineering

University of Kansas

Lawrence

KS 66045

e-mail: saiedian@eecs.ku.edu

Abstract 

Once a vulnerability has been found in an
application or service that runs on a computer
connected to the Internet, fixing that exploit
in a timely fashion is of the utmost
importance. There are two parts to fixing
vulnerability: a party acting on behalf of the
application’s vendor gives instructions to fix it
or makes a patch available that can be
downloaded; then someone using that
information fixes the computer or application
in question. This paper considers the effects of
proprietary software versus non-proprietary
software in determining the speed with which
a security fix is made available, since this can
minimize the amount of time that the
computer system remains vulnerable. 

1 Introduction 

There is growing debate concerning the security
advantages of proprietary software versus non-
proprietary (open-source) software. Although
the debate has existed for decades, it has grown
more important in recent years as the public’s
awareness of computer security increases and as
more services are now available via the
Internet. Generally, there has been insufficient
evidence to proclaim a winner [1]. While a
strong argument can be made for each type of
software in different cases, it really depends on
the situation in consideration. 

Since bugs inevitably occur in any kind of
software [2], a top priority for system
maintainers is to have a solid, usable solution
available as soon as possible [3]. A security bug
could put multiple computers or a complete
network at risk, therefore all the critical data

and services provided by those computers could
be compromised. The sooner the problem is
resolved, then the less time would-be intruders
will have for gaining access, looking around,
and performing malicious activities. If one type
of software appears to be better at minimizing
the time it takes to fix those problems, it could
benefit many and outweigh other arguments
against it. 

2 Networks, applications and
security 

Most computers today are connected to other
computers by some means of a network, i.e. a
local network or even a dial-up connection to
the Internet. It is through this connectivity that
attackers are able to make their assault [4].
Through connectivity, attackers have a virtual
smorgasbord or all-you-can eat buffet, since it
brings access to all interconnected computers
directly to them. While it might not be simple
for them to gain access to those systems, the
process can be automated. 

2.1 Services and applications on
computers connected to the Internet 

The main targets for attackers are Internet
services [5]. These are the applications that
allow everyone to use e-mail, web browsers,
chat services, and much more. In order to make
those services reachable whenever they are
needed, the applications must run continuously,
usually for days, months and even years on end.
Continuously running applications are usually
referred to as servers or daemons. 

Attackers like vulnerabilities in software
running on servers because, when vulnerability
exists, they will have continuous access to the

The availability of source
code in relation to timely
response to security
vulnerabilities

Computers & Security Vol 22, No 8     0167-4048/03 ©2003 Elsevier Ltd. All rights reserved. 707

Computers & Security 

Vol 22, No 8, pp 707-724, 2003

Copyright ©2003 Elsevier Ltd

Printed in Great Britain

All rights reserved

0167-4048/03

cose 2208.qxd  08/12/2003  15:56  Page 707

mailto:saiedian@eecs.ku.edu


John Reinke

John Reinke is software

developer and network

engineer at Sprint

Corporation in Overland Park,

Kansas. He completed his

Master's degree in Computer

Science at the University of

Kansas in 2002.Hossein

Saiedian (PhD, Kansas State

University, 1989) is currently

a professor software

engineering in the

Department of Electrical

Engineering and Computer

Science at the University of

Kansas.  Professor Saiedian's

primary area of research is

software engineering and in

particular models for quality

software development, both

technical and managerial

ones. He is particularly

interested in formal models

and their integrations with

semi-formal, graphical

models.  Professor Saiedian

has over 100 publications in a

variety of topics in software

engineering, computer

science, and computer

security. His research in past

have been supported by NSF

as well as regional

organizations. Professor

Saiedian is a Senior member

of IEEE.

exploitable service until it is fixed. By its very
nature, daemons must make their services
available to anyone on the Internet in order to
fulfil their function. Therefore, computers
running these services are typically connected
to the Internet at all times. Of added incentive
to attackers is the fact that service providers
will probably not disable a service completely if
there is a problem, because of the more
immediate problem of damage to their business
if they completely disable a service for which
their customers are paying. Once again, this is
why it is important for system administrators to
have access to vulnerability fixes as soon as they
are available. 

Internet applications are the software programs
that use the services described in the previous
section. These applications include e-mail
clients and web browsers, which are used by
most households and businesses today. The
significance of Internet applications is that
they require connectivity to other computers
on the Internet, even in the case of dial-up
Internet service via phone lines. It doesn’t
matter much in the case of dial-up access,
because some exploits work through malicious
programs attached to an e-mail that is read
while disconnected but sends messages to
everyone in the address book when the
connection is re-established. E-mail viruses
like this can very quickly bring a network to a
stand-still with all the extra traffic, in addition
to the risk of damage to the data on infected
computers.

Attackers commonly use exploits to Internet
applications to gain control of computers. Once
an application on the computer has been
exploited, it is most likely that other
applications or the operating system itself will
become compromised. These compromised
machines might then be used to make up an
attack network — a virtual army of computers
that can be used for a variety of attacks on
other computers [6]. 

2.2 Proprietary software 

The first type of software considered in this
study is known as proprietary software. The
best definition of proprietary software is
software in which the source code is only
available to the makers of the software. In
most cases, the software is created by
companies that rely on the sale of the software
for their well-being, and there are other
reasons why they don’t provide the source
code with the software. 

The first reason for restricting access to the
source code is because the company relies on
sales of the software to support its business. If
the general public had free access to the
source code, then people could compile the
code into the executable applications and
share the executables. It would be very
difficult for a company to continue if its main
stream of income could be short-circuited like
that, so software companies go to great
lengths to protect the source code of their
products. 

A second reason for keeping source code
protected is so that it cannot be changed to do
something other than the intended purpose of
the software. If there were multiple copies of
the software available due to changes made by
people with access to the source code, then the
software company would not want to support or
be held responsible for them. The company
feels a need to control the features and quality
of the software. 

Another reason for keeping source code of
applications from the public is for security. It is
believed that, if no one can view the source
code of the applications, then it will be harder
to find exploits or security holes in the
applications. This is often referred to as
‘security through obscurity’ and has been
shown to have limited value, since it tends to
create an inaccurate level of confidence in the
software [7]. 

708

The availability of source code

John Reinke and Hossein Saiedian

cose 2208.qxd  08/12/2003  15:56  Page 708



Where proprietary software is used   

Proprietary software is used almost everywhere.
Most operating systems and software for
household computers is proprietary. This is also
true of most office applications that are used in
businesses. Many Internet services run on
proprietary operating systems, including some
versions of UNIX. 

Sometimes also known as COTS (commercial
off-the-shelf) software, it can be used for more
specialized solutions. It is common for
businesses to need software to perform specific
tasks, and possible solutions include purchasing
specialized software or building it “in-house”.
The decision often comes down to the overall
cost for the solutions, the amount of time
required to customize COTS software versus
creating it from scratch, and the level to which
each solution fills the requirements. The
business has an advantage of access to source
code if it chooses to build the software in-house,
whereas in most cases the security of the COTS
software will have to be trusted [8, 9]. 

Procedure for fixing a vulnerability
with proprietary software

For the case where there is a vulnerability with
proprietary software, there are typically two
possible solutions. The first solution entails a
type of patch. Usually, there will be an
executable available to those that have a
license to the software which will change the
parts of the application that need to be fixed.
Since it makes changes to the existing
executable, the patch will often be freely
available to download over the Internet. The
patch will only be useful to those that already
have a licensed copy of the software. Without
the original executable, the patch is useless. 

A second method for fixing a security problem
is to make available a new version of the
software. This is generally not preferred, since it
would require distribution of the complete
product. Complete products will most likely be

too large to download easily, and the software
company may decide to physically package the
new version and send it through the postal
service. This is not an effective solution if
computers must remain vulnerable while the
software is packaged and sent through the mail. 

Another issue that affects the time it takes to
fix security problems in proprietary software
concerns the number of people working on the
solution. Since the source code is only available
internally to the software company, there is a
limited number of people able to inspect the
source code compared to the number if the
general public had access to it. 

2.3 Open-source software — source
code availability 

Open-source software (OSS) is software in
which the program code is available to the
person that chooses to use the software. While
the software generally has no monetary cost,
this does not always have to be the case. 

There is a popular philosophy of Richard M.
Stallman’s [10] that the person that is using
software has the right to have access to the
source code. This is in contrast to one of the
reasons why software companies protect the
source code, namely control. Rather than the
software company maintaining control over
how their software is used, Stallman believes
that it is the right of the user to know how the
software is being used, and to be able to change
it if they so choose. There is a variety of other
reasons, and some are also security-related. 

Where open-source software is used 

One of the most common applications of open-
source software is the Linux operating system
and most of the tools and applications that
come with it. Linux is very common for systems
running Internet services, so it is very familiar
to those in the security community. 

Other examples of open-source software are
apache (web server), sendmail (mail server),

The availability of source code

John Reinke and Hossein Saiedian

709

cose 2208.qxd  08/12/2003  15:56  Page 709



and bind (DNS server). This software is used on
machines that host web sites, store or transfer e-
mail, and direct requests on the Internet to the
correct machines. A large share of the server
systems on the Internet run these applications,
although open-source software is growing
increasingly common in desktop computers and
development workstations as well. 

Using source code to fix a
vulnerability

There is a number of advantages to having
access to the source code for an application that
has a vulnerability. First of all, if the individuals
using the software have an understanding of the
vulnerability and the source code, then they
may be able to locate the problem and fix it
themselves. Secondly, since there are
theoretically more people using the software
than there are programmers that have created
it, all those users of the software can help look
for the problem in the source code, decreasing
the time it takes to find a solution. Thirdly, if
someone other than the vendor is able to find a
solution, then they might either provide a patch
for the application (to be applied to the source
code) or publish instructions for users of the
software to modify the source code and
recompile the software with the fix themselves. 

3 Data source 

In order to evaluate the response times for
proprietary and open-source software, a
common and reputable source of data had to be
found. Some of the requirements are that it is
well known and trusted to those in the security
field. It had to provide data in a timely matter
and in an unbiased fashion, so no particular
software vendor is favored. The sources
considered are the BugTraq mailing list
(available at SecurityFocus.com), the CERT
Coordination Center (www.cert.org), and
Incidents.org (from the SANS Institute). 

The CERT Coordination Center was chosen as
the source of data collected for this project.

While there are undoubtedly many resources for
security information, CERT/CC is considered
by many to be the most central point of
knowledge for all computer security-related
events. It has a cleanly organized web site with
clear definitions of the types of alerts available.
It also has the unique distinction of being one
of the first of its kind, and its creation was the
result of desperate circumstances. 

CERT/CC (the Computer Emergency Response
Team Coordination Center) was not a project
that came from years of careful planning. It was
in fact created within days of the idea arising,
due to the Internet events of 1988. One of the
most defining moments for the Internet
occurred on 2 November 1988. A program
called a worm worked its way from machine to
machine, by way of security holes in services
running on those machines. It spread itself
across the Internet, busying up networks, and
slowing everything to a crawl. At the time,
most organizations using the Internet were
educational institutions and the government.
However, it was the academic sites that were
mainly responsible for finding out how the
attack worked and how to stop it from
spreading [11]. 

A lot was learnt from the worm, and everyone
realized that changes needed to be made to
better deal with the next attack. Some of the
lessons learned were [11]: 

Sites that disconnected themselves from the
Internet during the attack to prevent
damage missed out on communications
about the activities of the worm and the
bug fixes, and were unable to help others
analyze the worm. Additionally, they cut off
communications for other sites whose e-
mails needed to pass through their network
to get to its destination. 

In case of emergencies like this, it is
necessary to have a way to learn who to
contact at other sites, and how they can be
reached.

710

The availability of source code

John Reinke and Hossein Saiedian

cose 2208.qxd  08/12/2003  15:56  Page 710

http://www.cert.org


Groups needed to be formed, and it was
interesting to see who became the leaders of
these groups. 

There was a lot of misinformation, which
spread quickly. 

Availability of source code was critical. The
sites making the most progress in learning
about the attack, as well as being able to
defend themselves, had access to the source
code for the vulnerable applications. 

A conclusion reached afterwards [12] was that
the only reason why the worm did not take
longer to stop was the existence of the network
of people working together able to jointly figure
out what was happening and find a way of
stopping it. It was recommended that a crisis
center should be set up as a more formal and
wider network. After the occurrence of another
more limited attack later that November,
DARPA (the Defense Advanced Research
Projects Agency) decided to establish CERT
(the Computer Emergency Response Team) as a
central point of communication for Internet
security issues, and part of the Software
Engineering Institute, a non-academic unit of
the Carnegie Mellon University. 

3.1 Types of CERT/CC publications 

There are three main types of security alerts and
publications provided by the CERT
Coordination Center: advisories, vulnerabilities,
and incident notes. The number of occurrences
of each in recent years is shown in Table 1,
from data available at the CERT/CC web site
[13]. The numbers, particularly the number of
‘incidents’ shown, demonstrate that they do not
all deal with the same aspect of computer
security ‘incidents’.

CERT/CC incident notes 

The best general description of a CERT/CC
incident is ‘The act of violating an explicit or
implied security policy’. Since security policies
vary greatly, the following guidelines are

suggested by CERT/CC when considering
whether to submit an incident report: 

attempts to access a system without
authorization, whether successful or not;

any interruption or denial of services;

usage of a system (without permission) to
store or process data;

any modifications to a system’s hardware,
software or firmware, without the approval
or knowledge of the owner.  

Since so many incidents are reported, incidents
involving life-or-death situations, threats to the
infrastructure of the Internet (such as a root
domain name server), and widely spread attacks
are given a higher priority. Reporting incidents
helps to identify new attacks and trends and inc-
reases the quality of security statistics, while provi-
ding data for better awareness and security fixes. 

CERT/CC vulnerability notes 

The next types of publications provided by the
CERT/CC are vulnerability notes. Vulnerabilities
are typically reported by the end-users or security
experts that discover them and, ideally, have not
been exploited by the bad guys yet. The notes
typically describe security holes and critical bugs
found in specific applications or implementations
of protocols. Vulnerabilities must be taken
through a process to ensure that the vendor is
aware of the problem and working on it, especially
if there are known exploits that are already spread-
ing. If any fixes or workarounds are known, then
they are listed as well. 

CERT/CC advisories 

CERT/CC advisories are vulnerabilities that are
considered to be especially serious. These are

The availability of source code

John Reinke and Hossein Saiedian

711

Table 1: CERT/CC Statistics

Year 1999 2000 2001 2002,Q3 Totals

Advisories 17 22 37 27 103

Incidents 9,859 21,756 56,658 73,359 161,632

Vulnerabilities 417 1,090 2,437 3,222 7,166

cose 2208.qxd  08/12/2003  15:56  Page 711



712

The availability of source code

John Reinke and Hossein Saiedian

Table 2: Advisory Data Sample

Advisory Description Type Public Private Fix Info Days

CA-2002-20 Multiple Vulnerabilities PS 07/10/02 05/26/02 MV
in CDE ToolTalk

CA-2002-12 Format String Vulnerability OSS 05/08/02 03/24/02 04/09/02 16
in ISC DHCPD

CA-2002-11 Heap Overflow in PS 05/06/02 03/22/02 05/24/02 63
Cachefs Daemon (cachefsd)

CA-2002-09 Multiple vulnerabilities PS 04/11/02 02/25/02 MV
in Microsoft IIS

CA-2002-07 Double Free Bug in zlib OSS 03/12/02 01/26/02 03/11/02 44
Compression Library

CA-2002-06 Vulnerabilities in Various MI 03/04/02 01/18/02
Implementations of the
RADIUS Protocol

CA-2001-26 Nimda Worm PS 09/18/01 08/04/01 Prev

CA-2001-23 Continued Threat of the PS 07/26/01 06/11/01 Prev
"Code Red" Worm

CA-2001-19 "Code Red" Worm Exploiting PS 07/19/01 06/04/01 Prev
Buffer Overflow in IIS 
Indexing Service DLL

CA-2001-18 Multiple Vulnerabilities MI 07/16/01 06/01/01
in Several Implementations
of the Lightweight Directory 
Access Protocol (LDAP)

CA-2001-16 Oracle 8i contains buffer PS 07/03/01 05/19/01 N/A
overflow in TNS listener

CA-2001-15 Buffer Overflow in Sun Solaris PS 06/29/01 05/15/01 08/30/01 107
in.lpd Print Daemon

CA-2001-13 Buffer Overflow In IIS PS 06/19/01 05/05/01 06/18/01 44
Indexing Service DLL

CA-2001-08 Multiple Vulnerabilities in NS 04/10/01 02/24/01
Alcatel ADSL Modems NS

CA-2001-05 Exploitation of snmpXdmid PS 03/30/01 02/13/01 08/30/01 198

CA-2001-03 VBS/OnTheFly (Anna PS 02/12/01 12/29/00 None
Kournikova) Malicious Code

CA-2000-22 Input Validation Problems OSS 12/12/00 10/28/00 09/25/00 -33
in LPRng

CA-2000-07 Microsoft Oce 2000 UA PS 05/24/00 04/09/00 05/12/00 33
ActiveX Control Incorrectly 
Marked "Safe for Scripting"

CA-2000-04 Love Letter Worm PS 05/04/00 03/20/00 None

CA-2000-03 Continuing Compromises OSS 04/26/00 03/12/00 None
of DNS servers

CA-1999- 17 Denial-of-Service Tools MI 12/28/99 11/13/99 None

CA-1999-12 Buffer Overflow in amd OSS 09/16/99 08/02/99 09/09/99 38

CA-1999-04 Melissa Macro Virus PS 03/27/99 02/10/99 None

cose 2208.qxd  08/12/2003  15:56  Page 712



the items that are deemed by the CERT
Coordination Center to be so important that
everyone in the Internet community —
including system administrators, software
vendors, and end-users — should take notice
immediately. 

Advisories may comprise a vulnerability or
multiple vulnerabilities of an application that
are being exploited on a grand scale, such as
worms and viruses. They might be wide-open
security holes that are trivial for a beginner to
exploit. In some cases, advisories might alert
everyone to an attack on specific services on
sites that have something in common, such as
prominent web sites or any sites using the same
version of defective software. 

4 Data collection process 

The types of CERT/CC alerts used for the
collection of data are the CERT/CC advisories.
These are based on vulnerabilities that present
serious risk, so a certain amount of evaluation
has already been performed to determine that a
significant number of computers or networks are
in danger. Occasionally, the advisory is linked to
one or more vulnerability listings, and the
additional information can provide more insight
to the problem, solution, and other communities
where the vulnerability was listed. 

To reflect the current usage of proprietary and
non-proprietary software, data was collected for
CERT/CC advisories issued within the last four
years. One of the security issues that has become
commonplace in that time frame is the
widespread adoption of broadband Internet
connectivity, such as ADSL (asymmetric digital
subscriber line) and cable modem services. This
creates a new awareness to security, as household
computers now have Internet connectivity 24
hours a day. Where security was wholly an issue
for system administrators, it is now moving into
the hands of the general public. Software
vendors must consider that any application they
create may be used while connected to the

Internet, and it must not be the weak link that
allows an attacker to compromise a computer.
All significant bugs that are found must be fixed
in the most timely manner possible. 

The following process was applied for each
CERT/CC advisory collected from the list of
advisories (http://www.cert.org/advisories) at the
CERT/CC web site. Sample results are included
in Table 2, with an explanation of the
abbreviations below. 

In the first column of Table 2, CERT/CC
advisories are shown in the format CA-YYYY-
XX, where CA shows that this alert is a
CERT/CC Advisory, YYYY indicates the four-
digit year in which the advisory was issued, and
XX identifies which advisory number it was
within that year. The second column is the
description, exactly as given in each advisory.
The next column is the type of software that was
determined for the advisory. The public date is
when the advisory was released, and the private
date is exactly 45 days prior to the public date, as
described in section 4.4. The ‘Fix’ column
contains the date that a solution was provided, if
one was found for the advisory. The ‘Info’
column holds an abbreviation for special
scenarios, if any were found. The final column
shows the number of days needed by vendors to
provide a solution for the vulnerability. 

4.1 Determine the type of software 

The software type could usually be determined
from the web page for the individual advisory
by looking at the vendor(s) listed. The type
categorizes most software as either proprietary
software or open-source software, as compared
in this paper. The following is a list of each type
of category with a brief description: 

Multiple implementations (MI)
This indicates that the advisory affects software
that is available from more than one vendor.
Whether the implementations are all open-
source, all proprietary, or any combination of
the two, the fact that there is more than one

The availability of source code

John Reinke and Hossein Saiedian

713

cose 2208.qxd  08/12/2003  15:56  Page 713

http://www.cert.org/advisories


application that needs to be fixed will
effectively eliminate a single fix date for the
vulnerability. Type MI advisories are not
counted as either open-source or proprietary
software.

Open-source software (OSS) 
Software for which the source code is available
with the application. 

Proprietary software (PS) 
Software for which the source code is not
available to the end-user. 

Non-software (NS) 
This applies to vulnerabilities that cannot be
tied directly to a software development
environment.

4.2 Identify special scenarios 

There is a number of special scenarios where no
fix date is available. When one of these scenarios
was identified, it was noted and no further
information needed to be collected for the
advisory. These scenarios and their identifiers are
listed in the ‘Info’ column of Table 2. 

Multiple vulnerabilities (MV) 
In this case, the same protocol or application
has numerous vulnerabilities that are addressed
with a single advisory. Because not all the
vulnerabilities were discovered or fixed on the
same date, there was no single number that
could represent the number of days that were
needed for a fix to be made available. For this
reason, no fix date is recorded for advisories
with multiple vulnerabilities. 

No information available (N/A) 
This usually meant that not enough
information was available at the CERT web site
or the site of the vendor of the application. In
some cases, the information appeared to be
restricted from the general public. 

No fix available (None) 
There was no fix date available, either because
there was no real fix that could be offered or
because the vulnerability related to a ‘feature’ in

the application that the vendor did not choose
to disable. For example, it is usually up to the
end-user to be cautious not to open e-mail with
unknown attachments and to use anti-virus
software where appropriate. 

Previous advisory (Prev) 
This indicates that there was a previous
advisory for this issue, but it continued to be a
major problem either because too few people
took action to fix it or because the attack is
aggressive and ongoing. There is no need to
count the same solution twice, especially since
it is likely to have been available before the
follow-up advisory was announced. 

4.3 Find the date on which a solution
became available 

The search for the date on which a solution or
patch became available for the vulnerabilities
involved a great deal of legwork. In a few cases,
the date was available on the CERT/CC
advisory page itself, often including a list of
instructions for fixing or disabling the
vulnerability. Most often, the information had
to be found at the vendor’s web site. Typically, if
an advisory page was available at the vendor’s
site, then the actual patch or a new release of
the application had to be found and the date
found on which the file was created or made
available. The longer ago an advisory was
issued, the more likely it is that the vendor had
redesigned their web site or changed the
location of their posted security alerts. This
requires old web links to be traced or found
using a search engine capable of providing
copies of pages that no longer exist. At other
times, mailing list archives had to be searched
or browsed for discussion of the vulnerability
and availability of a solution. 

4.4 Calculate the time needed to
provide the solution 

For every advisory where a solution was
provided, the number of days required to
provide the solution needed to be calculated.

714

The availability of source code

John Reinke and Hossein Saiedian

cose 2208.qxd  08/12/2003  15:56  Page 714



This presented a challenge, since identifying
the day when the vendors themselves learned of
the vulnerabilities was nearly impossible. It
would be in the best interest of the vendors of
proprietary software to keep this information
tightly protected from the public before a
solution could be made available. Even after a
solution was available, this information was still
protected. Purportedly, this could be an issue for
proprietary software makers if their customers
learned after the fact how long it took for a
solution to be made available, thus leaving their
computer systems exposed. Even if the fix
occurred within a reasonable amount of time, it
could still affect a company financially. 

Since it was difficult to find the original date on
which vendors were notified, a reliable system
had to be derived. From CERT/CC’s disclosure
policy [14], “All vulnerabilities reported to the
CERT/CC will be disclosed to the public 45
days after the initial report, regardless of the
existence or availability of patches or
workarounds from affected vendors. Extenuating
circumstances, such as active exploitation,
threats of an especially serious (or trivial)
nature, or situations that require changes to an
established standard, may result in earlier or
later disclosure.” The policy also says,
“Vulnerabilities reported to us will be forwarded
to the affected vendors as soon as practical after
we receive the report.” 

For both proprietary and open-source projects,
counting back 45 days from the date on which
the advisory was made public was found to be a
more reliable system than attempting to
discover these dates through research online. It
was also found to be fairer, since much more of
this information was found for the open-source
projects than for the proprietary projects. Thus,
the amount of time required to provide the
solution was calculated by counting the number
of days, starting 45 days prior to the date the
advisory was published through the date on
which a solution was first found to be made
available.

Perhaps it should be added that collecting data
from the time prior to that which we used
might create different results, for the wrong
reasons. Much of the earlier networked
applications were open-source. This could
increase the likelihood of alerts being for open-
source. On the other hand, open-source
application development had a head start in the
world of security-aware programming, so those
earlier dates might have benefited that side.
Since one purpose of this paper is to provide
some guidance or input into future software
purchase/usage decisions, looking at data from
too long ago might not best represent the
abilities of software developers today. We also
employed the same procedures to find those
dates, for either type of software. To find the
dates we first followed links from the CERT
advisories to the project or company web site. A
lot of open-source projects have a web site too,
and it is common for the site to contain old
news, security announcements, or mailing list
archives. We basically searched for the earliest
date we could find for the solution. This is the
date that we used. 

It is also true that CERT is not always the first
to be notified when a vulnerability has been
identified. They may only find out from the
vendor. Therefore, the vendor may have known
about the vulnerability for longer than the 45-
day period. In most cases that we recall, it was
first discovered by a security company or an
individual who notified CERT and the
company/developer at the same time.
Sometimes it was mentioned on a security
mailing list or on a list especially for that
project. While it may be possible that some are
first known by the vendor, it might also be
possible that they are kept quiet and never
become an advisory. 

The data in Table 2 is solely there to provide
examples of the different types of scenarios
and bugs that we found. We picked things
like the ‘Nimda Worm’ and ‘Code Red’,
which readers might remember or be familiar

The availability of source code

John Reinke and Hossein Saiedian

715

cose 2208.qxd  08/12/2003  15:56  Page 715



with. One can also see that the advisory
numbers skip many times. For example, it
skips from CA-2001-26 to CA-2002-06,
despite the fact that Table 1 shows that there
were 37 advisories for 2001. 

5 Analysis process 

Once a system was developed to organize the
collected information, the data needed to be
analyzed to find in which direction it pointed
and what could be learned from it. The data
was stored in a spreadsheet, in order to
automate calculations and also to provide a
clean display of the advisories when studying
them. The sections below refer to specific
advisories by their CERT/CC advisory number,
which can be found in Table 2. 

The primary focus of this study is to find out if
there is a security advantage to using proprietary
or non-proprietary software with respect to the
amount of time it takes to provide a solution to a
vulnerability. To do this, the collected data was
organized according to whether the security
advisories relate to proprietary or non-proprietary
software. Advisories that did not fit into those
categories were also documented and analyzed to
find any patterns. Additionally, cases where a
solution was not found for the advisory were also
categorized.

The categories describing the types of software
are described below, together with the number
of occurrences of each. The two most
significant types for this study are proprietary
software and open-source software. Table 3
shows a brief break-down of each by percentage. 

Proprietary software (PS) 

Proprietary software made up the largest group
of software types that were identified. It made
up 56% of advisories that were classified, 57%
of software-related advisories, and 76% of
advisories determined as only proprietary or
open-source. An example of an advisory
classified under proprietary software is CA-
2001-13 (Buffer Over flow in IIS Indexing
Service DLL). In this vulnerability, a DLL in
versions 4 and 5 of Microsoft’s IIS web server
contained a buffer overflow that would allow
remote exploitation and execution of arbitrary
code on the compromised machine. 

Open-source software (OSS) 

Open-source software was the sole type of
software for 18% of all advisories, 18% of
software-related advisories, and 24% of those
classified as only proprietary or open-source
software.

An example of an open-source software-related
vulnerability is advisory CA-1999-12 (Buffer
Over flow in amd). This vulnerability is a buffer
overflow in the logging portion of the Berkeley
Automounter Daemon. The daemon, which
allows automatic mounting of devices when
files on those devices are requested, can allow
arbitrary code to be executed as the user
running the amd — usually root (the
administrative user). 

Multiple implementations (MI) 
Cases where multiple implementations existed
for a vulnerability made up 24% of the overall
advisories researched. 

Advisories that found vulnerabilities within
different vendor’s version of the same type of
software could not be counted easily. In some
cases, the implementations occurred in both
open-source and proprietary software, so they
could not be counted as either type of software.
Further, typically they could not be counted as
one item for each type, because the number of
occurrences did not split evenly between the two

716

The availability of source code

John Reinke and Hossein Saiedian

Table 3: Software Types Data

Type Percentage

Proprietary Software (PS) 56%

Open Source Software (OSS) 18%

Multiple Implementations (MI) 24%

Non-Software (NS) 2%

cose 2208.qxd  08/12/2003  15:56  Page 716



types. In other cases, even if all the occurrences
appeared to belong exclusively to either open-
source or proprietary software, many other
variables did not match. These variables
included not having the same date on which a
fix for some implementations was available, even
if it was based on the same code. For the
proprietary software, it appeared that the same
closed-source library might have been used for
different implementations, but the vendors
normally made their own solutions available. It
was the collision of these variables that made
advisories based on multiple implementations an
unreliable source for data collection with respect
to proprietary versus open-source software. 

An example of multiple implementation of a
vulnerable piece of software is CA-2001-18
(Multiple Vulnerabilities in Several
Implementations of the Lightweight Directory
Access Protocol (LDAP)). Multiple
implementations of the LDAP protocol
(including open-source and proprietary
implementations) contain vulnerabilities, so a
solution cannot be credited fairly to either type. 

Non-software vulnerabilities (NS) 
The final type of alert that was identified could
not be tied specifically to a method of software
development. Even if the problem developed
within a proprietary device or environment,
there would have to be an equal chance of the
same device or situation occurring within an
open-source environment to allow these
vulnerabilities to be counted. Overall, non-
software vulnerabilities only accounted for 2%
of the overall CERT/CC alerts issued within the
data collection. 

An example of a non-software vulnerability is
CA-2001-08 (Multiple Vulnerabilities in
Alcatel ADSL Modems). The modems allow
TFTP (trivial file transfer protocol) from the
LAN side of the modem for firmware updates to
be installed. However, there is a bug that could
allow remote exploitation of this service by
forging information in data packets sent from

the outside of the LAN that would bounce back
to the modem from a machine on the local
network. Additionally, the default password for
administration of the modem was an empty
password, which makes exploitation especially
easy for anyone with physical access to the
modem. 

5.1 Identification of special scenarios 

Special scenarios are cases where a single
solution date was not found to be available. The
significance of these scenarios is that they
prevented the identification of a date when a
solution was available for the related
vulnerabilities. While it may seem that not
many vulnerabilities fit into this area, when
combined they account for one third of all the
vulnerabilities studied. Also, it is important to
analyze this information to find any patterns
that might relate to why open-source or
proprietary software vulnerabilities were not
counted as fixed. 

Table 4 provides an overview of the number
of special scenarios that were found. The
percentages listed are for the overall items
identified for the software type at the top of
that column. For example, of all the
advisories determined to be open-source
software, 24% were found to contain multiple
vulnerabilities. The last column compares
each scenario type with the total number of
vulnerabilities as a whole. Because no non-
software-type alerts fell under any of the four
scenario types, a relation between the
scenario types and non-software
vulnerabilities will not be studied. 

The availability of source code

John Reinke and Hossein Saiedian

717

Table 4: Special Scenario Occurrences

Scenario Type PS OSS MI NS Overall

Previous Advisory (Prev) 9% 0% 9% 0% 7%

Multiple Vulnerabilities (MV) 17% 24% 4% 0% 15%

No Solution (None) 11% 6% 13% 0% 10%

Data Not Available (N/A) 2% 0% 0% 0% 1%

cose 2208.qxd  08/12/2003  15:56  Page 717



Previously existing vulnerabilities/solutions
(Prev)
Cases where a previous CERT/CC advisory has
been issued for the same vulnerability account
for about 9% of all proprietary software, 0% of
open-source software, 9% of the multiple
implementations, and 7% of all vulnerabilities
that were categorized. 

CA-2001-13 (Buffer Over flow In IIS Indexing
Service DLL), CA-2001-19 (‘Code Red’ Worm
Exploiting Buffer Over flow in IIS Indexing
Service DLL), and CA-2001-23 (Continued
Threat of the ‘Code Red’ Worm) are examples
of this. The first advisory (CA-2001-13)
identifies a buffer overflow error. The second
advisory (CA-2001-19) is about the ‘Code
Red’ worm, which exploited the same buffer
overflow error on machines not upgraded after
CA-2001-13. The third advisory (CA-2001-
23) is an additional alert that indicates that
the Code Red worm is still continuing to
spread at a rapid pace. Since a fix was provided
for the first of these three examples, it is the
one attributed with a fix date. Since a new fix
was not needed for the other two advisories,
they were labeled as having a previously
available solution. 

Note that, of these example advisories, two
were in fact published without waiting the 45
days that is assumed to have passed between the
date that the vendor was aware of the
vulnerability and the date that the alert was
made public. This is due to the urgency of their
content, as determined by the CERT/CC. In
this case, this was not a problem, since those
two advisories were determined to exist
previously, and the dates were not considered
for them. 

Multiple vulnerabilities (MV) 
Multiple vulnerabilities are listed within the
CERT/CC advisories for 17% of proprietary
software, 24% of open-source software, 4% of
multiple implementations, and 15% of all alerts
studied.

An example of this is CA-2002-09 (Multiple
Vulnerabilities in Microsoft IIS), in which there
are 10 separate vulnerabilities listed for the
Microsoft IIS web server. The vulnerabilities
varied from buffer overflows to cross-site
scripting vulnerabilities. Fixing these
vulnerabilities required downloading and
running a cumulative patch that applies 10
separate patches to the IIS server. 

No solution available (None). 
Vulnerabilities where no solution was found to
be available represented 11% of proprietary
software, 6% of open-source software, 13% of
multiple implementations, and 10% of
advisories overall. 

An example is CA-2001-03 (VBS/OnTheFly
(Anna Kournikova) Malicious Code), which is
a VBScript attachment capable of being
executed automatically from within Microsoft
Outlook. The recommended solution is to
install or update current anti-virus software, and
to use caution when opening e-mails, both of
which do not fix the vulnerable behavior of
VBScript within windows. 

Another example is CA-1999-17 (Denial-of-
Service Tools), where multiple operating
systems, including some UNIX, Windows and
MacOS, were vulnerable to denial-of-service
(DOS) attacks by tools being shared on the
Internet. The solution offered was to be aware
of the situation, in order to be prepared for a
quick response if it happens and to install
ingress filtering rules on routers. Neither
solution directly changes the vulnerable systems
and, as such, is not categorized as solutions
provided by the vendors. 

Data not available (N/A) 
Only one occurrence was found where not
enough data was available to provide the fix
date. This fell within the proprietary software
category, making it 2% of all proprietary
software advisories and 1% of all advisories
studied. The advisory is provided as the
example.

718

The availability of source code

John Reinke and Hossein Saiedian

cose 2208.qxd  08/12/2003  15:56  Page 718



Since CA-2001-16 (Oracle 8i contains buffer
over flow in TNS listener) did in fact have a
solution, it did not fit under the other scenarios,
but it could not fit under the fixed advisories
without a date for when the fix was available.
Learning more about the vulnerability and the
date on which the patch was made available
from Oracle required a support contract ID
number in order to log in to the Metal ink
support site, where the required information was
available.

6 Results of analysis 

6.1 Consideration of special scenario
data

While the special scenarios did not contribute
to finding out the amount of days that are
required for proprietary or open-source software
vendors to provide solutions to vulnerabilities,
they did yield some interesting information that
could contribute to the results of this paper. 

Advisories that were found to be related to
previous advisories do, however, appear to
provide some meaningful information. Firstly, in
this study five were found to exist under
proprietary software, where none were found for
open-source software. What does this indicate?
Since this type of advisory typically referred to
the importance (and sometimes urgency) of
installing a previously available patch or
solution, it could indicate, among other things,
that:

(a) administrators for systems containing the
proprietary software are less likely to install
updates when they are available; 

(b) machines with the respective proprietary
software are very common or popular in
environments where the vulnerability
thrives;

(c) vulnerabilities of proprietary software are
more likely to be extreme enough to require
the release of multiple CERT/CC advisories;  

(d) open-source software is not common
enough that advisories are worthy of
repetition; or 

(e) administrators of systems containing open-
source software are more likely to keep up
to date with software updates that a
repeated advisory is never needed. 

None of these can be proven without
expanding the research to other areas, but the
existence of repeated advisories implies that
there is a greater problem in either the
proprietary software itself or in those
responsible for updating the proprietary software
in these cases. 

More advisories were found to have multiple
vulnerabilities for proprietary software than for
open-source software. However, since there
were more advisories for proprietary software,
the percentage of multiple vulnerabilities found
in comparison to the other scenarios was greater
in open-source software. Some possible
implications could be that: 

(a) open-source vendors might wait longer to
accumulate enough fixes to create a new
release (perhaps because, at a given
moment, there are fewer resources to apply
to the project than a commercial software
vendor would have); or 

(b) open-source vendors might make the
changes available though nightly builds of
the packages, so the changes are available
but more time passes between major releases
of the software than for comparable
proprietary products. 

The difference between open-source and
proprietary software are close enough in this
category such that no additional information
can be determined. 

Advisories where no solution was available can
offer some insight. A higher percentage of
advisories without a solution fall under
proprietary software than under open-source

The availability of source code

John Reinke and Hossein Saiedian

719

cose 2208.qxd  08/12/2003  15:56  Page 719



software. All the advisory notes suggested other
methods to avoid exploitation of the
vulnerabilities. Interestingly, the open-source
vulnerability could have been considered to be
a previous vulnerability, but CERT/CC assumed
that the administrators for the open-source
software had already updated the software if
they knew it was installed, so they
recommended uninstalling the software. All the
proprietary software problems suggested
installing or updating the current anti-virus
software. This shows that the computers with
the vulnerability are more likely to be
workstations, since they are running e-mail
software that can automatically execute a virus
or Trojan. It also shows that the proprietary
software vulnerabilities in these cases are more
easily fixed by using anti-virus software than
changing the features of the software that
automatically executes the virus. 

The ‘information not available’ (N/A) special
scenario is interesting, because the only case
that existed was proprietary software. Had more
of this type existed, it might have provided
significant input, since this categorization
implies a restriction of information that would
appear to more closely represent proprietary
software. There have been times when
information has been limited with open-source
software, such as vulnerabilities in the
OpenSSH software. But, once a solution was
made available, all the information, as well as

the reasoning for restricting the information,
was made public. Since only one case exists in
this study, no significant information can be
derived from this piece of data. 

Lastly, one can argue that the sample sets
shown are CERT advisories, thus any
conclusions formed apply only to the CERT
advisories. While there are certainly other types
of computer and network security advisories, it
seems that the CERT advisories are the most
widely distributed — both by CERT itself and
by other security sites. We also considered the
CERT Vulnerabilities list, but they varied
greatly in severity. Also, there were so many
(3222 in the first three quarters of 2002 alone)
that it would not have been possible to gather
the information for each item if we wanted the
data to span more than one year. 

6.2 Percentage of vulnerabilities fixed 

Before moving on to the amount of time
required for vulnerabilities to be fixed, one
other piece of data will be compared — the
percentage of vulnerabilities fixed. This data
can be found in Table 5. Note that the software
type classifications for multiple
implementations (MI) and non-software (NS)
do not have columns in Table 5, but their
numbers are still counted in the overall column. 

Out of all the advisories that were determined
to be based on proprietary software, 61% were
found to be fixed. The same figure for open-
source software was 71%. These numbers were
found by taking the total number of solutions
made available for the software type divided by
the number of advisories for that type.
Contributing to the difference in those figures
are the vulnerabilities found to be related to
previous advisories and advisories with multiple
vulnerabilities. Since those advisories could not
be considered to be fixed, they became part of
the ‘unfixed’ group. 

By not counting the previously alerted and
multiple vulnerability advisories in the total

720

The availability of source code

John Reinke and Hossein Saiedian

Table 5: Comparison of Results

PSS OSS Overall

Total Advisories 54 17 96

Total Advisories, excluding Prev and MV 40 13 75

Fixed Advisories 33 12 45

Percentage Fixed 61% 71% 47%

Percentage Fixed, excluding Prev and MV 83% 92% 60%

Average Number of days for Solution 52.45 28.75 46.13

Standard Deviation of Days for Solution 30.25 23.82 30.33

Minimum Days for Solution 31 -33 -33

Maximum Days for Solution 198 45 198

cose 2208.qxd  08/12/2003  15:56  Page 720



number of advisories for each type of software,
the percentage fixed for proprietary software is
83% and for open-source software is 92%.
These averages are much higher and seem to
better reflect the success of both types of
software vendors in fixing vulnerabilities when
they are found. 

Whether counting or ignoring the multiple and
previous vulnerabilities, an approximate 10%
difference was found between the number of
solutions offered between the two types of
software, with open-source having the
advantage in both cases. This is a significant
difference. While it was not the focus of this
research, it is interesting to note that, when
looking at CERT/CC advisories, more of the
open-source-related advisories have solutions
than for proprietary software. 

It is true that different types of vulnerabilities
require different types of fixes. Some are
relatively easy to fix (e.g. a buffer flow), while
others may require substantial time and effort to
locate them and correct them. A concern that
may arise is as follows: there may not be enough
detail to know how the above difference
contributes to the differences in fixes (and that
certain open-source vulnerabilities cannot be
fixed). Thus, could the analysis (where
unfixable vulnerabilities are excluded) bias the
study? We cannot really tell how much, or if at
all, it biased the study. Our paper looks at the
development approaches to fixing a
vulnerability and finds that it seems to make
some difference. However, another thing to
consider is how the original code was written
and if, for example, having more eyes looking at
the code during original development might
cause it to have fewer ‘unfixable’ errors, it could
in fact be biasing the study to exclude the
unfixable ones. 

Here are some reasons why we excluded the
unfixed/unfixable ones: 

Probably the greatest reason is that our goal
was to find out how long it took to fix

vulnerabilities. Unfixable vulnerabilities
would contribute no time frame to enhance
this calculation. So, our approach was to
treat every occurrence equally by excluding
them all, instead of essentially    counting
them all as failures, despite the varying
amounts of credit used by the development
process might have toward the ‘fixability’ of
the vulnerability. 

There were more unfixable vulnerabilities
for MI (multiple implementation) software
than for open-source or proprietary
software, and the levels between open-
source and proprietary software did not
appear to be so different that we could
consider it to be a significant piece of data. 

6.3 Time required to provide
solutions and source code availability 

We now look at the main focus of this paper:
can either proprietary software or open-source
software provide a security advantage in the
amount of time that is needed between the date
on which a vendor is made aware of a
vulnerability and the date on which a solution
can be provided? Table 5 shows a comparison of
some of the main results discussed. 

As explained in section 4.4, a 45 day period has
been assumed to have passed between the date
on which CERT/CC was made aware of the
vulnerability and the date on which the
advisory is made public, according to
information available on the CERT/CC web
site. All calculations for the amount of time
required for a solution are based on the date
exactly 45 days prior to the public date of the
advisory. 

For proprietary software, the minimum amount
of time required to create a solution was 31
days. The maximum time was 198 days for CA-
2001-05. While 198 days was nearly four times
the average, advisory CA-2001-15 required 107
days until a solution was available. Since the
number of days that was needed to provide

The availability of source code

John Reinke and Hossein Saiedian

721

cose 2208.qxd  08/12/2003  15:56  Page 721



solutions varied widely in both directions, no
data were labeled as outliers and excluded from
the statistics. 

For open-source software, the minimum was a
negative 33 days for advisory CA-2000-22,
which indicates that the solution for that
specific vulnerability had been available for 33
days before the assumed vendor notification
date. Because the solution was not tied to any
previous advisories, it did not fit within the
category for advisories based on a previous
advisory. The maximum number of days
required for a solution to be made available was
45 days, which means that the solution was
made available on the date the advisory was
made public. 

The average number of days required for
solutions to be made available was 52.45 days
for proprietary software and 28.75 days for
open-source software. (Even adjusting the
averages by removing the two large values for
the proprietary software and the negative value
for the open-source software gave averages that
still differed by more than 10 days, with open-
source software still being the faster of the two.) 

By calculating the standard deviations, we see
that most proprietary software solutions were
made available within 30.25 days of the 52.45
day average. The standard deviation for open-
source software was 23.82 days. A lower
standard deviation indicates a stronger pattern,
or a more solid tendency for similar values to
reoccur, and can be seen more in the numbers
for the open-source software. 

It has been found from this data that open-
source software vendors provide solutions to
advisories an average of 23.7 days sooner than
vendors for proprietary software. This is a
significant difference. The standard deviation of
23.82 days suggests that not just the average but
a majority of open-source solutions was
provided before the average solution was
available for proprietary software. This does not
suggest that open-source software is necessarily

better than proprietary software but that, in
environments where it is essential to fix security
vulnerabilities as soon as possible, it is very
likely that an open-source application would
have a solution available sooner. 

Some of the proclaimed advantages of open-
source software may contribute to this, such as
the greater number of pairs of eyes available
within the online community to attack a
problem when it is discovered, the ability of
end-users to make changes to the source code
and recompile the application rather than wait
for a vendor to create patches or a new release
and distribute it, and even the cooperation and
joint analysis of the vulnerability within the
online community (as demonstrated in the case
of the Internet Worm). All these can help to
bring about a solution more rapidly. In contrast,
the lack of information shared with the general
public during the fixing of vulnerabilities in
proprietary software may in fact slow down the
process.

7   Conclusions 

Computer systems connected to networks and
to the Internet are never totally secure. When a
vulnerability is discovered, the importance of
fixing that vulnerability promptly grows as the
importance of maintaining the availability of
that computer system grows. This study looked
at determining if a difference could be found in
the amount of time needed to provide a
solution for both open-source software and
proprietary software. The aim was to provide
additional guidance in software selection when
both options are available, using security
advisory publications from the CERT
Coordination Center for the last four years. 

The findings were that it took on average about
23 days longer for solutions to be found and
made available for proprietary software than for
open-source software, and that the majority of
open-source solutions had been provided by the
average time a proprietary solution had been

722

The availability of source code

John Reinke and Hossein Saiedian

cose 2208.qxd  08/12/2003  15:56  Page 722



provided. While many studies seem to differ on
whether the advantages given for using open-
source software really make it more secure, this
study has found that some of those advantages
may in fact contribute to quicker solutions
when security vulnerabilities are found. 

7.1 Challenges 

In this section, we discuss challenges to
collecting the data for this paper that may have
affected the quality or accuracy of the data. 

Determining the date on which a vendor
was notified 
As explained in section 4.4, determining the
date on which vendors were notified of
vulnerabilities in their product is nearly
impossible in most cases for proprietary
software. Furthermore, this information does
not appear to be readily available from
CERT/CC. E-mails sent to CERT/CC
requesting information about when vendors are
notified was automatically replied to with an
informational message, but never followed up
with a personal reply.

Determining software types 
While the mention of certain software
companies or the name Linux makes
determining the software type easier, software
applications were found in CERT/CC advisories
that needed to be researched to determine their
type. In cases where an application or library
was used in a UNIX environment, the
assumption that the product was open-source
could not be made. Several versions of UNIX
are in fact proprietary software, as well as much
of the software that is used on them.

Understanding the vulnerability and its
solution
In order to know if a solution existed, and when
a solution was available that prevented further
exploitation of the vulnerability, certain
information had to be known. This information
ranged from understanding the service or type
of application that was vulnerable, to

determining if a previous solution to the
vulnerability existed. Anything that was not
known needed to be researched, mostly using
online sources. 

7.2 Future work 

Locate an official resource for the date a
vulnerability was discovered   
Since an accurate calculation of the amount of
time needed to fix a vulnerability is based on
having correct dates, it would have been helpful
to have a trusted resource with those dates.
Perhaps CERT records the original dates when
they are made aware of vulnerabilities. Ideally,
CERT/CC could provide this information after
a solution has been provided, and contact the
vendors when the date is known. This could
solve inaccuracies in the data and potentially
provide more accurate results.

Use CERT/CC vulnerabilities instead of
advisories
The CERT/CC vulnerability database has far
more information than the list of advisories, so
much more data could be collected while
applying the same analysis. More data could
identify trends more accurately. However, with
CERT/CC advisories there is a built-in
equalizer, in that each one is selected because it
has reached a certain level of urgency. Not all
CERT/CC vulnerabilities are similar in their
level of urgency, although the overall
conclusions could possibly benefit from an
increased number of statistics. It would be
important to investigate the potential benefit
thoroughly before undertaking this task, since
the total number of vulnerabilities in recent
years are in the thousands.

Determine the contributing factors for
more rapid solution
It is likely that some of the attributes of the
open-source development process may
contribute to having solutions that are generally
available more quickly than for proprietary
software. It would be beneficial to determine
which attributes are more significant, and raise

The availability of source code

John Reinke and Hossein Saiedian

723

cose 2208.qxd  08/12/2003  15:57  Page 723



awareness of them within the software
community. It would also be interesting to look
for ways to apply some of the approaches to
commercial products, either by releasing some
of the proprietary information when the
benefits outweigh the needs, or finding a work-
around to divulging source code or proprietary
information.

References 

[1] Littlewood, B. and Strigini, L., 2000. Software reliability and

dependability: a roadmap’, Proceedings of the International

Conference On The   Future of Software Engineering

(Limerick, Ireland), pp. 175-188. 

[2] Cowan, C., Pu, C. and Hinton, H., 1998. Death, taxes, and

imperfect software: surviving the inevitable, Proceedings of

the 1998 Workshop on New Security Paradigms

(Charlottesville, VI, USA), pp. 54-70. 

[3] Neumann, P.G., 1995. Computer Vulnerabilities:

Exploitation of Avoidance, Communications of the ACM,

Vol. 38, No. 6, p. 138. 

[4] Devanbu, P.T. and Stubblebine, S., 2000. Software

engineering for security: A roadmap, Proceedings of the

Conference on the Future of Software Engineering

(Limerick, Ireland), pp. 227-239. 

[5] Garfinkel, S. and Spafford, G., 2003. Practical UNIX &

Internet  Security, 3rd edn (O’Reilly & Associates). 

[6] Pethia, R., Paller, A. and Spafford, G., 2000. Consensus

Roadmap for Defeating Distributed Denial of Service

Attacks. Members of CERT/CC at Carnegie Mellon

University, The SANS Institute, and The Center for

Education & Research in Information Assurance & Security

(CERIAS) at Purdue University, respectively.

http://www.sans.org/ddos`roadmap.htm. 

[7] Neumann, P.G., 2000. Robust Non-proprietary Software,

Proceedings of the 2000 Symposium on Security and

Privacy (IEEE Computer Society, Oakland, CA, USA), pp.

122-123. 

[8] Martin, W. B., White, P. D. and Van eet, W. M., 2000.

Government, industry, and academia: Teaming to design

high confidence information security applications,

Proceedings of the Third Workshop on Formal Methods in

Software Practice (Portland, OR, USA), pp. 37-47. 

[9] Neumann, P.G., 1998. Inside Risks: Robust Open-Source

Software, Communications of the ACM, Vol. 41, No. 2, p.

128. 

[10] Stallman, R. M., 1994. Why Software Should Not Have

Owners http://www.gnu.org/philosophy/why-free.html.

[11] Rochilis, J. A. and Eichin, M. W., 1989. With microscope

and tweezers: The worm from MIT’s perspective,

Communications of the ACM, Vol. 32, No. 6, pp. 689-698. 

[12] Spafford, E. H., 1989. Crisis and aftermath,

Communications of the ACM, Vol. 32, No. 6, pp. 678-687. 

[13] CERT/CC staff, CERT/CC Statistics 1988-2002, last

updated  4 October 2002, http://www.cert.org/stats. 

[14] CERT/CC staff, CERT/CC Vulnerability Disclosure Policy,

2000, http://www.kb.cert.org/vuls/html/disclosure. 

724

The availability of source code

John Reinke and Hossein Saiedian

cose 2208.qxd  08/12/2003  15:57  Page 724

http://www.sans.org/ddos'roadmap.htm
http://www.gnu.org/philosophy/why-free.html
http://www.kb.cert.org/vuls/html/disclosure
http://www.cert.org/stats

	The availability of source code in relation to timely response to security vulnerabilities
	1 Introduction
	2 Networks, applications and security
	2.1 Services and applications on computers connected to the internet
	2.2 Proprietary software
	Where proprietary software is used
	Procedure for fixing a vulnerability with proprietary software
	2.3 Open-source software-source code availability
	Where open-source software is used
	Using source code to fix a vulnerability

	3 Data source
	3.1 Types of CERT/CC publications
	CERT/CC incident notes
	CERT/CC vulnerability notes
	CERT/CC advisories

	4 Data collection process
	4.1 Determine the type of software
	Multiple implementations (MI)
	Open-source software (OSS)
	Proprietary software (PS)
	Non-software (NS)

	4.2 Identify special scenarios
	Multiple vulnerabilities (MV)
	No information available (N/A)
	No fix available (None)
	Previous advisory (Prev)

	4.3 Find the date on which a solution became available
	4.4 Calculate the time needed to provide the solution

	5 Analysis process
	Proprietary software (PS)
	Open-source software (OSS)
	Multiple implementations (MI)
	Non-software vulnerabilities (NS)

	5.1 Identification of special scenarios
	Previously existing vulnerabilities/solutions (Prev)
	Multiple vulnerabilities (MV)
	No solution available (None)
	Data not available (N/A)


	6 Results of analysis
	6.1 Consideration of special scenario data
	6.2 Percentage of vulnerabilities fixed
	6.3 Time required to provide solutions and source code availability

	7 Conclusions
	7.1 Challenges
	Determining the date on which a vendor was notified
	Determining software types
	Understanding the vulnerability and its solution

	7.2 Future work
	Locate an official resource for the date a vulnerability was discovered
	Use CERT/CC vulnerabilities instead of advisories
	Determine the contributing factors for more rapid solution


	References


