
focuseducating software professionals

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0  ©  2 0 0 2  I E E E S e p t e m b e r / O c t o b e r  2 0 0 2 I E E E  S O F T W A R E 3 5

In recent years, software researchers and
developers have explored numerous princi-
ples for improving software practices, some
of which have proven effective in practical
projects. These include software develop-
ment methodologies and environments,
structured and object-oriented program-
ming, software process improvement mod-
els (such as the CMM), Computer-Aided
Software Engineering (CASE) tools, and
fourth-generation languages. Nevertheless,
we have not completely resolved our soft-
ware problems, and many organizations
continue to suffer from bad practices.

One way to improve practice is to focus
on properly educating the next generation
of SE professionals. However, the debate
about the most effective approach to edu-
cating this next generation continues un-
abated. Some argue for an SE track under
existing computer science (or computer en-

gineering) programs. Others promote spe-
cialized and independent SE degrees at the
graduate as well as undergraduate levels.
Some universities have established such spe-
cialized programs, hoping that they will ad-
dress all industrial SE problems. Unfortu-
nately, universities often don’t know what
new programs should offer or when or at
what level they are most appropriate. Fur-
thermore, traditional computer scientists
have criticized these programs as merely
providing an opportunity to offer industrial
training in programming. In many ways, the
current situation mirrors that of the com-
puter science field in the 1960s and 70s:
electrical engineering and mathematics fac-
ulty initially resisted the growth of com-
puter science degree programs just as cur-
rent computer faculty are treating SE today. 

Contributing to the hype about and harsh
criticism of SE programs are some widely held

Software Engineering
Programs: Dispelling the
Myths and Misconceptions

Hossein Saiedian, University of Kansas

Donald J. Bagert, Rose-Hulman Institute of Technology

Nancy R. Mead, Software Engineering Institute

Some people think
new software
engineering degree
programs address
industrial software
development
problems; others
argue that they are
merely an
opportunity to
provide industrial
training in
programming. The
authors address
these and similar
issues, discussing
commonly held
myths about such
programs. 

I
n a now classic 1994 Scientific American article, W. Wayt Gibbs de-
scribed software crises in both the private and government sectors.1 The
problems he discussed ranged from overrunning budgets and schedules
to terminating projects despite multimillion-dollar investments. Similar

concerns were reported as recently as March 2001 in the Communications of
the ACM, where several authors made grim predictions about the future of
software engineering (SE) if the industry continues with “business as usual.”2



myths. This article examines these myths, dis-
pelling the misconceptions to defuse unneces-
sary concerns, conflicts, and distractions and
help provide an appropriate context and di-
rection for new SE degree programs.

Myth 1

A new software engineering degree pro-
gram is an academic necessity.

There seems to be a rush to develop new SE
degree programs (especially at the graduate
level) simply because many SE faculty mem-
bers believe that adding such programs will
improve the reputation of their departments
and institutions. Adding a new degree pro-
gram will lead to a better image, but we must
calculate the associated costs to determine
whether the program will be cost effective in
the long run. In certain market areas, such pro-
grams are absolutely necessary and a welcome
addition; in other areas, they won’t have such
an impact and thus might become a burden.

Institutions should not develop new pro-
grams based on image-enhancing effects,
popular trends, or peer pressure. Rather,
they should introduce a program only if it is
necessary and has a valid and viable market.
Those interested in introducing a degree
program must objectively assess existing in-
dustrial needs, the potential pool of stu-
dents, expertise among the existing faculty,
and administrative support. Furthermore,
developing a new SE program is not always
the only means of addressing the needs of
local industrial organizations or student re-
quests. Many times, adding core SE courses
in a computer science program or adding an
SE focus area (or specialization) will address
both real and perceived demands.

Myth 2

Software engineering programs will unneces-
sarily expend computer science resources.

The general consensus in both industry
and academia is that computer science degree
programs are worthwhile and should con-
tinue for the foreseeable future. Therefore, to
meet the demand for computer scientists as
well as the emerging need for those educated
in SE, there must be sufficient resources (es-
pecially faculty) for both programs.

There is a severe shortage of faculty in
all computing fields, including SE. Master’s

programs in SE often overcome this obsta-
cle by using part-time adjunct faculty, but
this is a less viable option for many under-
graduate programs. With a small pool of
potential new faculty available, some insti-
tutions must retrain computer science fac-
ulty to teach SE. However, finding people
willing to undergo such retraining is more
difficult than in industry, due to the rights
that tenured faculty exercise at many aca-
demic institutions.

The discussion here assumes that a com-
puter science department will house the SE
program, perhaps becoming the Department
of Computer Science and Software Engineer-
ing (CSSE). Because the disciplines are closely
related, housing them in the same academic
unit is the best option, letting the two faculties
work together for their mutual good. How-
ever, at many institutions, there are difficult
political issues involved in forming a CSSE de-
partment, especially if the Computer Science
Department is not in a College of Engineering.
Furthermore, people believe that an SE pro-
gram in such a CSSE department would con-
siderably drain computer science resources—
but this is not necessarily the case. 

Consider the following scenario: The cur-
riculum for a computer science department
in a College of Engineering has nearly half of
its credit hours in the computer science de-
partment. In addition, there is a 90/10 per-
cent split between the computer science and
SE hours, which is consistent with the core
material recommended for a computer sci-
ence degree under Computing Curricula
2001 (CC2001).3 Thus, 90 percent of the
computer science faculty must teach com-
puter science courses, and the other 10 per-
cent must teach software engineering classes.

Now suppose the department adds an SE
degree program. The total number of credit
hours computer science and SE majors take
through the newly named CSSE Depart-
ment are the same, but the split in hours is
now 50/50 between the two disciplines.
(This is consistent with the recommenda-
tions made in the Guidelines for Software
Engineering Education,4 which provides
the SE undergraduate curriculum model
most cited in recent literature.) Subse-
quently, one-third of the department’s ma-
jors are in SE and the other two-thirds are
in computer science. How does this affect
the allocation of resources?

Adding a new
degree program

will lead to a
better image,
but we must
calculate the

associated costs
to determine
whether the

program will be
cost effective 

in the long run.

3 6 I E E E  S O F T W A R E S e p t e m b e r / O c t o b e r  2 0 0 2



When academic programs discuss re-
sources, they’re generally referring to fac-
ulty. Suppose the Computer Science De-
partment has 30 faculty members. Before
the SE degree existed, the department
would need 27 computer science instruc-
tors and three SE instructors, due to the
90/10 percent split in hours. Under this
scenario, implementing the SE program
would require a shift of four faculty mem-
bers. The computer science majors (two-
thirds of the total) would require 18 com-
puter science and two SE instructors; the SE
majors would need five computer science
and five SE instructors, meaning that the
computer science and SE split of the faculty
would now be 23/7.

So, only 13 percent of the faculty (four out
of 30) would need to shift to SE to implement
the change. Considering the number of elec-
trical engineering and mathematics faculty
that changed to computer science as it was
emerging, this seems reasonable, despite the
retraining issues involved. Furthermore, it is
likely that students who would have origi-
nally been computer engineering majors in
an Electrical and Computer Engineering
(ECE) Department will now be SE majors.
Those students will take about the same
number of computer science hours as in com-
puter engineering, so there will be no addi-
tional drain on computer science faculty; any
additional faculty needed would be in SE. So,
this means that the department would gain
more majors (at the expense of ECE) and (if
available) more faculty to teach them.

We can vary the scenario, but it still indi-
cates that creating an SE program in an CSSE
Department will have minimal negative im-
pact on the faculty. The positive benefits—
more majors, faculty, and choices available
to the student—far outweigh the disadvan-
tages, and we would get better-educated soft-
ware professionals without depleting the sup-
ply of computer science graduates.

Myth 3

Software engineering undergraduate pro-
grams do not have enough depth.

Many companies believe that a master’s
degree program in SE provides a sufficient
overall background for future software pro-
fessionals. Such programs typically require
the student to have a minimal background

of a set of undergraduate computer science
courses such as data structures, discrete
structures, design and analysis of algo-
rithms, and operating systems, for a total of
24 to 30 hours. The question is, can an un-
dergraduate SE program provide the com-
puter science background needed while pro-
viding the additional SE topics necessary to
educate a software professional?

Several sources indicate the type of core
computer science background that should be
required. Tim Lethbridge surveyed software
professionals and reported that the 25 most
important topics required of such individuals
include computer science areas such as spe-
cific programming languages, data structures,
object-oriented concepts, design of algo-
rithms, operating systems, systems program-
ming, databases, file management, and net-
works.5 Providing undergraduate education
in these topics would once again require 24 to
30 semester hours. This range of hours would
also be sufficient for CC2001’s core require-
ments and many of the requirements for com-
puter science courses (outside of SE) specified
in the criteria of the Computing Accreditation
Commission of the Accreditation Board for
Engineering and Technology.6 (ABET is the
accreditation body for engineering degree
programs in the US.) Therefore, it is reason-
able to assume that those same 24 to 30 com-
puter science hours would be sufficient in an
undergraduate SE curriculum.

As far as determining how many SE credit
hours are required, a typical master’s degree
requires at least 24 semester hours of gradu-
ate course work in the major (SE, in this
case). The question is, how does this trans-
late to undergraduate hours? One option is
to use a 3:2 ratio between undergraduate
and graduate hours, which is commonly
done in comparable courses in computer sci-
ence and other disciplines. So 24 graduate
hours would then translate to 36 undergrad-
uate hours. It is possible (although difficult)
to squeeze 24 to 30 hours of computer sci-
ence and 36 hours of SE into an undergrad-
uate SE curriculum. However, such compar-
isons are usually made using graduate
courses that build on undergraduate classes
in the same discipline, whereas a master’s de-
gree in SE requires little or no SE back-
ground when entering the program. There-
fore, 36 undergraduate SE hours might be
too many.

S e p t e m b e r / O c t o b e r  2 0 0 2 I E E E  S O F T W A R E 3 7

Many times,
adding core SE
courses in a

computer
science

program or
adding an SE

focus area will
address both

real and
perceived
demands.



The Guidelines for Software Engineering
Education suggests that an undergraduate
SE curriculum have 21 required hours of
computer science, 24 required hours of SE,
and nine hours of electives in either com-
puter science or SE. That model was in-
tended to satisfy CC2001 core computer sci-
ence requirements and ABET criteria for SE
undergraduate degree programs in the US. It
also aims to cover the same material typi-
cally found in an SE degree program, all in a
120-semester-hour, four-year curriculum,
which is generally the minimum requirement
for a baccalaureate program in the US. (It is
also interesting to note that virtually all of
the 25 most important topics for a software
professional cited in the Lethbridge survey—
including those in computer science and
SE—are also covered in the model from the
Guidelines report, even though the latter
was published first.) Such an SE curriculum
would provide minimally sufficient depth
for an SE major; allowing more than 120
hours (which is often the case for US engi-
neering programs) would provide even more
depth in computer science or SE.

Myth 4

A new SE degree will address industrial
software development crises.

A new SE degree program will not be a
panacea or a silver bullet. It will be one of the
first steps, albeit the most important step, to-
ward addressing industrial software develop-
ment crises, but we also must consider com-
plementary factors. For example, we need to
clearly define the “engineering education”
(the curricula and the style of presentation).
A starting point is understanding the objec-
tive of an engineering education as David
Parnas defines it.7 He argues that to provide
the most effective SE education, a new SE
program must follow the traditional engi-
neering approach to professional education
while maintaining the scientific basis of SE
(computer science). He emphasizes that an
engineering education should teach engineers 

� What is true and useful in their chosen
specialty

� How to apply the body of knowledge
� How to apply a broader area of knowl-

edge to build complete products that
must function in a real environment

(In a related article, Mary Shaw compares the
evolution of chemical engineering and civil en-
gineering with today’s SE. She uses her evolu-
tion model of engineering disciplines to iden-
tify the steps for enhancing the SE discipline.8)

Another important issue is that of defin-
ing an acceptable body of knowledge for
software engineers. The Software Engineer-
ing Body of Knowledge (SWEBOK) has
been an excellent starting point, but it has
certain deficiencies. One is its perceived
North American bias; such a guide must ob-
tain international acceptance. Yet another
criticism surrounds its certification and li-
censing implications. We must clearly ad-
dress such issues and invite other computing
associations to join SWEBOK’s development.

Furthermore, software engineers must be
able to apply the methods in different con-
texts and tune their knowledge to more effec-
tively use the new technologies. As Michael
McCracken has observed,9 academia cannot
predict the next popular language or method-
ology industry will use, so the education pro-
vided to software engineers must focus on the
fundamentals to prepare the new graduates to
assimilate and apply new technology quickly
and efficiently. A long-term aspiration would
be to identify distinct roles in SE and provide
appropriate education and specialized train-
ing for each.10

SE students (and education) must include
an element of training, not only during their
academic careers (for example, through in-
ternships) but once they enter the workforce
and before important design and implemen-
tation responsibilities are delegated to them.
This is not only true in other engineering dis-
ciplines, but also in nonengineering disci-
plines. (For example, in the medical field,
new graduates go through at least two years
of training as part of their residency program
before they are allowed to engage in real
practice.) Steve McConnell and Leonard
Tripp suggest at least four years of appren-
ticeship for software engineers.11

In addition, there must be a paradigm
shift in attitude at the workplace. Existing
software development professionals and
managers must value and respect SE (and
computer science) education, acquaint them-
selves with the fundamentals and the body
of knowledge, and update their personnel
skills to avoid “cultural clashes” with new-
comers. Otherwise, new SE graduates will be

There must be a
paradigm shift
in attitude at 

the workplace.
Existing

software
development
professionals
and managers

must value 
and respect 

SE education.

3 8 I E E E  S O F T W A R E S e p t e m b e r / O c t o b e r  2 0 0 2



unsuccessful in transitioning their new body
of knowledge and will end up following un-
proven skills and the “code and fix” culture
that dominates the workplace.11

Certification and licensing are equally im-
portant. Although formal education is crucial,
a software engineer should also regularly (for
example, every five years) prepare for and
pass certification exams. This would assure
that he or she has maintained a minimum un-
derstanding of the SE body of knowledge.
Certification exams can then evolve into a
kind of licensing exam, similar to licensing in
other fields, to facilitate and assure profes-
sional competency and responsibility.

Myth 5

Computer science is to software engineering
what chemistry is to chemical engineering.

Another widely held misconception per-
tains to the relationship between computer
science and SE (which has been compared
with that of chemistry to chemical engineer-
ing or physics to mechanical engineering).
This is essential in understanding how edu-
cating software professionals differs from
educating computer scientists. 

This myth is tempting for SE faculty be-
cause it supports their contention that, over
time, computer science will become more
theoretical. In the long term, it will thus be
difficult to find (more) room for SE in com-
puter science curricula. The alternative then
is to also develop SE curricula, which can
focus more on the practical aspects of soft-
ware development while also including top-
ics such as software management, process,
and project organization throughout the
curriculum. 

It is true that computer science—itself a
relatively young field—has gradually ex-
panded both its theoretical and scientific
bases, and that this has caused an increase
in theory content in many computer science
curricula. However, physics and chemistry
are examples of physical sciences, whereas
software is a nonphysical entity. As such,
software (on a small scale, which is useful in
an educational setting) can be easily created
and duplicated. So, the development and
manipulation of software should continue
to be a central theme in computer science
curricula as well as in practice by computer
professionals. 

Myth 6
Software engineering graduates will not
need further training to perform like ex-
perienced software engineers.

Typical new SE graduates find themselves
working on teams where they are expected
to perform (with little or no additional
training) alongside experienced software en-
gineers. Organizations often assume that
new hires can internalize corporate culture
and standards on their own and acquire do-
main expertise on the job.

The new hires often find themselves on a
software project’s critical path. One reason
for this is that most corporate managers
think their new hires know the latest and
greatest methods and can handle more chal-
lenging assignments than some of the folks
who have been around for a while. Another
reason is that the new hire is often expected
to put in many extra hours and not to have
outside family obligations. A third reason is
that many software projects start out with
difficult schedules, and it is just not feasible
to give new staff members the time to gradu-
ally ramp up the learning curve. In Death
March, Ed Yourdon says, “To many grizzled
veterans... every project is a death march
project.”12 Tom DeMarco, in his book Slack,
says: “…a dangerous corporate delusion: the
idea that organizations are effective only to
the extent that all their workers are totally
and eternally busy.”13

Consider the following example: A new
hire joins a project in progress, replacing an-
other employee who has been transferred to
a different project. After a brief orientation,
he or she inherits the other employee’s work
and is expected to perform to the existing
schedule. After all, if the schedule for this
particular software isn’t met, the whole proj-
ect will fall behind. Furthermore, the other
team members are busy with their own work.
Although they will answer an occasional
question, they are quick to refer the new hire
to documentation or Web resources.

New employees on new projects don’t
fare much better. Faced with a death-march-
type plan, the new employee is given the
same workload as experienced employees.
Furthermore, new-hire salaries are suffi-
ciently high that experienced employees are
not that sympathetic to the new hire’s plight,
thinking to themselves, “When I started out,

S e p t e m b e r / O c t o b e r  2 0 0 2 I E E E  S O F T W A R E 3 9

Although formal
education is

crucial, a
software
engineer

should also
regularly 

(for example,
every five

years) prepare
for and pass
certification

exams.



I got a fifth of what these new hires are get-
ting, so they should pull their own weight.”

Whatever the reason, new graduates are
expected to perform on the same level as
their experienced counterparts. Everyone up
the line is under schedule pressure, and the
idea of an apprenticeship period is a foreign
concept in software development. The best
that the new employee can hope for is a
sympathetic, experienced mentor who will
coach him or her along.

Prospective employees must look for
those enlightened companies that can pro-
vide appropriate education and mentoring
for their staff, and companies must recog-
nize the need for apprenticeship and contin-
uing education. The fact that books such as
Death March and Slack exist and have a
large audience suggests that this will not be
an easy task.

Myth 7

Software engineering programs will corre-
spond to specific corporate requirements.

All you have to do is to look at current job
postings to see a list of specific languages and
tools, such as C, C++, Ada, UML, Visual Stu-
dio, XML, and ASP, along with the disclaimer
that no experience is required. To quote from
some recent newspaper classified ads: “Must
know C/C++,” “Must be familiar with Accel-
erated SAP,” and “Must have experience with
object-oriented programming in Java or
C++.” Searching the job site www.monster.
com, we found only one job description that
talked about developing software require-
ments, designing, coding, and testing, along
with using best engineering practices. We seem
to be stuck in a time warp that emphasizes
form over substance. There is no point in re-
quiring experience in specific languages and
tools—a software engineer can learn new lan-
guages and tools fairly readily and most will
change in five years anyway. On the other
hand, the education received on best engineer-
ing practices and techniques to support vari-
ous software life-cycle activities will benefit a
job candidate for a lifetime.

It would seem that many employers are still
looking for programmers who can produce
code in specific languages using specific tools
in the short term. They’re not looking for soft-
ware engineers who can develop software us-
ing best engineering practices with a long-term

view. This is because people in industry typi-
cally are looking for someone to start devel-
opment work immediately—they do not have
the time or interest to train their employees.
Furthermore, companies expect their employ-
ees to leave in a year or two, so they assume
they won’t benefit from the longer term SE
knowledge that the employee might have. The
events of recent years have supported this atti-
tude; SE staff expect to change jobs regularly,
in some cases for a healthy salary increase. So,
we have a vicious cycle: Software staff change
jobs regularly because companies make little
investment in employee retention, and compa-
nies make little investment in employee reten-
tion because software staff change their jobs
regularly. In fact, the company that invests in
employee training might find that the em-
ployee adds the newly acquired skill to his or
her resume to find a job. Another contributing
factor is that industry managers typically
started as programmers, with no SE back-
ground, so that is their frame of reference.
They want someone like themselves when they
were starting out. 

Companies also expect universities to use
particular programming languages and
tools in their curriculum, regardless of
whether these languages and tools are the
best vehicle to support the universities’ edu-
cation goals. If you query a software execu-
tive on his or her needs and how universities
can help to meet them, that executive’s first
reaction is to list languages and tools. Only
after some discussion does he or she move
beyond this low-level litany to focus on the
real education software engineers need.

H ow should we, as SE practitioners
and educators, respond to these
myths? First, remember that the

field is still young, so we can expect to see
diverse opinions on various issues. More-
over, education is not a panacea. We are not
going to cause SE to become a mature field
overnight by fielding relatively small num-
bers of SE degree programs.

We must foster stronger communication
between diverse groups, such as various fac-
ulty groups, and between universities and in-
dustry. Myths tend to develop when there is
little communication or when the communi-
cation that exists reflects our preconceived
notions rather than objective assessment.

The education
received on 

best engineering
practices and
techniques to

support various
software life-
cycle activities

will benefit a job
candidate for 

a lifetime.

4 0 I E E E  S O F T W A R E S e p t e m b e r / O c t o b e r  2 0 0 2



Universities and degree programs that have
industry advisory boards report valuable ex-
changes of information through this mecha-
nism. Faculty groups in different depart-
ments can also benefit from both informal
and formal communications opportunities.

We tend to lose sight of the fact that there
might not be a right or wrong approach to SE
education. There is ample opportunity to ex-
periment. We do not need to pigeonhole SE
education into one model or another just yet.
If we experiment and track our results, we will
learn what works over time. It is actually good
to have many different kinds of degree pro-
grams because they will allow the proper en-
vironment for experimentation and discovery.

So, maybe we just need to lighten up a
little when we consider SE education degree
programs, have fun developing and deliver-
ing these programs, and try to identify good
educational models that work. At the same
time, we need to figure out how to elicit in-
dustry feedback and incorporate it into de-
gree programs in appropriate ways. Only
then will SE reach the professional status it
so richly deserves. 

References
1. W. Gibbs, “Software’s Chronic Crisis,” Scientific Am.,

vol. 271, no. 3, Sept. 1994, pp. 86–95.
2. H. Lieberman and C. Fry, “Will Software Ever Work?”

Comm. ACM, vol. 44, no. 3, Mar 2001, pp. 122–124.
3. Computing Curricula 2001, ACM Special Interest

Group on Computer Science Education, 2001,
www.acm.org/sigs/sigcse/cc2001.

4. D. Bagert et al., Guidelines for Software Engineering
Education, Version 1.0., tech. report CMU/SEI-99-TR-
032, Software Eng. Inst., Carnegie Mellon Univ., Pitts-
burgh, Pa., 1999. 

5. T. Lethbridge, “What Knowledge Is Important to a
Software Professional?” Computer, vol. 33, no. 5, May
2000, pp. 44–50.

6. ABET, ABET Criteria for Accrediting Computing Pro-
grams, 2002, www.abet.org/criteria.html.

7. D. Parnas, “Software Engineering Programs Are Not
Computer Science Programs,” IEEE Software, vol. 16,
no. 6, Nov./Dec. 1999, pp. 19–30.

8. M. Shaw, “Prospect for an Engineering Discipline of
Software,” IEEE Software, vol. 7, no. 1, Jan./Feb.
1990, pp. 15–24.

9. M. McCracken, “Software Engineering Education:
What Academia Can Do,” IEEE Software, vol. 14, no.
6, Nov./Dec. 1997, pp. 26–29.

10. M. Shaw, “Software Engineering Education: A Roadmap,”
The Future of Software Engineering, A. Finkelstein, ed.,
ACM Press, New York, 2000, pp. 371–380.

11. S. McConnell and L. Tripp, “Professional Software En-
gineering: Fact or Fiction?” IEEE Software, vol. 16, no.
6, Nov./Dec. 1999, pp. 13–17.

12. E. Yourdon, Death March, Prentice Hall, Upper Saddle
River, N.J., 1997, p. 218.

13. T. DeMarco, Slack, Broadway Books, New York, 2001,
p. 226.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r  2 0 0 2 I E E E  S O F T W A R E 4 1

About the Authors

Hossein Saiedian is a professor of software engineering and an associate chair in the De-
partment of Electrical Engineering and Computer Science at the University of Kansas. His primary
research area is software engineering—in particular, models for quality software development.
He is also interested in SE education and training and cochaired the ICSE’s Software Engineering
Education track for 2000 and 2001 (and will cochair it again for 2003). He received his PhD in
computer science from Kansas State University. He is a senior member of the IEEE and a member
of the IEEE Computer Society and ACM. He is chair of the IEEE-CS TCSE’s Committee on Software
Engineering Education. Contact him at the Dept. of EECS, Univ. of Kansas, Lawrence, KS, 66045;
saiedian@eecs.ku.edu.

Donald J. Bagert is a professor of computer science and software engineering at the Rose-
Hulman Institute of Technology, where he is also the director of software engineering. His re-
search interests include software process improvement, software tools for student advising, and
software methodologies. He received a PhD in computer science from Texas A&M University. He is
the steering committee chair for the IEEE Computer Society Conference on Software Engineering
Education and Training, and the Professional Issues Editor for FASE, an electronic newsletter de-
voted to software engineering education, training, and professional issues. He is also a member of
both the Educational Activities Board and the Professional Practices Committee for the IEEE Com-
puter Society, and is a senior member of the IEEE. Contact him at the Dept. of Computer Science
and Software Engineering, Campus Mail Box 97, Rose-Hulman Inst. Of Technology, 5500 Wabash Ave., Terre Haute, IN 47803;
don.bagert@rose-hulman.edu. 

Nancy R. Mead is the team leader for the Survivable Systems Engineering team as well as a
senior member of the technical staff in the Networked Systems Survivability Program at the Soft-
ware Engineering Institute. She is also a faculty member in the Master of Software Engineering and
Master of Information Systems Management programs at Carnegie Mellon University. She received
her PhD in mathematics from the Polytechnic Institute of New York, and a BA and an MS in mathe-
matics from New York University. She is a senior member of the IEEE and IEEE Computer Society and
is a member of the ACM. Contact her at the Software Engineering Inst., Carnegie Mellon Univ., Pitts-
burgh, PA 15213; nrm@sei.cmu.edu. 

Master software
with these future
topics:
The Business of
Software Engineering

Model-Driven
Development

Managing Outsourced
Projects

Software Geriatrics

Visit us on the Web at

http: / /computer.org/sof tware


