
0018-9162/01/$17.00 © 2001 IEEE26 Computer

Understanding and
Reducing Web Delays

R
esearch suggests that the amount of time

it takes for Web pages to load is a sig-

nificant factor in determining the suc-

cess of a site and the satisfaction of its

users. Slow performance costs e-com-

merce Web sites as much as $4.35 billion annually in

lost revenue.1

Anyone who uses the Internet on a regular basis can

clearly attest to the huge performance differences from

site to site. A critical issue today on the Internet is per-

ceived latency—the perceived amount of time between

when a user issues a request and receives a response.

In a research project, decreasing the load time of a page

by approximately one second reduced the rate at

which visitors abandoned a site from 30 percent to 8

percent.1

A study of the response times for the top ten sites in

the US (derived from a Media Metrix study, http://us.

mediametrix.com/data/thetop.jsp) confirmed this the-

ory. As Table 1 shows, the number of customer hits is

inversely proportional to the response time. Con-

ventional wisdom has always suggested that faster ser-

vice is better. On Web sites, small time differences can

mean very different visitor retention rates. Quick

response time results in higher customer hit rates.

Performance analysis and improvement research

falls into two categories: work on servers and work on

networks and protocols. On the server side, previous

work has focused on techniques for improving server

performance.2,3 Such studies show how Web servers

behave under a range of loads. These studies often sug-

gest enhancements to application implementations and

the operating systems those servers run.

On the network side, research has focused on

improving network infrastructure performance for

Internet applications. Studies focusing on network

dynamics have resulted in several enhancements to

HTTP, including data compression, persistent con-

nections, and pipelining. These improvements are all

part of HTTP 1.1.4

However, none of these studies look at how end-to-

end system behavior interacts with network and pro-

tocol performance. There is little work on common

latency sources that cause the overall delays end users

experience or on techniques to help reduce their

impact.

LATENCY SOURCES
From the instant you launch a Web browser and ini-

tiate a session, a series of system and network

processes take place in the background. Each process

has an inherent associated latency that typically ranges

from a few milliseconds (initiating a DNS lookup) to

several seconds (finalizing a document transfer). Figure

1 shows a simplified model of Web communication,

illustrating the request path from a client to a server.

When you enter a request for a Web site in a

browser, the browser accepts the request then typically

uses the Domain Name Service—a user datagram dro-

tocol service—to resolve domain names into IP

addresses. The DNS process builds a connection to the

DNS server to obtain the IP address. When the

browser receives the IP address, it initiates the HTTP

request that runs over TCP, which in turn runs over

IP. The browser passes this HTTP request directly

through TCP/IP, creating a socket and establishing the

Mazen Zari
Hossein
Saiedian
University of

Kansas

Muhammad
Naeem
Sprint PCS

C O M P U T I N G P R A C T I C E S

As the number of Web users continues
to increase steadily, end-user experience
has become a critical issue. The authors
describe the data transfer steps
involved in a typical Web session,
discuss the delays associated with each
of those steps, and provide some
suggestions for reducing latency.

complete end-to-end connection. The server then ful-

fills the request by obtaining and serving the items that

make up the page, which might include text, images,

audio, and video clips.

In some situations, either the browser or the server

must wait for responses from other components. The

more time spent waiting, the longer the delay visitors

experience while waiting for page content. The fur-

ther the browser is from the server, the greater the like-

lihood that there will be delays. These delays can occur

at any hardware or software component. Even in the

best cases, each link or device in the path adds a fixed

amount of time to perform its function.

DNS lookup
DNS translates a computer name into an IP address.

The purpose of DNS is to make it easier for humans

to remember computer names. When a browser maps

a domain name into an IP address, it sends a DNS

query to a local name server. The name server may or

may not have the answer in its cache. When the server

doesn’t have the answer, it communicates with other

name servers to obtain the address.

In one study that analyzed about 13,000 Web

servers, DNS lookup time remained less than 500 mil-

liseconds for 80 percent of servers and 1 to 16 seconds

for the remaining 20 percent because of timeouts and

retransmits.5 Recent advances in HTTP protocol

design have reduced the number of name resolutions

that the same number of HTTP requests require when

using a persistent HTTP 1.1 connection.

Network managers typically operate their own

DNS servers, a process that requires manually updat-

ing domain name zone data several times a day when

they add domain names, upgrade servers, or conduct

maintenance. According to a DNS management

expert, about 75 to 80 percent of the Fortune 500

companies have some bad data in their zone that could

cause configuration problems.6 Several vendors host

DNS services guaranteeing up to 100 percent avail-

ability.

Connection
Once a domain name resolves, the client establishes

a TCP connection to the server. Each router along the

way does some work for every IP datagram that belongs

to the particular TCP connection. First, the routing

algorithm determines the IP address of the next hop.

Then the router translates the IP address of the next

hop into wire-level addresses. These operations might

require communications with several other routers.

Each router along the path performs certain opera-

tions on every IP datagram that belongs to that par-

ticular TCP connection. These operations include

consulting with the routing algorithm to determine the

IP address of the next hop and translating the IP

address of the next hop to a wire-level address. For

example, the address resolution protocol can be used

to translate the IP addresses to MAC layer addresses.

These operations can also require communications

with other routers. One study showed that 60 percent

of the servers had less than 200 milliseconds connec-

tion time, and the remaining had connection times of

200 to 10,000 milliseconds.

December 2001 27

Sockets

TCP/IP

HTTP

UDP/IP

DNS

Browser

Client

Sockets

TCP/IP

HTTP

Web
server

Server

DNS
server

UDP/IP

Sockets

DNS

DNS lookup

Setup/
document transfer

Figure 1. A simplified
model of Web com-
munication between
client and server. A
typical Web transac-
tion requires interac-
tion between network
layers and communi-
cation protocols.
The client (end user)
requires an additional
step of domain name
resolution (through a
DNS lookup), which
adds to the overall
latency of connection
setup.

Table 1. Top 10 US Web sites.

Size Unique Response time
Web site (bytes) visitors (56 K)
1 AOL Time Warner network 36,721 69,374 6.81 seconds
2 Microsoft sites 46,846 59,852 8.62 seconds
3 Yahoo! 27,001 57,522 9.82 seconds
4 Lycos 15,491 32,384 6.83 seconds
5 Excite network 47,501 30,535 12.86 seconds
6 About—The Human Internet 55,289 23,588 13.8 seconds
7 Walt Disney Internet Group 34,495 20,937 13.42 seconds
8 Infospace 67,768 18,773 18.66 seconds
9 CNET networks 77,421 18,435 22.85 seconds

10 Amazon 86,313 18,046 25.07 seconds

28 Computer

Server-side processing
A Web site services two types of information:

static data, which involves a simple file fetch,

and dynamic data, which involves constructing

information at the server. An increasing num-

ber of sites generate dynamic content because

it facilitates new services such as electronic com-

merce, database access, personalized presenta-

tion, and scientific computing. However,

dynamic data content generation places greater

I/O and CPU demands on the server. As demand

for dynamic data increases, the server bottle-

neck becomes more critical.

In another sense, server-side processing can

reduce the amount of bandwidth a Web session requires,

enhancing perceived speed by sending a smaller amount

of data back to the client. For example, several kinds of

Web-oriented functions can be performed reasonably

well using any number of technologies, such as Java,

JavaScript, ColdFusion, ASP, Perl, or any other language

that works in an HTML environment. However, for

client-side languages such as JavaScript, the browser

must download the application script to run in the user’s

browser. The client’s browser, as a result, must deal with

the application directly.

Server-side languages like ASP and ColdFusion do

away with the necessity of sending application data

to the client’s browser. If a user requests a database

entry through ASP, the only work the client’s browser

does is to process the HTML results that the server

returns. The server actually shoulders the processing

burden. Unlike Java applets, JavaScript, ActiveX con-

trols, and several other client-side applications—all of

which must move across the network before running

on the client’s machine—server-side languages process

the application requests on the server. This means the

client never has to download the application directly

or indirectly.

Document transfer
Document transfer time is the most significant con-

tributor to delay in a transaction. Some key factors

influencing document transfers are content size, band-

width availability, proxy servers, and routing. The net-

work between the browser and server is only as fast as

the slowest link between the two. A 1-Mbyte object

will always be 1,000 times slower than a 1-Kbyte

object regardless of the network speed. Some ways to

decrease an object’s size include compression schemes,

content coding, and delta encoding.

Increasing the total available bandwidth is the easi-

est way to decrease document transfer delays; however,

increasing bandwidth has been somewhat misused,

especially for overcoming congestion and delays.

Furthermore, it is important to account for end-to-end

bandwidth, not just bandwidth to the ISP connection.

Caching servers can be deployed within a network to

cache frequently used elements such as image files.

Because the HTTP protocol uses a connectionless ser-

vice, packets from the same document can end up tak-

ing different routes through the network. Therefore,

dynamically routing packets to use the least congested

network path becomes crucial.

Experiments
We set up a test to monitor one of the top sites from

Table 1. The tests monitored the total response time of

the site including time spent for DNS lookup, connec-

tion time, and content download time. We conducted

these tests in an environment with a 1.44-Mbps T-1

connection using a 47-Kbyte page, which downloaded

in an average of 1.56 seconds. This study showed that

more than 80 percent of the delay in response time can

be attributed to the content download time.

Figure 2a shows that the response time varies

between 0.5 seconds and 6.75 seconds, which can be

attributed to varying loads on the network connections

and server usage. Figure 2b shows that (excluding a

few spikes) the DNS lookup time and TCP/IP connec-

tion time are not major contributors to the total

response time. Figure 2c shows that content download

is the biggest contributor (80 percent) to the total delay.

Reducing this delay allows achieving considerable

gains.

IMPROVING PERFORMANCE
Several techniques can help improve Web perfor-

mance by reducing latency. Caching—which can hap-

pen nearly anywhere, including on the server, on the

user’s machine, and even at ISPs and telecommunica-

tions companies—brings popular objects closer to

clients so they have a shorter distance to travel and can

therefore reach the client’s browser more quickly. As

the “Emerging Web-Caching Technologies” sidebar

describes, caching is one of the most effective ways to

alleviate service bottlenecks and reduce traffic over the

Internet.7

Most popular search engines use a caching tech-

nique to quickly present information to users. Several

Internet accelerator companies use DNS and content

caching to offer a “faster” Web browsing experience

over dialup connections.

Caching architectures
On the ISP and telecommunications level, Web

cache performance is directly proportional to the size

of the client community. Increasing the size of the

client community improves cache performance

because it increases the probability that a cached doc-

ument will soon be requested again. However, it is

unrealistic to have one large cache that serves the

entire community.

Caching brings
popular objects

closer to clients so
they have a shorter
distance to travel
and can reach the
client’s browser
more quickly.

D
ecem

ber 2001
29

109876543210

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Time (seconds)

Tim
e o

f d
ay

(a)

TC
I, O

m
ah

a, U
S

Sp
rin

t, Seattle, U
S

A
verag

e

109876543210

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Time (seconds)

Tim
e o

f d
ay

(b
)109876543210

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Time (seconds)

Tim
e o

f d
ay

(c)

Figure 2. Perform
ance test on m

sn.com
. (a) Total response tim

e; (b) TCP/IP connection tim
e; and (c) dow

nload tim
e.

30 Computer

A hierarchical caching architecture has multiple

cache levels: bottom, institutional, regional, and

national.8 The bottom level includes the user’s browser

or client cache. When the browser or system does not

find the user’s request in the cache, it directs the request

sequentially to the next higher level. When the browser

eventually finds the document, the document travels

down the hierarchy, leaving a copy at each cache level

along its path. If the user does not find the document,

the national level cache notifies the server directly.

Hierarchical architectures are more bandwidth effi-

cient than other techniques, especially when some

cache servers do not have high-speed connectivity.7

But there are several problems associated with hier-

archical caching.8,9 For example, to set up a hierar-

chy, it may be necessary to place cache servers at key

access points in the network, which requires signifi-

cant coordination among participating cache servers.

In distributed caching, caches are only available at

the bottom level, and the only intermediate cache lev-

els are the institutional caches, which serve each other.

All institutional caches keep data information about

other institutional caches to use in deciding where to

retrieve a document. Distributed caching directs traf-

fic flows through less congested networks and facili-

tates load sharing and fault tolerance. Nevertheless, a

large-scale distributed-caching deployment is likely to

encounter several problems, such as high connection

times, higher bandwidth usage, and administrative

issues.

Mazen Zari and Hossein Saiedian,
University of Kansas

Web caching provides a mechanism for

the temporary storage of Web objects. A

Web cache monitors requests for objects

between Web servers and their clients.

When a client requests an object, such as

an image file, the Web cache makes a local

copy. When another client requests the

same object, the cache makes its copy

available instead of requesting another

copy from the original server. In essence,

Web caching reduces bandwidth con-

sumption by reducing the overall number

of requests across the network. It also

reduces perceived latency by moving pop-

ular objects closer to clients. Finally, Web

caching reduces server load because

servers handle fewer requests.

Multiple techniques
The Web cache performance is directly

proportional to the number of clients using

it. Thus, having one Web caching server

handle an entire user community is unre-

alistic and perhaps impossible. For a large

user community, several different caching

techniques—including hierarchical, dis-

tributed, and hybrid techniques—have

been proposed. HTTP protocols 1.0 and

1.1 provide several rules the Web cache

uses to determine when to serve an object

from the cache and when to make a

request from the server. Additional rules,

such as defining a browser’s cache para-

meters, may be set by the cache adminis-

trator or individual users.

Many leading network companies are

rushing to improve their caching technol-

ogy, which depends on hit rates and algo-

rithms that can improve overall Web site

performance. Leading vendors such as

Akamai, CacheFlow, Cisco, and Inktomi

offer Web caching both as a product and

a service.

Static versus dynamic
Static caching only caches static com-

ponents of Web objects such as images,

HTML files, and text. Unfortunately, not

all Web components are static, which

means static caching addresses only part

of the problem. Further, while static

caching addresses network latency it

ignores server latency. Thus, static caching

should not be used as the primary way to

accelerate network performance.

Dynamic caching provides a viable

alternative, generating Web pages on

demand, with their contents tailored to

each user. Dynamic page generation typi-

cally accounts for 40 percent of the time

required to deliver a Web page, however.1

Thus, while dynamic sites provide extra-

ordinary user experiences, the cost of using

dynamic caching is so great the technique

only sees use when no other method will

satisfy customer needs.

Many of the Web’s dynamic compo-

nents are reusable, a characteristic that

dynamic caching takes advantage of.

According to Greg Govatos, a dynamic

content accelerator caches individual page

components for faster access. In this case,

we define a component as a group of data

that display on the page together, such as

top news stories. The application server

makes a request to the dynamic content

accelerator for each component on a page.

When the data becomes available on the

accelerator’s RAM-based cache, it is

immediately returned to the application

server in ready-to-display HTML format,

thus bypassing the processing and I/O

tasks normally required to create the com-

ponent.2 Govatos maintains that the effi-

ciencies of using dynamic content

accelerators stem from their lack of

• script routines,

• data-retrieval elements from local or

remote databases, and

• format conversions from, for exam-

ple, XML to HTML.

Network companies realize that static

caching is insufficient to address user

needs. Thus, much work has been done to

integrate services that may include any

combination of the following: static and

dynamic caching, SSL-offloading, and load

balancing.

Web caching remains an important and

challenging area for further research.

Significant challenges include cachability

and identifying uncacheable objects. Some

analysts estimate that as many as half of

all Web objects may be uncacheable2—a

figure that would cause the overall effec-

tiveness of caching to suffer dramatically.

We thus need to identify uncacheable

objects and provide alternatives for han-

dling them most effectively.

References
1. G. Govatos, “Speed up Your Dynamic

Web Content,” Network World Fusion
News, 18 Dec. 2000 (www.nwfusion.com/

news/tech/2000/1218tech.html, current

Nov. 2001).

2. A. Wolman et al., “On the Scale and Per-

formance of Cooperative Web Proxy

Caching,” Proc. 17th ACM Symp. Oper-
ating Systems Principles, ACM Press,

New York, 1999, pp. 16-31.

Emerging Web-Caching Technologies

December 2001 31

Hybrid caching combines hierarchical and distrib-

uted caching techniques. The hybrid scheme allows

caches to use distributed caching to cooperate with

other caches at the same level or at a high level. There

has been some discussion about limiting the cooper-

ation between neighbor caches to avoid obtaining doc-

uments from distant or slower locations.10

Prefetching
Although caching improves performance, the ben-

efits users can derive from caching will inevitably be

limited. Previous research has shown that the maxi-

mum cache hit rate that any caching algorithm can

achieve is usually less than 40 to 50 percent.7,11

Prefetching, on the other hand, increases the cache

hit rate by anticipating the documents the user might

want to retrieve. While the user views one document,

a preemptive system downloads documents into the

local cache for future viewing. A good prefetching

scheme depends on a good prediction algorithm.

As with caching, prefetching also has disadvantages,

which include increasing network resources and traf-

fic use because of the additional (and sometimes

overzealous) requests the system makes on the user’s

behalf. Prefetching only works well if the system can

anticipate user requests without downloading every-

thing on the Internet.

Early studies focused on prefetching schemes

between browser clients and Web servers.7 Other

research used Web server traces and trace-driven sim-

ulation to study prefetching latency reduction.12 This

research showed that data prefetching from Web sev-

ers to individual clients can reduce client latency by

45 percent, but it does so at the expense of doubling

the network traffic. However, these early studies did

not address caching proxies so they don’t completely

answer the question about prefetching performance.

Security developers first used proxies to facilitate

Web access and enhance security, but research has

shown that using this approach for prefetching can

reduce client latency. A proxy server typically

processes requests from within a firewall by forward-

ing those requests to the remote servers, intercepting

the responses, and returning the replies to the clients.

One study evaluating the effectiveness of using prox-

ies for prefetching techniques showed that combining

perfect caching and perfect prefetching can reduce

latency by 60 percent for high-bandwidth clients.13

Prefetching can also be used between browser clients

and proxies. One approach is for the proxy to predict

which documents a client might reference next and

take advantage of the idle time between user requests

to either push or pull the document to the user. A sim-

ulation study showed that prefetching combined with

large browser caching and data compression can

reduce client latency up to 23.4 percent.14

Load-balancing techniques
Load balancing distributes the workload

between servers and increases the efficiency of

using specific features of certain servers. Round-

robin DNS is a load-balancing technique that

associates a domain with several IP addresses,

each of which represents a different Web server.

For a DNS lookup, the server returns the

domain-IP mapping in a round-robin fashion,

rotating each request to the next server in line.

The round-robin technique is relatively easy to

implement, and it does not require extra devices

because most servers can be configured to use

this DNS scheme. On the other hand, client-side

caching causes some uneven traffic, and node failure

is not uncommon in these environments. Finally, the

very short time-to-live of the domain-IP mappings

introduces extra DNS lookup traffic.

In the L4 (or TCP router) load-balancing method,

the L4 switch sits between Web servers and the

Internet. Its IP address represents the address of the

entire server farm. The switch forwards the traffic

based on the TCP flows (IP source and destination

addresses, TCP port number, and a certain bit in the

TCP header). Packets in one TCP flow must be for-

warded to the same server. The forwarding algorithm

can use the round-robin technique or it can base its

load balancing on contextual information, such as cur-

rent load of servers or specific client IP addresses.

Earlier research discusses various L4 switch architec-

tures and several switching algorithms.15 Compared

to round-robin DNS, L4 switching is more flexible in

distributing Web workloads and can more easily

accommodate server failure.

An L7 switch also sits in front of the Web server.

While an L4 switch is blind to HTTP requests, an L7

switch is aware of them. An L7 switch has even more

flexibility than an L4 switch in forwarding Web traf-

fic. The forwarding algorithm can use the session

information or requested URLs other than TCP/IP-

level information. Session-aware capabilities help send

requests of one session to the same server to take

advantage of previously negotiated information. L7

switches also can distribute requests on one TCP con-

nection to different servers. However, this flexibility

is gained at the price of the overhead associated with

L7 switches, which are expensive and difficult to main-

tain.

Content distribution network
A content distribution network is an architecture of

Web-based elements arranged for efficient content

delivery. CDNs typically distribute graphic files. They

help push Web content as close as possible to users,

take advantage of special servers to provide unique

content, and balance loads between servers. CDNs use

Prefetching
increases the
cache hit rate
by anticipating
the documents
the user might

want to retrieve.

32 Computer

manual hyperlink selection, HTTP redirection, DNS

redirection, URL forwarding, and L4/L7 switching.

CDNs are an excellent way to speed information

transfer. However, this relatively new technology is

sometimes overlooked. The technology speeds Web

page download times while reducing the need for

costly new servers or additional bandwidth.

Cache servers within CDNs are placed all around

the network and are arranged for efficient delivery of

critical Web components. Acceleration of Web clients

versus Web servers depends on the arrangement of

cache servers within a network. CDNs are mostly used

to cache image files and multimedia that does not

change often over time. Introducing delta encoding

will have a positive impact on CDN performance.

Transmission schemes
Clients and servers have used HTTP 1.0 for a long

time, but an increasing number have been moving to

HTTP 1.1. The de facto use of HTTP 1.0 has required

clients to open multiple parallel connections to the

same server to improve performance over serialized

connections. HTTP 1.1 supports persistent connec-

tions, which can be used either for serialized request-

response pairs or for pipelining multiple requests and

receiving multiple responses.

In HTTP 1.0, the server had to wait for a reply after

sending every IP packet before sending another packet.

In HTTP 1.1, the server can send an entire train of

packets without waiting for a TCP acknowledgment.

This pipelining technique reduces the total elapsed time

between the initial request and the final reply without

affecting the serial nature of the requests. By generat-

ing fewer but larger IP packets, HTTP 1.1 reduces net-

work traffic and perceived download times.

Efficient content
A page’s size and complexity, including the number

of items on it, are the most significant contributors to

download time. Pages with a few simple items load

the fastest and yield the most satisfied customers.

Larger items always take longer to load but do not

necessarily deliver more information or better func-

tion. The complexity of a page affects how quickly a

server can present it. Factors that contribute to page

complexity include large tables, dynamically gener-

ated table cells, JavaScript applications, or some other

form of applet. The delays vary from browser to

browser and from level to level within browsers.

You should only use multimedia effects when they

truly add to the user’s understanding. You can easily

deliver rich layout using other techniques. Modularity

allows you to apply the same style sheet to many doc-

uments, which can help reduce the need to send redun-

dant presentation information.

Page designers often use white space to help them

visualize their page presentations. White space in pages

requiring encryption might actually, as a collective

whole, add up to a lot of wasted bandwidth. While

extra white space in clear text can be compressed well,

encrypted white space does not compress well. Thus,

to a certain extent, pages that use a lot of white space

contribute to unnecessary network congestion.

We conducted an experiment using HTML Com-

press, a free tool from FreeSoft (http://www.freesoft.

fsnet.co.uk/index.htm) that provides options for com-

pressing or removing unwanted HTML code.

However, we chose to only remove white space to

observe its impact on file size. As Table 2 shows, this

experiment demonstrated that removing white space

can reduce the file size by 20 to 30 percent. Such a

decrease in the size of HTML files has a noticeable

impact on response time.

Image optimization
Download speeds are an important consideration

when deciding to add images to your Web content.

When using a 56.6-Kbps modem, it would take about

20 seconds to download a 100-Kbyte image. This is

far greater than the maximum 10 seconds permitted

to maintain a user’s interest. By choosing a more suit-

able file format, the same image can download in five

seconds or less.

Graphics quality is based on the number of colors

in an image. The more colors an image displays, the

larger the file required to store it. Choosing 16.7 mil-

lion colors instead of simple 256 colors increases the

size of the graphic file by a factor of three. A 256-color

image would require only one byte (8 bits) to represent

the colors whereas 16.7 million colors require three

bytes (24 bits).

You should avoid BMP file formats because they

are uncompressed and thus have a relatively larger file

size. Image files in GIF format use a nonlossy com-

pression format and are more suitable for Web pub-

lishing, although they require higher rendering time.

Another popular option is the JPEG format, which

uses lossy compression and allows the user to balance

quality with file size.

Table 2. Page sizes on the top-10 rated Web sites in the US before and after
removing white space.

Size in Kbytes Size in Kbytes
before removing after removing Percent

Web site white space white space change
AOL Time Warner network 39.5 28.0 29
Microsoft sites 35.9 27.3 24
Yahoo 30.4 22.6 26
Lycos 24.8 19.0 23
Excite network 54.3 37.1 32
About—The Human Internet 42.9 29.1 32
Walt Disney Internet Group 10.1 8.1 20
Infospace 58.6 45.5 22
CNET networks 55.4 43.9 21
Amazon 62.6 45.8 27

Compression schemes
Using compression schemes can help reduce Web

content, which decreases transmission time through

the network. Compressed content also saves stored

space in the cache. But the drawback to using com-

pression schemes is the extra processing required on

both the server and client sides. In the Delta content-

coding scheme, clients only need to request that the

server send the differences between two versions of a

requested document, rather than the entire docu-

ment.12 This scheme helps save transmission time by

reducing the size of the response message.

T
he future of Web performance improvements

lies in developing additional techniques to

help implement efficient, scalable, and stable

improvements that enhance the end user experience.

As Web services become increasingly popular, users

continue to suffer from poor response times.

Unfortunately the delays are cumulative, and it is not

possible to decrease response time by improving a sin-

gle slow link in the chain. Although several efforts

have been made to improve Web performance, at the

present time, the most viable solution is to favor sim-

plicity in Web design by using a minimum amount of

graphics and multimedia effects. ✸

References
1. Zona Research, http://www.zonaresearch.com/infopress/

99-jun30.htm.

2. J. Almeida, V. Almeida, and D. Yates, “Measuring the

Behavior of a World Wide Web Server,” Proc. 7th IFIP
Conf. High Performance Networking (IFIP), Kluwer

Academic Publishers, Norwell, Mass., 1997, pp. 57-72.

3. J. Banga and J. Mogul, “Scalable Kernel Performance

for Internet Servers under Realistic Loads,” Proc. Usenix
1998 Technical Conf., Usenix, Berkeley, Calif., pp. 1-

12.

4. J. Fielding et al., “Hypertext Transfer Protocol-HTTP/

1.1 IETF RFC 2068,” Jan 1997.

5. E. Cohen and H. Kaplan, “Prefetching the Means for

Document Transfer: A New Approach for Reducing

Web Latency,” Proc. IEEE Infocom 2000, IEEE Press,

Piscataway, N.J., 2000, Vol. 2, pp. 854-863..

6. C. Marsan, “VeriSign Unveils Managed DNS Service,”

Network World, Mar. 2001, http://www.nwfusion.com/

news/2001/0313verisign.html.

7. J. Wang, “A Survey of Web Caching Schemes for the

Internet,” Comm. ACM, Oct. 1999, pp. 36-46.

8. P. Rodriguez, C. Spanner, and E.W. Biersack, “Analysis

of Web Caching Architecture: Hierarchical and Distrib-

uted Caching,” IEEE/ACM Trans. Networking, Aug.

2001, pp. 404-418.

9. R. Tewari et al., Beyond Hierarchies: Design Consider-
ation for Distributed Caching on the Internet, tech.

report TR98-04, Dept. Computer Science, Univ. of Texas

at Austin, 1998.

10. M. Rabinovich, J. Chase, and S. Gradde, “Not All Hits

Are Created Equal: Cooperative Proxy Caching over a

Wide-Area Network,” Computer Networks and ISDN
System, Nov. 1998, pp. 2253-2259.

11. M. Abrams et al., “Caching Proxies: Limitations and

Potentials,” Proc. 4th Int’l World Wide Web Conf.,
W3C, Cambridge, Mass., 1995, pp. 119-133.

12. J. Mogul, “Delta Encoding in HTTP,” Oct. 2000,

http://search.ietf.org/internet-drafts/draft-mogul-http-

delta-07.txt.

13. T. Kroeger, D. Long, J. Mogul, “Exploring the Bounds

of Web Latency Reduction from Caching and Prefetch-

ing,” Proc. 1997 Usenix Symp. Internet Technologies
and Systems, Usenix, Berkeley, Calif., pp. 13-22.

14. L. Fan et al., “Web Prefetching Between Low-Bandwidth

Clients and Proxies: Potential and Performance,” Proc.
ACM Conf. Measurement and Modeling of Computer
Systems, ACM, New York, 1999, pp. 178-187.

15. M. Colajanni, V. Cardellini, P.S. Yu, “Dynamic Load

Balancing on Web-Server Systems,” IEEE Internet Com-
puting, May/June 1999, pp. 28-39.

Mazen Zari is completing an MS in electrical engi-
neering and computer science at the University of
Kansas. His research interests include networking and
software engineering. He is a member of the IEEE
Computer Society. Contact him at zarim@eecs.ku.edu.

Hossein Saiedian is a professor and associate chair in
the Department of Electrical Engineering and Com-
puter Science at the University of Kansas. His research
interests include software process, software architec-
ture, object technology, and formal methods. He
received a PhD in computing and information sciences
from Kansas State University. He is a senior member
of the IEEE and a member of the IEEE Computer
Society, the ACM, and Sigma Xi. Contact him at
saiedian@eecs.ku.edu.

Muhammad Naeem is a software engineer at Sprint
PCS in Overland Park, Kansas. His research interests
include networking system performance and object-
oriented programming. He received an MS in electri-
cal engineering and computer science from the
University of Kansas. Contact him at naeem01@
sprintspectrum.com.

December 2001 33

