
Annals of Software Engineering 13, 71–96, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Framework for Evaluating Distributed Object Models
and its Application to Web Engineering

HOSSEIN SAIEDIAN saiedian@eecs.ku.edu
Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas 66045, USA

NABIL GHANEM
Sprint PCS, 10881 Lowell Street, Suite 200, Overland Park, Kansas 66210-1666, USA

JEYABARATHI NATARAJAN
Department of Computer Science, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA

Abstract. The success of building distributed object systems depends on important factors such as archi-
tecture, the distributed object model (DOM) selected, and the process adapted in the selection of the DOM.
There are a number of DOMs. Although the primary goals of these models are the same, each model has
a unique underlying architecture, maturity, and features provided. A critical evaluation of DOMs is thus
needed by those organizations that are considering migrating to distributed object computing. The evalua-
tion process can be time-consuming and may drain organizational resources. Most of the current evaluation
processes adopted by organizations are not generic enough, and they concentrate only on the problem on
hand. Hence, they cannot be used by any other organization, sometimes not even a different project at the
same organization. Therefore, a more generalized framework or template is required to evaluate DOMs.
This paper proposes a framework to evaluate DOMs. A number of important managerial items such as cost,
personnel, and technology resources, training, enterprise changes, and time constraints have been identified,
explained, and justified as the evaluation criteria. An evaluation of the most widely used DOMs, CORBA,
DCOM, and RMI, is provided using the above criteria. Finally, a case study of a production web-based
system is presented to demonstrate the use of the framework.

1. Introduction

Distributed Object Computing (DOC) has become the key word for developing mission-
critical client–server applications. With the development of World Wide Web (WWW),
Intranet, Internet, and in order to cope with competition, large organizations are migrat-
ing to leading edge technologies like electronic commerce and DOC.

For many of the large industries like health care, railroad, and airline, the key fac-
tors for success are customer service, a high performance software system, and real-time
processing. These industries store and process their base and critical data using main-
frame systems due to their high capacity and performance. Many of these corporations
reorganize their business by way of business process reengineering (BPR), relocation
of business and operations units, and building partnerships with international organiza-
tions.

72 SAIEDIAN ET AL.

To enable the availability of distributed and secure data to their users through web
and client–server applications, these corporations require a high performance, scalable,
secure, and interoperable distributed object architecture. Such an architecture is pro-
vided by the distributed object models (DOMs), such as Common Object Request Bro-
ker (CORBA) by Object Management Group (OMG), Distributed Component Object
Model (DCOM) by Microsoft, and Java Remote Method Invocation (RMI) by Sun Mi-
crosystems. Any organization wanting to transit to the DOC paradigm has to choose
and adopt one or more of these models that best suit their business requirements. The
advantages, disadvantages, and success of their transition depend on the DOMs adopted
and the limitations they might bring in terms of cost, complexity, flexibility, etc.

The DOM selected could have substantial managerial and technical impacts on
the transition process and the organization. The technical aspects affect the managerial
aspects either directly or indirectly. Even though studies, benchmarks, and evaluations
of DOMs are available, they are arbitrary and concentrate more on technical aspects.
The goal of this paper is to introduce a common framework to evaluate DOMs in terms
of managerial aspects. The framework provides a systematic approach to analyze and
evaluate DOMs on their managerial aspects, which could be used by organizations to
select best-suited DOMs for their organization and applications.

Once an organization decides to transition to DOC, it will have to select one or
more DOMs. Since there are a number of models available in the market, an organization
must select one that is most suited to its needs and also most cost-effective. The objective
of this paper is to provide a framework which will help organizations choose the models
best suited to their requirements.

The organization of the paper is as follows. In section 2, we will present a brief
description of the most widely used DOMs: CORBA, DCOM, and RMI. The evaluation
framework is discussed in detail in section 3. Section 4 includes the evaluation result
of DOMs CORBA, DCOM, and RMI followed by a web-based system case study in
section 5. Conclusions are given in section 6.

2. Distributed object models

There are numerous DOMs available in the market. Also, there are many references
available for these DOMs. So, the following sections will provide a brief introduction to
the evolution of three major DOMs: CORBA, DCOM, and RMI.

2.1. CORBA

Common Object Request Broker Architecture (CORBA) was defined and controlled as
a standard architecture for distributed computing by the Object Management Group
(OMG). OMG, the largest software consortium, was founded in 1989 by eleven com-
panies, including 3Com Corporation, American Airlines, Canon, Inc., Data General,
Hewlett-Packard, Philips Telecommunications N.V., Sun Microsystems, and Unisys
Corporation. Now it has more than 800 companies as its members. The objectives
of OMG are quoted by Haughey [1999] as:

DOMS IN WEB ENGINEERING 73

“. . . to create a component-based software marketplace by hastening the introduction
of standard object software. The organization’s charter includes the establishment
of industry guidelines and detailed object management specifications to provide a
common framework for application development.”

OMG defines only specifications and does not implement or deliver products; OMG’s
member vendors adopt the standards and specifications and deliver CORBA products.

Vinoski [1998] describes CORBA as “an application integration technology.” The
goals of CORBA are to facilitate the development of client–server applications, rapid
integration of legacy systems, off-the-shelf applications, and new development. On the
basis of object orientation, CORBA achieves the integration of heterogeneous applica-
tions, reusability, and portability [Emmerich 1997]. Guttman and Appelbaum [1998]
have traced the evolution of CORBA in generations as follows: first generation run-
ning from 1990–1996, second generation, during 1996–1998, and third generation since
1998. Within a year from its establishment in 1989, OMG adopted CORBA 1.0. Over the
next several years, few CORBA Services were designed, Interface Definition Language
(IDL) interfaces for languages C, C++, and Smalltalk were developed. Some vendors
adopted the specification and came up with products having minimal functionality.

The CORBA 2.0 specification was released in 1995. CORBA 2.0 made a big dif-
ference in the Object Request Broker (ORB) and commercial world. It was more stable
than earlier versions, answered many questions, and provided the Internet Inter-ORB
Protocol (IIOP). Many vendors supported CORBA 2.0 and delivered reasonably robust
and good products. But, these products varied in the level of support for standards,
performance, robustness, scalability, ease of use, etc. The names of few CORBA ven-
dors include Iona, Visigenic, ICL, Sun, IBM, HP, and Digital [Guttman and Matthews
1998]. Between 1996 and 1998, OMG continued to refine the specification and pro-
vide some extension to the specification. It has added language binding to many other
languages and improved the existing language bindings and core functionalities. The
last formal version of CORBA specification released was CORBA 2.3. The CORBA
specification and its products evolved and matured during this period. Many CORBA
products are available in variety of platforms. Also, Guttman et al. [1998] have com-
mented that:

“We have seen a major consolidation within the CORBA vendor community. . . .the
CORBA vendor community consists of fewer but stronger vendors. This is good for
the industry. As this consolidation occurs, we are seeing a maturation of compliant
products from these vendors.”

OMG’s focus has expanded to provide business objects for many domains, including
healthcare, finance, telecommunications, and manufacturing. Also, it is working on ex-
tending the specifications to include object-modeling techniques. OMG’s CORBA 3 also
referred as CORBA Component Model (CCM) has three major categories of specifica-
tion, including Internet Integration, Quality of Service (QOS) Control, and the CORBA
Component Architecture as mentioned by John Siegel in the release information docu-

74 SAIEDIAN ET AL.

ment of CORBA 3. CORBA standards are evolving, and providing additions and im-
provements to CORBA is a continuous process.

2.2. DCOM

Microsoft developed Distributed Component Object Model (DCOM) technology, which
enables objects residing on different computers or on the same computer to talk to one
another. Microsoft’s initial objective in developing the object model was to make com-
munication possible between different Windows applications. With this in mind, Mi-
crosoft created the Object Linking and Embedding (OLE) scheme, which facilitated
linking compound documents in the Windows platform. OLE became a popular way of
integrating and linking data between applications. Further enhancement of this technol-
ogy resulted in Microsoft developing the Component Object Model (COM).

Since then, Microsoft has extended and added more functionality to COM on a
frequent basis. COM was considered “a complex, fragile collection of incremental solu-
tions” [Quoin 1998]. It became stable and earned its credits with its successor ActiveX.
COM allowed the integration of binary components in the same machine in an object-
oriented fashion, and has been standardized as a binary integration technology in the
Windows world.

Microsoft wanted communication between objects to be extended to remote com-
puters, across networks and even on the Internet. This led to the birth of a very signif-
icant and popular object model called DCOM, which provided solutions for distributed
applications. The next-generation of COM and DCOM technology is COM+, which has
enhanced runtime and object services.

2.3. RMI

Sun’s [1998] definition of RMI is as follows:

“JavaTM Remote Method Invocation (RMI) is distributed object model for the Java
language that retains semantics of the Java object model, making distributed objects
easy to implement and to use. The system combines aspects of the Modula3 Network
Objects system and Spring’s subcontract and includes some novel features made pos-
sible by Java.”

The RMI system goals include the Java language goals for supporting distributed ob-
jects with some extensions supported by the RMI system [Sun 1998]. Remote Proce-
dure Calling (RPC) is a common way for processes to communicate with each other in
a distributed system [Wollrath et al. 1997]. In RPC, control can flow from a point in one
program to a point in another program on another machine. But RPC is not good enough
for distributed object systems because in distributed object systems communication be-
tween program-level objects residing in different address spaces is needed [Sun 1998].
Also, there is a need for a mechanism to match the semantics of object invocation.

Sun Microsystems designed Java’s RMI to support pure-Java distributed objects in
a seamless manner by combining qualities of Java with a language-centric design, which

DOMS IN WEB ENGINEERING 75

significantly simplifies the traditional RPC systems. Since the distributed computing
takes place entirely in Java, its systems can make use of the features of the Java type
system and garbage collection. RMI supports distributed polymorphism and pass-by-
value objects in remote calls.

Sun developed interim RMI as part of Java Development Kit (JDK) release 1.0.2,
which came after the first JDK release 1.0 in January 1996. RMI’s goal is to let an
object running in a Java Virtual Machine (JVM) to communicate to an object running in
another machine across a network [Waldo 1998]. The JVM is a machine simulated by
software on the computer [Curtis 1997]. RMI also requires that the objects involved in
the communication are Java classes.

There are many releases of RMI. The core RMI was released with JDK 1.1 in Feb-
ruary 1997 even though JDK 1.0.2 had all the RMI APIs as JDK 1.1. The new enhance-
ments to RMI including activation and custom socket protocol capability were released
with Java 2 SDK v1.2, and Java 2 SDK v1.3 evolved with more enhancements for RMI
and serialization used for remote communication. The RMI Security Specification draft
has been revised for the third time as of April 2000. Sun and IBM have worked together
and developed Remote Method Invocation over Internet Inter-ORB Protocol (RMI over
IIOP) 1.0.1 based on OMG’s specifications “The Java-to-IDL-mapping” and “Objects-
by-Value”, which was shipped in June 1999. The objective of RMI over IIOP was to add
CORBA compliant distributed computing capabilities to the Java 2 platform. It provides
the best features of RMI and CORBA. As of February 2001, RMI over IIOP specifica-
tion is an integral part of the Java 2 Platform, and it will continue to be part of future
versions of Java.

3. Evaluation framework

The DOM adopted by an organization plays an important role in its transition process
towards DOC. Organizations willing to move to DOC will be looking at one or more
DOMs depending on their present environment and the business requirements. As dis-
cussed earlier, there are a number of models available in the market.

There are many approaches an organization can adopt to choose a DOM. An orga-
nization may pick a DOM which is very successful in the market; it may use the bench-
marks and evaluation done by research organizations and other enterprises. However,
these approaches may not work for organizations having unique and specific require-
ments. In this case, the organization has to deal with the DOMs evaluation and selection
process. But understanding all these models and selecting the most suited model for an
organization is a difficult and time-consuming process.

This section provides a framework which will help organizations choose the best-
suited models based on their requirements. The basic criteria to choose DOMs are cat-
egorized as part of the framework. The framework research identified managerial and
technical categories of criteria to be evaluated. According to Nakamura [1998] the goals
of enterprise middleware are to support productivity improvement, cost reduction, im-

76 SAIEDIAN ET AL.

proved customer service, and enhanced profitability. The DOMs, which are a type of
middleware, have to be evaluated for how well they support these business goals.

This paper presents a framework based on the managerial aspects. There are many
reasons for looking at the managerial aspects vs. the technical aspects. First of all, the
technical criteria affect the managerial criteria directly or indirectly and it becomes an
inseparable part of the managerial aspects. Secondly, as Sneed [1995] has argued, the
technical details are irrelevant if we cannot make a business case for solving a prob-
lem. Much research has shown that the ultimate and real factors for introducing tools
and techniques will be organizational and managerial, not technological [Guttman and
Matthews 1998]. And finally, the discussions with corporate Information Technology
(IT) managers also emphasized that the ultimate goal of the organization was business
and managerial oriented rather than technology oriented. The resultant framework is as
shown in table 1. The table shows the framework criteria, factors to be evaluated as part
of the framework criteria, and the technical criteria affecting the framework criteria.

The chosen framework criteria for evaluation are given in the following subsec-
tions. Section 4 provides the evaluation result of the DOMs: CORBA, DCOM, and RMI
as well as a case study illustrating use of the framework.

Table 1
Framework for evaluation of DOMs.

Framework criteria Factors Technical criteria

Cost • Software cost including initial acquisition
cost, licensing and licensing costs, bun-
dled software cost

• Reusability
• Leading edge technology support

(e.g., Internet development)
• Resources cost including human re-

sources, training and support services cost
• Complexity/ease of use
• Evolution and maturity

• Development cost including cost for de-
sign, development, deployment, mainte-
nance, time cost

• Security

Training • Management training • Complexity/ease of use
• Developers training • Evolution and maturity
• Installation and administration training
• Additional tools and technology training

Resources • Software and hardware • Evolution and maturity
• Documentation
• Support and service
• Training resources
• Skilled personnel

Enterprise changes • Business process reengineering • Reusability (integration and inter-
operability)• Mergers, acquisitions, partnership, and

globalization

Time constraints • Design and development time • Complexity/ease of use
• Maintenance time • Reusability

DOMS IN WEB ENGINEERING 77

3.1. Framework criteria

The following subsections describe in detail the framework criteria, the importance of
each criterion as part of framework, and reasons for the evaluation of each criterion.

3.1.1. Cost
In software industry the first question asked about a project or product at stage is: how
much does it cost? The top management and the marketing experts will be looking at
the immediate, instant benefits and increase in revenue. Building quality software takes
lots of time, effort, and cost. The same is true with building software for reuse.

Even though it might seem that quality software and reusable components costs
a lot to develop, in the long run they save time, effort, and cost. In some projects the
actual development may not cost much but the tools, maintenance or the time span of
the system might be costly. Migration projects like legacy system migration to DOC
may add some expenses, such as training the existing experts on the new technologies
and tools, training the skilled technicians for domain expertise, and upgrading existing
software and hardware. There are many legacy migration projects that failed because
they exceeded their budgets. There are many projects abandoned after spending so much
money and time [Schneidewind and Ebert 1998]. The US Internal Revenue Service
project to replace 27 aging systems started in 1989, was scrapped around 1997 after
spending $4 billion [Bacon 2000].

DOMs are different in their nature, characteristics and level of maturity. Some
characteristics of DOMs affect the cost involved in the development of distributed ob-
ject applications. The maturity level of a DOM would complement this point. The cost
involved in training software engineers might be less expensive for a mature model com-
pared with an immature DOM. Though management would want to achieve their goals,
the ultimate motivation behind those goals is cost-driven. Cost is an important criterion
for choosing a DOM. There are many categories of cost to be considered to calculate the
total cost involved in using a particular DOM. These categories are as follows:

Software cost – includes cost such as buying the runtime software, licensing or leasing
of software, bundled software, etc. The brief description of these costs are as given
below.

• Initial acquisition cost – the cost for purchasing DOMs, required hardware, net-
working tools and equipment, and the cost in installing and configuring the soft-
ware and hardware.

• Licensing costs – the cost involved in purchasing additional licenses for developers,
and any additional licensing cost the organization might have to be responsible for
when it deploys the product to their customers.

• Supporting hardware and software costs – since some of the DOMs are complex in
nature, the organization might have to purchase some additional tools to expedite
the development work. For example, distributed applications are very difficult to

78 SAIEDIAN ET AL.

test and debug, so organizations may have to purchase some test tools to expedite
the development work.

• Leasing of software to reduce upfront cost – sometimes DOMs and other required
software could be leased instead of purchased to reduce the upfront cost, and could
be paid on a term basis.

• Increased bundling of software with hardware – some vendors reduce the price of
software or may provide more features for the same price if the hardware is also
purchased from them.

Resources cost – would include the cost to bring human resources, training resources,
etc.

• Training and support services cost – cost required to train the software engineers,
any other support that may be required with the DOM and the ongoing develop-
ment service and support required by the organization from inception through de-
ployment phases of the application.

• Cost for additional and better-trained staff – the cost for the additional and spe-
cialized staff and software tools.

Development cost – cost involved in design, development, maintenance, and deploy-
ment.

• Design and development cost – cost involved in design, development, integration,
and the time required. The complexity of the DOM architecture contributes to this
cost.

• Long-term maintenance cost – this would involve the cost for the upgrade and
migration of the DOMs as well as the applications.

The DOM’s support for technical features such as Internet development, security,
reusability, expendability, complexity, and maturity needs to be looked into along with
the cost evaluation. Distributed Internet computing promotes workflow automation,
business-to-business, and business to consumer transactions. Those features in turn
reduce the organizations business administrative or maintenance cost, sales cost, and
inventory cost [Nakamura 1998]. Research has shown that reuse and extensibility of
components reduce the software development cost [Oberndorf et al. 1997]. With respect
to the criteria shown above, the DOMs impact the revenue of an organization. An orga-
nization should evaluate DOMs for any cost impacts as the success of an organization is
measured by its revenue.

3.1.2. Training
DOC is well known for its complexity. This complexity requires the organizations in-
volved in DOC development to train their software and domain engineers constantly.
The DOMs are immature and, still evolving, and new standards and processes are emerg-
ing continuously. This leads to constant releases of standardization documents, new

DOMS IN WEB ENGINEERING 79

product releases, upgrades, and enhancements. Organizations need to validate and eval-
uate the new releases, upgrade tools, and train their software engineers with the new
releases.

This causes additional work to the organization to manage any issues with the ma-
turing process and to train the technical and domain experts. Apart from training the
experts on the technical side, an organization has to train the domain experts, software
engineers with the domain technology, and new business process requirements. It is
required to train the software engineers for a good mixture of technical and domain ex-
pertise so that they can understand the business requirements and develop an architecture
that will reflect the business goals.

Training is a time-consuming and costly process. Proprietary and immature DOMs
may drive up the complexity to the training process and increase the overall train-
ing cost. The DOMs differ in their implementation details and support for features.
An example would be DCOM, where security can be achieved by both configuration
and by programmatic control depending on component-wide and method-wise security
needs. For these reasons DOMs have to be evaluated for variety of training require-
ments, including the feasibility of getting internal and external training services, and
any cost and management issues the DOMs might bring. DOMs have to be evalu-
ated for the potential areas of training an organization might have to plan for includ-
ing:

• Educating both the upper and middle management;

• Training for programmers;

• Training the installation and administration engineers; and

• Training for any other additional tools and technologies. Any other special training
might be required in areas such load balancing, performance tuning, security, clus-
tering, etc.

Some of the other criteria that impact the training are the complexity of the DOM, its ease
of use level, availability of the training firms, and the organization’s training process.
A DOM designed with the goal of simplicity and ease of use may not require in-depth
training.

3.1.3. Resources
The DOMs are unique in their characteristics and differ with their vendor support, plat-
form support, maturity, hardware, and software requirements. These differences may
require additional categories of resources as part of the migration process. If the model
is not matured enough, finding skilled software engineers will be a challenge for man-
agement. There are a few options to handle this issue.

The organization could try to bring in contractors and consultants from the ven-
dors who were involved in the development of DOMs. This may not be feasible because
most likely the vendors cannot provide support throughout the life cycle of the migration
process except for providing some specialized consultation in the inception phase of the

80 SAIEDIAN ET AL.

project. Another option is to bring in consultants from firms providing specialized ser-
vices in object-oriented and distributed computing. But this is not a cost efficient option.
Alternatively, the organization could give the migration project for outsourcing, which
might bring the drawback of maintenance issues and other issues related to outsourc-
ing. It would be easier to find documentation, services, and support for matured models
compared with immature models.

Many of organizations data are distributed, dispersed, and maintained on different
platforms. So it is required that the DOMs are available in many platforms and interop-
erability and integration are necessary. In some organizations components and business
processes may have been developed in different programming languages. The DOM’s
specification may not be able to unify those components and processes. For example
with RMI the programming language is restricted to Java, which may not fit the organi-
zation’s business process.

In the current software-computing environment, the developers need tools and
technology, which are fully integrated as well as 7 × 24 support service [Murphy 1995].
Today’s software systems require strengths from both domain and computer experts.
The following are the categories of resources required by organizations those are willing
to transition to DOC:

• Software and hardware – availability of required software and hardware required for
the DOM with feasible cost.

• Documentation – documents pertaining to the DOM’s specification, standards, his-
tory, past experiences and issues, product vendors, and DOM users.

• Support and service – support from the DOM’s vendors.

• Training resources – organizations offering training on DOMs and related tools, on-
line training resources, and computer-aided training resources.

• Skilled personnel – availability of skilled personnel whom can be hired by organiza-
tions, sources for specialized help, and resources offering outsourcing services.

These resources impact the success of an organization’s transition to DOC. All the cat-
egories of resources may not be available for a DOM. DOMs have to be evaluated
for the availability and feasibility of the required resources, because some of the re-
sources may be easily available and accessible but may not be cost effective. The cri-
teria such as evolution and maturity of the DOM would greatly impact the resource
criterion.

3.1.4. Enterprise changes
To meet the customer’s needs and to be on the competitive edge, organizations undergo
changes such as business process re-engineering (BPR), mergers, and acquisitions. In
addition, to reach international customers and their needs, organizations build partner-
ship with international enterprises, relocate their operations and facilities, and diversify
their solutions and services.

DOMS IN WEB ENGINEERING 81

The above organization changes bring complexities to the Information Technol-
ogy/Systems (IT/S) and their maintenance. BPR may cause system migration or adop-
tion of new software engineering models and methods. For example enterprises have
moved from mainframe to client–server object-oriented software systems to store and
process their business data and are now adopting electronic commerce and Internet sys-
tems as the means to do business with their customers. The information systems have to
cope with the changes by aligning the technology with the new business process.

Acquisition, merger, and partnership changes may bring about the need for legacy
system integration and migration of systems. They may produce their own integration,
interoperability, and heterogeneity issues.

Sometimes these changes may not only require extending the applications and
components but also making changes to the DOM itself. Not all the DOMs are ex-
tensible by nature. The DOMs CORBA and DCOM support extensibility [Devarakonda
1998]. The CORBA design allows users to add services and replace object adapters.
There could be components that can be reused from the merged organization. The DOMs
should be evaluated for reusability with out degrading performance.

The chosen DOM should handle these changes and the challenges they may bring
in. Hence it is necessary for an organization to evaluate DOMs from the perspective
of enterprise changes to see how well they can handle issues and requirements caused
by the changes. The enterprise changes require DOMs to support reuse, which is im-
pacted by the integration and interoperability capabilities of the DOMs. According to
McArthur [1999], the factors affecting interoperability in component-based architec-
tures, which applies to the DOMs, also include the following.

• Interface – support for standard and consistent and multiple interfaces.

• Location transparency – location and connection transparency.

• Synchronization – support for asynchronous and synchronous communication.

• Threads – support for multi-threaded control.

• External dependencies – there should not be any dependency constraints to elements
external to the architecture.

• Performance – the level of performance with in the architecture.

• Availability – level of availability of components with in the architecture.

• Reliability – level of reliability.

There are two types of integration required with DOMs. One would be the integra-
tion support with the application development environments and the other would be the
legacy system integration, which need to happen at the back-end of the application. The
factors impacting integration include:

• Portability – environmental independence, support for plug and pull in multiple en-
vironments without changes;

• Adaptability – ability to modify, modularity and granularity support;

• Fault tolerance – how well failures are handled;

82 SAIEDIAN ET AL.

• Extendibility – ability to add new services;

• Scalability – expansion capability on the requirements of a specific functionality;

• Environment constraints – free from platform, programming language and service
constraints; and

• Robustness – fewer environmental or context dependencies.

Since the above-mentioned factors of DOMs play a viable part in the enterprise changes
the DOMs have to be evaluated for the above factors in regard to the enterprise changes
criteria of the framework. The DOMs relationship to the organization’s future technol-
ogy plans also need to be looked into too.

3.1.5. Time constraints
The delivery dates and budgets for software projects are hard to estimate as the evalu-
ation criteria are arbitrary and they mainly depend on the problem on hand. For many
service-oriented enterprises slippage in deadlines is not acceptable because of the na-
ture of their business. Time constraints are an important factor for mission-critical and
customer service-based projects. So DOMs have to be evaluated considering time con-
straints to see how well they can accelerate the development work to finish the project
on time.

Building a complex distributed system takes time, and the complexity or ease-of-
use criterion of DOMs impact the design and development of distributed applications.
Because of the tremendous development of Internet computing and experience on the
World Wide Web, users’ expectations for distributed systems are very high. Users want
the information to be available worldwide instantly. So organizations are expected to
deliver the information instantly to be competitive in the market.

The objectives and goals of DOMs and the features they offer vary. For exam-
ple, CORBA and DCOM offer Interface Definition Languages (IDLs) that significantly
reduce complexity, which in turn promotes the productivity of building distributed sys-
tems. Hence, the DOMs have to be evaluated for how well they can simplify the com-
plexities involved in building distributed systems in order to increase productivity so that
organizations meet their time deadlines and expectations. Because, it is on-time delivery
that keeps an organization on the competitive edge, growing, and achieving its goal.

The DOMs have to be evaluated for the features they provide, which would facili-
tate the organization in meeting its time constraints. These features should be targeting
the life cycle of the development process including the requirement gathering, design and
development, deployment, administration, and maintenance phases of the application.

4. Evaluation of distributed object models

In section 3 we reviewed the framework for evaluating DOMs. This section presents
the evaluation results of CORBA, DCOM and RMI in terms of technical and managerial
aspects and a web-based case study to demonstrate the use of the framework.

DOMS IN WEB ENGINEERING 83

Table 2
Summary of technical features of DOMs.

Feature CORBA DCOM RMI

Vendor support CORBA is a specifica-
tion defined and con-
trolled by OMG and not
an actual reference im-
plementation

DCOM is a Microsoft
specification and refer-
ence implementation

RMI is a Sun Microsys-
tems specification and ref-
erence implementation

Platforms availability Available in many plat-
forms

Available in Microsoft
and few flavors of UNIX
platforms

Any platform with JVM

Language support Depends on the CORBA
product

Supports main langu-
ages

Mainly Java and others are
via JNI and RMI over IIOP

Portability Provides portability on
the basis of object-orien-
tation

Supports portability in
Windows platforms

Supports near-perfect por-
tability with the expense
of performance

Fault tolerance As per the standard NT clustering Server side Java

Load balancing Depends on the CORBA
product

By connections and
thread

By connections and
thread

Synchronization Asynchronous Synchronous Asynchronous

Protocol IIOP DCE/ORPC/HTTP JRMP/IIOP/HTTP

Objects Support Fully distributed hetero-
geneous objects

COM objects and dis-
tributed behavior

Distributed RMI, RMO
over IIOP and HTTP
objects

Interfaces OMG IDL, IIOP, Inter-
face Repository

MIDL OMG IDL

Garbage collection and
memory management

Not supported automati-
cally. Applications have
to deal with the prob-
lems

Taken care by DCOM Provides automatic gar-
bage collection and
memory management

Security Specified in Security
Service

Provided by DCOM,
and also can be con-
trolled in application

Java built-in Security Man-
ager and also can be con-
trolled in application

Legacy integration IDL, Wrapper MIDL, COM objects,
Wrapper

Wrapper, OMG IDL, JNI,
and RMI over IIOP

Database integration Specified in Query Ser-
vice

OLE DB/ODBC JDBC

Deployment ORB needs to be de-
ployed on each server
and client

Runtime is included
with Windows platforms

Runtime is included with
Java environment

4.1. Evaluation of distributed object models

In this section we will be looking at the ready-to-apply evaluation results of the DOMs.
These results will help an organization in understanding the unique characteristics of
each model and how they differ from one another. Such an understanding of the models

84 SAIEDIAN ET AL.

Table 3
DOMs evaluation on cost.

Cost factor CORBA DCOM RMI

Software cost • Costs more depending
on the product and plat-
form support

• Costs less as the run-
time software is ship-
ped with the operating
system

• RMI comes as part
of the JDK and can
be freely downloaded
from Sun’s website

• Development tools do
cost but comparatively
less

• But IDE tools cost more
than DCOM tools

Resource cost • Costs more, as skilled
and sophisticated re-
sources are required

• Costs less and plenty of
resources are available

• Costs more, as it is
still emerging and not
easy to find experi-
enced resources

Development cost • Costs more compared
to DCOM

• Costs the least in Win-
dows platform

• Costs more than
DCOM

is required by organizations willing to transit to DOC.
A summary of the DOMs’ evaluation based on technical features is given in table 2.

4.1.1. DOMs evaluation summary for managerial criteria
We have seen the technical evaluation summary in the previous section. In this section
the DOMs are evaluated on managerial aspects for each framework criterion and factor.
The evaluation on the basis of cost, training, resources, enterprise changes, and time
constraints are shown in tables 3–7.

5. Web engineering case study

Web engineering is an attempt to add systematic and sound scientific, engineering and
management principles to the architecture, design, development, deployment and main-
tenance of web-based applications.

There is a need to bring and share experiences of building large web-based systems
to develop more systematic, repeatable, reusable architectural styles and design patterns
instead of repeating the same costly mistakes. Having discussed the framework for eval-
uation and selection of DOMs, it would be more appropriate to demonstrate the use of
the framework by considering a practical example. This section applies the suggested
framework to a practical web engineering application. This case study looks back on a
decision to implement a DOC framework using Java and RMI in an IT department in
a major telecommunications company. We will refer to this IT department as Service
Delivery Platform or SDP. The following discussion evaluates the decision made in light
of the suggested framework. SDP’s architecture team had to persuade both manage-
ment and the customers to make all new applications web-based and to move away from
desktop applications. The main selling point was deployment and code portability.

The Routing Table Maintenance (RTM) system is a new web-based system which
allows users to maintain a selected set of tables in the DMS 250/300 switches. This web-

DOMS IN WEB ENGINEERING 85

Table 4
DOMs evaluation on training.

Training factors CORBA DCOM RMI

Management
training

• Need to train the upper
management on OMG
and CORBA

• No need to train the
upper management; an
orientation would be
good as there are much
changes going on

• No need to train the
upper management;
an orientation would
be good for the upper
management con-
sidering the recent
enhancement

• Middle management
has to be trained

• Need to train the middle
management

• Need to train the middle
management

Developers
training

• Extensive and sophisti-
cated training required

• No need for an exten-
sive training compared
to CORBA

• No need for an exten-
sive training other than
the Java and IDE tools
training• Products in non-

Microsoft platforms
require training

Installation and
administration
training

• Required, as the ORB
has to be installed in
both the client and
server

• Need to train on tool
such as MTS

• No need. The recent
enhancements with the
Java 2 platform need
some installation and
admin training

Additional
tools and
technology
training

• Depends on the
CORBA product

• Products in non-
Microsoft platforms
may require some
training

• Training on security
is required when in-
tegrated with existing
systems

• Training on tools such
as RMI over IIOP

based system is thread-safe and graphically very rich. These tables control customers’
voice and data services and features. These switch tables are dynamic, i.e., based on
a value selected in one field. The following fields may vary in number and type. The
business logic, which describes the rules of populating the different tables, is database-
driven. This means that we could change the rules dynamically without the need to
change code. The client graphical user interface is very rich graphically. The response
time of the system should be less than two minutes.

The following architectures were our options:

• Java-based architecture.
This architecture is a four-tiered architecture. The first tier was the client tier. This
tier was strictly based on the Java Applet technology. The second tier was the Java
Servers tier that contained the print server, database server, and other services on
an NT server platform. The Java Servers in the second tier are reusable by future
projects. This helps in focusing the development efforts on the business logic. The

86 SAIEDIAN ET AL.

Table 5
DOMs evaluation on resource criteria.

Resource factor CORBA DCOM RMI

Software and
hardware

• Many CORBA prod-
ucts available

• Only one product by Mi-
crosoft

• Many products available
even though the specifi-
cation is by Sun• Supports many lan-

guages
• Supports all major lan-

guages • RMI is restricted to Java
• Support software de-

pends on the CORBA
product

• Integrated application
development suits avail-
able

• Available in all plat-
forms that support JVM

• Many platforms sup-
port

• Supported mainly in
Windows and few UNIX
platforms

• Integrated application
development suits avail-
able

• Supported by many
hardware vendors • Supported in many hard-

ware

• Supported by many
hardware

Documentation • Online documentation
available at http://
www.omg.org

• Online documentation
available at http://
www.microsoft.
com and MSDN
http://msdn.
microsoft.com

• Online documentation
available at http://
java.sun.com

Support and
service

• Available in plenty and
depends on the product

• Available in plenty • Available in plenty

Training re-
sources

• Available in plenty and
matured

• Available in plenty and
matured

• Available in plenty but
not matured

Skilled person-
nel

• Need sophisticated
skills

• Sophisticated skills not
required

• Need moderate skills

• Available in plenty, ma-
tured, and costs more
compared to DCOM

• Available in plenty, ma-
tured and cost effective

• Available in plenty but
not matured and costs
more

third tier was the business logic servers written in C++ on a Tandem platform. The
fourth tier was the database itself.
The reason for putting the RMI services on an NT server and not on the Tandem
server was for the lack of a Java Virtual Machine (JVM) implementation on the Tan-
dem platform at the time of architecting the framework.
This architecture required an automatic one-time installation of a Java Plug-in on the
users’ machines. When the user connects to the specific website, the installation of
the Java Plug-in starts automatically with minimal effort, few clicks, on the user part.
Rolling out new releases is as simple as replacing jar files on the NT server where the
Java servers reside.

• DCOM architecture.
This architecture was a three-tiered architecture. The first tier was the Client
Graphical User Interface which was a Visual Basic application that connected

DOMS IN WEB ENGINEERING 87

Table 6
DOMs evaluation on enterprise changes.

Enterprise changes
factor

CORBA DCOM RMI

BPR, mergers, ac-
quisitions, partner-
ship, and globaliza-
tion

• High support for enter-
prise changes

• Not well supported at
this point of time

• Does not support all
aspects for enterprise
changes well

Table 7
DOMs evaluation on time constraints.

Time constraint
factors

CORBA DCOM RMI

Design and de-
velopment time

• Reduces the overall de-
sign and development
time if reuse and in-
tegration are the main
goal

• Meets the time con-
straints by rapid
application develop-
ment provided the
platform requirement is
Microsoft

• The best among three
for new applications

• Also depends on the
product

• Fair or as good as
CORBA for existing
systems requiring inte-
gration

Maintenance
time

• Good for integra-
tion application and
depends on the product

• Good in Microsoft plat-
forms

• Good for new applica-
tions, for existing appli-
cation integration some
“glue code” has to be
written

• Also, depends on the
product

to the servers on the Tandem platform using a layer of software which imple-
mented DCOM. This approach required another layer on the client side to facil-
itate the communication with the Tandem server. The second tier consisted of
C/C++ servers running on a Tandem platform. The third tier was the database it-
self.
This architecture required a push process to install the application on all of the clients’
machines (different cities in the US). Also, it required an initial configuration of the
communication layer to the Tandem server. The user machine had to be rebooted
after every push process.

• CORBA-based architecture.
CORBA is used in this architecture instead of RMI. The client software commu-
nicates with an ORB on the Tandem platform. This is a three-tiered architec-
ture similar to the first option, except there is no need for the NT server and
Java services. All of the servers and services would exist on the Tandem plat-
form.

88 SAIEDIAN ET AL.

The client is to be written in C++ using Microsoft Foundation Classes (MFC). The
client layer requires a DCOM layer to communicate with the ORB on the Tandem
platform. This requirement is similar to the DCOM architecture client layer require-
ment.

5.1. Goals and requirements

RTM is a new web-based system to be built to replace an erroneous manual process
in maintaining DMS250 and DMS300 switch tables. Our internal customer and the
production support team wanted a system that, in addition to supporting the business
requirements, supported the following goals and requirements:

• Ease of deployment.

• Web-based.

• Track changes per user.

• Multiplatform support.

• Reduce the cost of maintaining the application.

• Reduce or eliminate downtime when upgrading the application.

The new system is explained in the next section.

5.2. Proposed distributed computing systems

The new RTM system is to replace an erroneous manual process in maintaining DMS250
and DMS300 switch tables. The system is to be web enabled with a capability to track
changes made to records within each table. This gives the users a history log of events
when troubleshooting a customer’s voice and data services and features. It also provides
management with activity reports per user in resolving technical tickets.

In the new RTM system, the users have the ability to change the business logic
engine of the application by making data changes in the database. This is necessary in
order to add new features as part of a new software switch release or an FCC mandated
change.

We will now use the framework in the evaluation and selection of DOMs for the
new proposed system. The models CORBA, DCOM, and RMI will be evaluated with
regard to the goals and requirements in section 5.1.1 for each criterion of the framework.
The factors of each criterion are analyzed in detail to see the SDP’s requirements and
constraints before the evaluation.

5.3. Cost

The overall goal of this new architecture is to reduce the maintenance cost of deploying,
enhancing, porting and to web-enable all the new applications. From the cost evaluation
summary of the DOMs as shown in table 3, DCOM software cost is the least expen-
sive as long as the platform is Microsoft, which in not the case in our large Enterprise

DOMS IN WEB ENGINEERING 89

Systems. RMI is less expensive than CORBA because RMI is bundled with SDK; how-
ever, enterprises have to buy IDE tools for RMI, which costs either less or the same as
CORBA IDE tools. Skilled engineers for RMI cost more than CORBA and DCOM. It
is easy to get skilled resources and hardware resources for DCOM and they are cost-
effective in Windows platforms. CORBA and RMI hardware resources cost more than
DCOM in Windows platforms. CORBA training and support costs are more expensive
than DCOM and more or less equivalent to RMI. Hence DCOM would be a better choice
than CORBA or RMI.

5.4. Training

The department has to train their software engineers and SDP is willing to face the cost
and any other challenges with the training. Let us consider CORBA for SDP’s train-
ing requirements. From table 4 it is clear that SDP has to train their upper and middle
management, and it has to train their existing developers for the design and development
of the application with CORBA. The developers or administrators have to be trained
on installing the runtime software. SDP has to train the developers on additional tools.
The advantage of DCOM over CORBA is that there is no need for upper management
training and there is no need for extensive developer training provided the platform is
restricted to Microsoft. Training on tools such as MTS is not a big issue. Comparing
RMI to CORBA, there is no need for upper management training and installation of RMI
runtime separately compared with CORBA. SDP’s requirements for integration with ex-
isting system need security training with RMI and train their developers on tools such
as RMI over IIOP for integration with legacy systems, which comparatively consumes
less resource than CORBA. This is because of the reason that CORBA needs manage-
ment training, extensive developers training, and other training required for installation.
Hence, based on the above arguments DCOM or RMI would suit for SDP’s tracking
system as far as training is considered.

5.5. Resources

SDP is a C++ IT shop based on client/server architecture. This project had eight de-
velopers. Four are C++ developers and four are Java developers. Two out of the four
Java developers had no previous Java experience. SDP was in the middle of a huge
project, migrating old applications written in C to C++ using object-oriented techniques.
The RTM project in SDP could not use the developers with more experience because of
other more demanding projects. There is no room for outsourcing with SDP, as it is an
organizational policy not to outsource IT development work.

Let us apply the framework and evaluation summary on resource criteria from ta-
ble 5 to choose DOMs that meet SDP’s requirements and goals. Considering the overall
resource evaluation for CORBA, the resources available for CORBA are plenty and ma-
tured, and it satisfies SDP’s goal of support for multiplatform. The major disadvantage
for SDP using CORBA is that it needs sophisticated skills to develop distributed object
applications using CORBA. SDP’s goal is to use the existing developers, and most of

90 SAIEDIAN ET AL.

them do not have the level of sophistication required by CORBA. DCOM would be a
better choice compared with CORBA because it does not require as skilled a resource as
CORBA does. Also, the DCOM resources are easy to find and cost less.

For further comparisons between RMI and CORBA, Curtis [1999] has given a
simple “mantra” for selecting CORBA vs. RMI:

“Use RMI when you are developing new Java distributed application; use CORBA
when you need to access existing non-Java applications.”

Since RTM is a new web-based system, RMI gets an edge over CORBA. Also,
learning Java would be easy for SDP’s C++ developers. Hence DCOM or RMI would
be suitable for SDP’s RTM system.

5.6. Enterprise changes

The Enterprise changes criterion has a high impact on SDP. Every company goes through
reorganization. After reorganization, departments may assume responsibility for new
systems that are different in technology, implementation language, and architecture.
The SDP IT shop was created to migrate a legacy system from the procedural world
into object-oriented client/server, to web-enable most of its systems for its internal cus-
tomers, and to integrate with other legacy and new systems in other departments inside
the company. It has to keep up with mergers, acquisitions, and partnership changes. It
already does some business in countries other than the United States. Legacy integration,
interoperability, reuse, scalability, and expandability are the requirements of SDP. The
systems to be integrated vary from desktop applications to mainframe and web-enabled
or distributed applications involving a wide range of languages, tools, and technologies.
CORBA seems to be a leader in the integration of large-scale applications in a heteroge-
neous environment. For high-volume, heavily loaded server environment CORBA would
be the best choice because it is predictable and reliable. CORBA has proven its support
in large-scale, heterogeneous, distributed environments [Neff 1998]. It would be the best
fit for the integration of complex systems and legacy systems. DCOM is quite efficient
for distributed applications in Windows platforms. DCOM may not be a good choice for
complicated integration of legacy systems in multiple platforms [Bollinger et al. 1998].
RMI is not a good choice for the integration of complex legacy systems [Curtis 1999].
Hence CORBA would best suit SDP’s enterprise change needs.

5.7. Time constraints

Another major factor impacting SDP is time constraints. To be competitive in the mar-
ket, to maintain SDP company’s ranking among other telecommunication companies,
and to increase its revenue, SDP is pressured to deliver its IT products to its internal
customers on time. Any slippage in deliverable time would bring a noticeable loss in
revenue for the company or incompliance with FCC mandated deadlines. The company
was loosing millions of dollars because of charges settlements with other telecommu-
nication companies because the current system is manual. From the time constraints

DOMS IN WEB ENGINEERING 91

evaluation summary table, CORBA meets SDP’s requirements for reuse, integration, in-
teroperability, and multiplatform. We have to keep in mind that time constraints depend
on the particular CORBA product too. CORBA may not be a good choice for SDP, be-
cause the learning curve required would impact its time-constraint needs. DCOM devel-
opment tools exist in a user-friendly environment, which aids the development work and
saves time. DCOM would be a good choice that meets SDP’s time constraint require-
ments. RMI is very good for new application development especially for the proposed
RTM system, as it has to be web-enabled. It would be easy for the SDP’s C++ develop-
ers to learn Java. Hence, DCOM or RMI would be a good selection for transition into
distributed computing.

5.8. Summary

The conclusion for the selection of DOM for SDP is based on the above discussions and
summarized below. This conclusion is purely a case-by-case decision and the organiza-
tion goals of SDP were considered in making this decision.

From the preceding table, CORBA meets 1 out of 5 framework criteria require-
ments of SDP while RMI and DCOM score 3 and 4, respectively. As far as SDP’s
organizational goals are concerned CORBA meets the requirement only for the enter-
prise changes criterion of the framework. This eliminates CORBA from the picture for
SDP and the choice narrows to DCOM and RMI.

In section 5.1 we mentioned that SDP’s RTM web-based system must support dif-
ferent platforms. This is a very vital point to consider in making a final decision on
narrowing down to DCOM or RMI. It is undisputable to say that DCOM is the best and
most matured model if all of the platforms involved in the company are Microsoft Win-
dows operating systems [Bollinger et al. 1998]. However, as mentioned in section 4.1.1
DCOM on other platforms is not well-supported and not mature enough. DCOM on
other platforms requires sophisticated interface tools and might affect important issues
such as application performance, development time, training on interface tools and cost
of interface tools. DCOM’s successor COM+ seems to have addressed these problems
and provided good solutions, but COM+ is still an evolving technology and not ma-
tured. Hence DCOM is not a good choice for organizations operating on different plat-
forms. Because SDP operates on multiple platforms, SDP should eliminate DCOM as
the choice on the basis of the above argument, although DCOM might suit 4 out of 5
framework criteria requirements of SDP. This leaves only the choice of RMI.

From table 8, we see that RMI meets SDP’s requirements for the training, re-
sources, and time constraints factors, while it lags for the Cost and Enterprise Changes
factors. On the basis of the cost evaluation summary, we note that RMI costs more only
when compared with DCOM, while it costs less or equivalent for SDP when compared
with CORBA. Though SDP has to shell out some extra money for choosing RMI over
DCOM, it has to trade off that extra cost, because DCOM does not integrate into SDP’s
existing systems, which operate on multiple platforms.

92 SAIEDIAN ET AL.

Table 8
DOM selection summary for SDP’s web-based system.

Framework criteria Supports SDP’s requirement

CORBA DCOM RMI

Cost No Yes No
Training No Yes Yes
Resources No Yes Yes
Enterprise changes Yes No No
Time constraints No Yes Yes

Now the last factor to consider is enterprise changes. From the summary table, it
is clear that CORBA is best suited for the integration of large legacy systems and it has
the upper hand in tackling problems related to enterprise changes. Also, CORBA has
proven its support in large-scale, heterogeneous, distributed environments [Neff 1998].
However, CORBA fails to meet SDP’s requirement for 4 out of 5 categories. Hence SDP
needs to compromise on using RMI over CORBA in addressing Enterprise Changes.

To emphasize it time and again, for further comparisons between RMI and
CORBA, Curtis [1999] has given a simple “mantra” for selecting RMI over CORBA:

“Use RMI when you are developing new Java distributed application; use CORBA
when you need to access existing non-Java applications.”

Because the RTM system is web-enabled and most of the related applications will be
developed new in Java, it would be a wise decision to choose RMI over CORBA. Also
with RMI, SDP can choose to use Java for any new program that has to be written for
the proposed system and it should consider JNI and RMI over IIOP for integration of ex-
isting non-Java systems. Considering all of these arguments, Curtis’s recommendation,
the summary in table 8, and most of all SDP’s long-term goals, it is obvious that RMI
would be the best choice for SDP.

6. Conclusions

This paper presented the framework based on managerial aspects, which can be used
by organization willing to transition to DOC. DOM’s CORBA, DCOM and RMI are
evaluated using the framework suggested in section 3. Also, a web-based case study has
been presented in applying the framework for evaluation and selection of DOM(s) for an
organization with its goals and requirement. This section presents the conclusion with
observations and further areas for research.

CORBA is oldest, matured and most widely used DOM of all [Linthicum 1998].
According to the report of Harman [1997] CORBA is the preferred DOM and 61% of the
companies using CORBA were happy with CORBA. DCOM was used by 50% out of
200 companies surveyed. Also he has stated that, “. . . larger companies are more likely
to have adopted CORBA . . .” as his survey data revealed that large companies are gen-
erally ahead of smaller companies in adopting object technology. It is undeniable that

DOMS IN WEB ENGINEERING 93

DCOM is the leading model for desktop and distributed application in Microsoft’s plat-
form [Tallman and Kain 1999]. For non-Microsoft platforms, RMI seems to be the leader
in building new distributed object applications considering time constraints. CORBA is
the leader in the integration of legacy systems and large-scale, robust applications in
heterogeneous environment [Neff 1998]. Orfali, Harkey, and Edwards [1997] have said
that CORBA with Java is the best fit for object-oriented web projects. To repeat it here
again, the simple “mantra” for selecting CORBA vs. RMI given by Curtis [1999] is:

“Use RMI when you are developing new Java distributed application; use CORBA
when you need to access existing non-Java applications.”

It is very difficult to say which models would be best for an organization even
though we have arrived at a conclusion favoring RMI for the RTM System of SDP. This
is because different models have their own advantages and disadvantages. So to achieve
a perfect balance, an organization might have to consider tools that would integrate two
or more of these models [Bollinger et al. 1998; Norman 1998]. Examples for such
integrated tools are listed below.

• WebLogic. It is a product of BEA Systems. It is for Java language and supports RMI
seamlessly. Also, supports DCOM and CORBA ORBs. The capabilities of WebLogic
Enterprise is documented by BEA Systems, Inc. as follows [BEA Systems 2000]:

“With BEA WebLogic Enterprise, you can build, deploy, and manage component-
based solutions for your enterprise. WebLogic Enterprise brings together the Ob-
ject Request Broker and online transaction processing functions with industry pro-
gramming models such as Enterprise JavaBeans, CORBA, and ATMI. The re-
sult is a platform that enables you to deliver scalable, secure, and transactional
e-commerce applications in a well-managed environment.”

• RMI over IIOP. Developed by Sun and IBM. RMI over IIOP delivers CORBA com-
pliant distributed computing capabilities to the Java 2 platform and SDK [Sun 200].

Using a mix of all these tools and models will not be the ideal solution always. Selection
of DOM is case sensitive. In a nutshell organizations have to follow a case-by-case
approach in selecting DOMs and tools that would integrate its managerial goals and
project goals. The guideline for making such a selection is made easy by the framework
presented in this paper.

The area of DOC is still evolving. There is more room for future and further de-
velopment on the topics related to DOC. It would be necessary and more appropriate
to evaluate CORBA 3, COM+/.NET, and EJB/J2EE. The remaining of this section dis-
cusses the areas for further research.

Design by contract support

One of the major advantages of DOMs is their support for reuse [Neff 1998]. For ef-
fective reuse the reuse tools and technologies should support design by contract. The
importance of design by contract for reuse is given by [Jézéquel et al. 1997] as below:

94 SAIEDIAN ET AL.

“Effective reuse requires design by contract. Without a precise specification attached
to each reusable component precondition, post condition, invariant no one can trust a
supposedly reusable component. Without a specification, it is probably safer to redo
than to reuse.”

There are lessons learned from the past on how and why reuse projects failed with-
out the support for design by contract. An example would be the European Ariane 5
launcher crash event on June 4, 1996. The European Ariane 5 launcher crashed about
40 seconds after its take off causing half-billion dollars loss, which was caused mainly
by software reuse error. For further details refer to Jézéquel et al. [1997].

These lessons learned do not seem to be incorporated into the DOMs. The IDL
specification provided by the DOMs define only types, names and signature of opera-
tions and attributes. It does not provide any semantic specification mechanism [Jézéquel
et al. 1997; Cicalese and Rotenstreich 1998]. It would be interesting to see the support
for design by contract in DOC arena and how DOMs facilitate design by contract.

Real-time and embedded distributed object computing

DOM’s support for embedded systems would be another area to continue the research.
Many organizations have been pressured by the high demand for the support for embed-
ded distributed systems. Some of the areas where embedded systems are on demand in-
clude wireless, mobile computing, consumer products, etc. DOMs support for real-time
and embedded distributed systems would be the next focal point. It would be interesting
to see the DOC tools and technology support in this area.

References

Agha, G.A., M. Astley, J.A. Sheikh, and C. Varela (1998), “Modular Heterogeneous System Development:
A Critical Analysis of Java,” In Proceedings of the Seventh Heterogeneous Computing Workshop, Or-
lando, Florida.

Bacon, J. (2000), “Expectations and challenges in large-scale distributed systems,” IEEE Concurrency 8, 1,
2–3.

BEA Systems, Inc. (2000), “Documentation for the E-Generation,” available at http://e-docs.bea.
com.

Bollinger, T., D. Diskin, and S. Chubin (1998), “Recommendations for Using DCE, DCOM, and CORBA
Middleware,” MITRE Document MITRE-DAS-C1, Release 1.6, MITRE Corporation.

Bradley, M. (1997), “IIOP: OMG’s Internet Inter-ORB Protocol: A Brief Description,” Object Management
Group, http://www.omg.org/library/whitepapers.html.

Burghart, T., “Distributed Computing Overview,” Quoin Incorporation, available at http://www.
quoininc.com/quoininc/rtivcles.html.

Cicalese, C.D.T. and S. Rotenstreich (1998), “Behavioral Specification of Distributed Software Component
Interfaces,” IEEE Computer 31, 3, 126–128.

Curtis, D. (1997), Java, RMI and CORBA, “Object Management Group,” available at http://www.
omg.org/library/wpjava.html.

Curtis, D. (1999), “RMI, IIOP, and EJB,” Distributed Computing 2, 6, 18–20, 32.
Devarakonda, M. (1998), “The Practical Aspects of Object-Oriented Programming,” IEEE Concurrency 6,

3, 30–33.

DOMS IN WEB ENGINEERING 95

Dick, K. (1999), “Introduction to Enterprise JavaBeans,” Distributed Computing 2, 1, 26–38.
Emmerich, W. (1997), “An Introduction to OMG/CORBA,” In Proceedings of the 19th International Con-

ference on Software Engineering, pp. 641–642.
Fritzinger, J.S. and M. Mueller (1996), “JavaTM Security,” Sun Microsystems, available at http://

java.sun.com/security/whitepaper.txt.
Gray, D.N., J. Hotchkiss, S. LaForge, A. Shalit, and T. Weinberg (1998), “Modern Languages and Mi-

crosoft’s Component Object Model: Programming COM Made Simple,” Communications of the ACM
41, 5, 55–65.

Griffin, W.G. (1995), “Lessons Learned in Software Reuse,” IEEE Software 12, 4, 11.
Guttman, M. and J. Matthews (1998), “Transitioning to Enterprise Components,” Object Magazine 8, 4,

38–69.
Guttman, M. and R. Appelbaum (1998), “The Next Generation of CORBA,” Component Strategies 1, 2,

40–51.
Harman, P. (1997), “The Corporate Use of Object Technology, RP13U,” Cutter Information Corporation,

available at http://www.cutter.com/itgroup/reports/corpuse.htm.
Haughey, W.P. (1999), “Strategic Approach to Value Chain Integration,” Object Management Group, avail-

able at http://www.omg.org/omg/strategy.html.
Horstmann, M. and M. Kirtland (1997), “DCOM Architecture, Microsoft Corporation,” available at

http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomarch.html.
IONO Technologies (2000), “IONO Orbix 2000 Product Information,” available at http://www.

orbix.com.
Jézéquel, J.M. and B. Meyer (1997), “Design by Contract: The Lessons of Ariane,” IEEE Computer 30, 1,

129–130.
Kirtland, M. (1997), “The COM+ Programming Model Makes it Easy to Write Components in Any

Language,” Microsoft Corporation, available at http://www.microsoft.com/msj/1297/
complus2/complus2.htm.

Kochikar, V.P. (1998), “The Object-Powered Web,” IEEE Software 15, 3, 57–62.
Leppinen, M., P. Pulkkinen, and A. Rautiainen (1997), “Java and CORBA-Based Network Management,”

IEEE Computer 30, 6, 83–87.
Linthicum, D.S. (1998), “Multitiered Application Integration,” Component Strategies 1, 6, 52–58.
Maffeis, S. (1997), “Piranha: A CORBA Tool for High Availability,” IEEE Computer 30, 4, 59–66.
McArthur, K.M. (1999), “Component-Based Architectures and their Impacts on Reuse,” Masters Thesis,

University of Nebraska at Omaha.
Microsoft Corporation (1996), “DCOM Technical Overview,” available at http://msdn.microsoft.

com/library/backgrnd/html/msdn_dcomtec.html.
Microsoft Corporation (1999), “MTS,” available at http://www.microsoft.com/com/tech/

mts.asp.
Microsoft Corporation (2000), “Product and Technology Catalog,” available at http://shop.

microsoft.com/Products.
Mowbray T.J. and W.A. Ruh (1997), “Inside CORBA,” Addison-Wesley, Reading, MA.
Murphy, M.F. (1995), “Enterprise Integration Extends to People,” IEEE Software 12, 1, 16.
Nakamura, H. (1998), “Enterprise Middleware,” Distributed Computing 1, 6, 38–41.
Neff, K. (1998), “DCOM and CORBA: Why Are We Still Fighting?,” Distributed Computing 1, 5, 29–34.
Nester, C., M. Philippsen, and B. Haumacher (1999), “A More Efficient RMI for Java,” In Proceedings of

the ACM 1999 Conference on Java Grande,” 152–159.
Norman, R.J. (1998), CORBA and DCOM: Side by Side,” Distributed Computing 1, 5, 41–45.
Oberndorf, P., L. Brownsword, E. Morris, and C. Sledge (1997), CMU/SEI-97-SR-019, Software Engineer-

ing Institute, pp. 3–4.
OMG (1997), “A Discussion of the Object Management Architecture, OMA: formal/00-06-41,” Object

Management Group, available at http://sisyphus.omg.org/technology/documents/
formal/object_management_architecture.html.

96 SAIEDIAN ET AL.

OMG (1999), “CORBA 2.3 Overview, formal/99-07-06,” Object Management Group, chapter 2, available
at ftp://ftp.omg.org/pub/docs/formal/99-07-06.pdf.

OMG (2000), “CORBA Academy,” Object Management Group, available at http://www.omg.org/
gettingstarted/training.htm.

Orfali, R., D. Harkey, and J. Edwards (1997), “CORBA, JAVA, and the Object Web,” Byte.
Pattison, T. (1998), “Programming Distributed Applications with COM and Microsoft Visual Basic 6.0,”

Microsoft Press.
Putman, L.H. and W. Myers (1997), “How Solved Is the Cost Estimation Problem?,” IEEE Software 14, 6

105–107.
Quoin Inc., (1998), “COM versus CORBA: A Decision Framework,” version 1.3.
Roy, M. and A. Ewald (1996), “Choosing between CORBA and DCOM,” Object Magazine 6, 8, 24–30.
Scallan, T., “A CORBA Primer,” Segue Software Incorporation, available at http://www.omg.org/

library/whitepapers.html.
Schneidewind, N.F. (1998), “How to Evaluate Legacy System Maintenance,” IEEE Software 15, 4, 34–42.
Schneidewind, N.F. and C. Ebert (1998), “Preserve or Redesign Legacy Systems?,” IEEE Software 15, 4,

14–17.
Semaphore S., “Integrating, Distributed Applications via CORBA,” Object Management Group, available

at http://www.omg.org/library/whitepapers.html.
Siegel, J. (1996), “CORBA: Getting to the Fundamentals,” Object Magazine 6, 8, 52–55.
Siegel, J. (1998), “OMG Overview: CORBA and the OMA in Enterprise Computing,” Communications of

the ACM 41, 10, 37–43.
Siegel, J. (1999), “A Preview of CORBA 3,” IEEE Computer 32, 5, 114–116.
Siegel, J., “What’s Coming In CORBA 3,” Object Management Group, available at http://sisphus.

omg.org/technology/corba/corba3releaseinfo.html.
Sneed, H.M. (1995), “Planning the Reengineering of Legacy Systems,” IEEE Software 12, 1, 24–34.
Stewart, R., D. Rai, and S. Dalal (1999), “Building Large-Scale CORBA-Based Systems,” Component

Strategies 1, 7, 34–59.
Sun Microsystems, Incorporation (1998), “JavaTM Remote Method Invocation Specification, Revision

1.50, JDK 1.2,” available at http://java.sun.com/products/jdk/1.2/docs/guide/
rmi/spec/rmi-title.doc.html.

Sun Microsystems, Incorporation (1999), “Java Remote Method Invocation – Distributed Computing for
Java,” available at http://java.sun.com/marketing/collateral/javarmi.html.

Sun Microsystems, Incorporation (2000), “RMI over IIOP,” available at: http://java.sun.com/
products/rmi-iiop.

Sun Microsystems, Incorporation (2000), “Java 2 Platform, Enterprise Edition,” available at http://
java.sun.com/j2ee.

Tallman, O. and B. Kain (1998), “COM vs. CORBA: A Decision Framework,” Distributed Computing 1,
12, 41–43.

Tallman, O. and Kain, B. (1999), “COM vs. CORBA: A Decision Framework,” Distributed Computing 2,
1, 46–50.

Vonoski, S. (1998), “New Features for CORBA 3.0,” Communications of the ACM 41, 10, 44–52.
Waldo, J. (1998), “Remote Procedure Calls and Java Remote Method Invocation,” IEEE Concurrency 6, 3,

5–7.
Watson, A., R. Soley, and M. Bradley (1997), “Comparing ActiveX and CORBA/IIOP,” Object Manage-

ment Group, available at http://www.omg.org/library/activex.html.
Wolf, H., F. Sauer, and K. Luc (1998), “How Java and CORBA Delivered,” Component Strategies 1, 5,

55–60.
Wollrath, A., J. Waldo, and R. Riggs (1997), “Java-Centric Distributed Computing,” IEEE Micro 17, 3,

44–53.
Yee, A. (1999), “Making Sense of the COM vs. CORBA Debate,” NetworkMagazine, available at http://

www.performancecomputing.com/features/9906dev.shtml.

