
Guest Editor’s Corner
Research Directions in Formal Methods
Technology Transfer

Hossein Saiedian
DeparMtent of Computer Science, University of Nebraska at Omaha, Omaha, Nebraska 68182-0500

Welcome to the Special Issue of Journal of Systems
and Software (JSS) on Formal Methods Technology
Transfer. It is certainly an honor for me to present
this special issue to the software engineering com-
munity and the JSS readership.

Formal methods represent one of the most inno-
vative research areas that can significantly con-
tribute to an engineering discipline for software
systems. The existence of many international work-
shops and conferences and many books and special
issues of journals devoted to formal methods in
recent years bears witness to the importance of this
area. Many of the research articles, from both
academia and government and industrial research
labs, have reported the potential impacts of these
methods and how they can substantially increase the
reliability of software systems, especially those oper-
ating in critical environments.

Formal methods refer to the use of mathematical
techniques in the development of software and hard-
ware systems. The focus here is of course software
systems. Formal method notations rely on a formal
syntax and formal semantics to unambiguously de-
fine the functionality of a software system and allow
the expected behavior of such a system to be pre-
dicted from a mathematical model of that system.
Most formal methods notations are based on dis-
crete mathematics. Since software systems are dis-
crete systems (i.e., their behavior can be viewed as a
succession of discrete state changes), they can, theo-
retically speaking, be best described by means of
such methods.

Address conqmdence to Dr. Hossein Saiedian, Uniuersity of
Nebraska at Omaha, Depament of Computer Science, Omaha,
Nebraska 68182-0500 USA. E-mail: hossein@cs.unomaha.edu.

The standard practice used by the software practi-
tioners in the software community to describe the
requirements of a software system is to use a combi-
nation of natural language and diagrams and to
employ a manual process to review and verify them
informally. Informal verification is subjective and
often non-repeatable. Furthermore, the inductive
nature of informal verification and analysis runs the
risk that some properties and/or scenarios will not
be covered or investigated. Such an approach is not
very adequate, especially for critical software sys-
tems. Since many of the problems in software devel-
opment, particularly during the requirements speci-
fication, are caused by impreciseness, incomplete-
ness, and ambiguity, formal methods can assist most
effectively in minimizing such problems. Despite such
potential for precise definition of the requirements
and for substantial elimination of residual errors in
the specifications, formal methods are not widely
adopted in the industry. (I must add that there are
many cases of successful application of formal meth-
ods in industry, many of which have already been
reported, see for example the collection entitled
Applications of Formal Methods [Hinchey and Bowen,
19951. A second volume of these industrial reports is
already planned. However, these cases studies are
still quite isolated.)

Given the historical concerns for reliable soft-
ware, most serious software practitioners in the soft-
ware building world would welcome new approaches
to reliable software construction and therefore would
adopt any tool and notation that work toward
achieving reliability goals in a cost-effective manner.
For various reasons, however, industrial practition-
ers have been reluctant to consider formal methods
very widely despite the flurry of research results
suggesting the applicability and effectiveness of these

J. SYSTEMS SOFTWARE 1998; 40:187-189
0 1998 Elsevier Science Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

0164-1212/98/$19.00
PII SO164-1212(97)00164-7

188 J. SYSTEMS SOFIWARE
1998; 40:187-189

methods. This is perhaps because industrial practi-
tioners view the sometimes deep analysis of formal
methods more as speculation than practical evalua-
tive research. This is partly due to the fact many
industrial practitioners have not studied modern
software engineering (or even computer science) at
university.

The purpose of this special issue of Journal of
Systems and Sojlware is to address this very issue,
that is, why, in spite of many research results assert-
ing the practical applications of formal methods for
increased reliability, we do not see wide usage. Our
objective is to explore ways in which the benefits of
formal methods-whatever constitutes the most im-
portant benefits of formal methods-can be transi-
tioned into practice and how the gap between the
expectations of industrial practitioners and the re-
search results of academia can be narrowed. To
achieve this goal, we invited articles that presented:

initiatives to narrow the chasm between practi-
tioners and researchers,

empirical results in applying formal methods to
large systems,

evaluative explorations of the costs and benefits of
formal methods,

integration of formal methods with non-formal
ones,

formal methods light and partial applications,

strategies for formal methods that can scale to
large systems,

initiatives intended to increase and improve prac-
titioners’ interests and confidence in formal meth-
ods, and

initiatives intended to increase and improve re-
searchers’ understanding of the role of formal
methods in large systems.

In line with the aims and mission of JoumaE of
Systems and Software (see Editor’s Corner, JSS
2&l-2, 199.Q submissions that reported on deep
and theoretical analysis of formal methods where
the conclusions of those analyses were not sup-
ported by some form of evaluation or did not pre-
sent substantial issues were excluded or were given a
low priority.

As you will notice, we considered the opinions of
those who had adopted formal methods and who
have had exposure to such methods as well as opin-
ions of those who are skeptical. Accepted articles
represent research carried out in universities, pri-
vate organizations, and government laboratories
from both Europe and North America and include

H. Saiedian

diverse views, those that focus on the impact of
formal methods on software practice and strategies
for furthering such impact in the future as well as
those that are critical of formal methods. This was in
the hope of providing a forum for debating issues
that were very related. A short summary of each
article follows.

The first two articles are invited articles by two
internationally renowned individuals, namely,
Michael Jackson and David Pames, both of whom
have made major contributions to the software engi-
neering and computing science fields. Michael Jack-
son investigates a number of very important issues
related to the transfer of formal methods technology
by looking at traditional engineering and highlight-
ing what traditional engineers do. David Parnas sug-
gests that for the formal technology transfer to
succeed two things must be done: (1) integrated
formal methods into the programming and software
course and (2) improve the methods until they are
consumeable by the practitioners.

Steve Easterbrook and John Callahan (NASA/
WVIJ Software Research Lab) describe a case study
of the lightweight use of formal methods for verifi-
cation and validation of portions of a large, natural
language specification. Their study arose from a
need within the project to analyze a set of detailed
requirements that could not be verified using man-
ual techniques. The requirements were restated in a
precise, tabular form, and two methods, SCR and
SPIN, were used to test different properties of the
same subsystem. A number of defects were discov-
ered in this way, leading to an improvement in the
quality of the original specification. The study
demonstrates that lightweight formal methods pro-
vide a useful tool for debugging specifications, even
where they do not guarantee correctness. It also
demonstrates that an independent verification and
validation team can apply formal methods as an
analytical tool, even where the developers do not
produce any formal specifications themselves.

Jim Armstrong (British Aerospace Dependable
Computing Centre) discussed an approach to formal
methods technology exploitation which combines
graphical formalisms with traditional theorem prov-
ing techniques. The link between a graphical formal-
ism and a theorem prover can be provided by means
of an “omega” function, which provides a axiomatic
semantics for a subset of the graphical language.
This function can be used to generate formal repre-
sentations of the specification that are either suit-
able for a prover, or capture different “views” bring-
ing into relief specific types of information. The
example omega function in the article maps a subset

Formal Methods Technology Transfer J. SYSTEMS SOFTWARE 189
1998; 40~187-189

of statecharts into Real Time Logic, and explicitly
includes timing information. The difficult issue of
ensuring that the formal representation of the
graphical specification is sound with respect to tool
support is addressed through a combination of sub-
setting and formal verification. The author describes
how the approach has developed since its inception,
stressing the importance of basing a formal notation
upon appropriate abstractions, and of alignment with
a tool-supported graphical language.

Today’s telephone systems-the so-called Intelli-
gent Networks (IN)-offer the possibility to modify
their behavior by activation or deactivation of dif-
ferent IN services. Since these services may access
the same resources or may have conflicting aims or
even may be implemented incorrectly, services in an
IN can interact in an undesired way. This fact is
known as the service interaction problem.

Ulrich Nitsche’s article (University of Zurich)
deals with tackling the service interaction problem
using formal verification techniques and behavior
abstraction. In a first step, the specification of a
service is checked separately for its basic properties.
In a second step, this specification is embedded into
a specification of other services which are checked
for interaction with the considered service. The be-
havior of the service is extracted from the behavior
of the combined services by an abstraction step. If
the extracted behavior still satisfies the services’
basic properties under assumptions discussed in the
article, the other services do not interact unintend-
edly with the considered service. Otherwise, a ser-
vice interaction is detected. In the article, the pre-
sented techniques are used to show an interaction of
the services Call Forwarding Unconditional and Se-
lectiue Call Rejection.

Lalita Jagadeesan (Bell Laboratories) and her in-
dustrial and academic colleagues claim that the de-
velopment of formal methods has outpaced their
use. Although there are theories that try to explain
this situation, many of them are overly simplistic.
They state that technology transfer is a complicated
process involving many groups of people with many
different goals and objectives. They discuss their
experiences in trying to introduce a specification-
based testing method into a commercial product. A
two-step technology-transfer process is used: feasi-
bility study and then usability study. The feasibility
study explores the effectiveness of the tool in a
laboratory setting. The usability study explores the
effectiveness of the tool in a commercial setting.
Their work finds that each study uncovered different

types of problems and played an important role in
the technology transfer.

Sara Jones (University of Hertfordshire), David
Till (City University), and Ann Wrightson (Univer-
sity of Huddersfield) report on an international
workshop, held at City University, London, UK in
December 1996, whose aim was to consider the
interaction points between requirements engineer-
ing and formal methods. The workshop was orga-
nized jointly by two special interest groups, one
concerned with requirements engineering and the
other with formal aspects of computing. Invited
speakers from the UK and abroad addressed a series
of selected issues from the point of view of the
requirements engineer and from the point of view of
those who have developed relevant formal methods
and tools; there were also sessions devoted to more
general discussion. They begin by looking at what
has already been achieved in this field. The article
then draws on the presentations of the invited
speakers, and on the discussions which took place, in
order to bring out what are currently seen as the
most important challenges to be addressed and the
areas where the most productive synergies could be
achieved.

Finally, Baudouin Le Charlier (University of Na-
mur) and Pierre Flener (Bilkent University) claim
that requirement specifications are necessarily infor-
mal. They state that the very reason that the running
of a program is useful, namely that its results can be
straightforwardly interpreted as a statement about
the real world, can be used to conclude that the
specification of a program only consists of (the state-
ment of) the link relating the program (formality)
and its purpose (informality). Since this purpose
must be directly understandable, specifications also
are the essential tool for constructing, in practice,
correct real-world programs through explicit but
non-formal reasonings. They explain why formal
specifications are not really specifications, since this
would be a contradiction in terms. They agree, how-
ever, with the proponents of formal methods on
most of their arguments, except that specifications
should be written in a formal language, and, in-
evitably, on the consequences of the assumption.

I hope you enjoy and benefit from this special
issue as much as I enjoyed the process.

REFERENCE

Hinchey, M. G. and Bowen, J. P., editors. Applications of
Formal Methods. Prentice-Hall International, 199.5.

