
Software Quality Journal 6, (1997) 337–348

A case study to demonstrate the impact
of quality design principles when
restructuring existing software
H O S S E I N SA I E D I A N 1 , JA M E S J U R B A N 2

1University of Nebraska, Department of Computer Science, Omaha, Nebraska 68182, USA
2US Telecommunications, Omaha, Nebraska 68102, USA

Received July 1995

The case study is about the System Monitor and Control Facility (SMCF) workstation product developed by a
major telecommunications company that has been used to monitor MVS OS mainframe computer systems
since 1983. In 1991, mainframe UNIX systems were added to the list of systems supported using software
executing on the mainframe side. In 1994, an effort to develop a common interface using TCP/IP and Remote
Procedure Calls (RPC) began with a product being developed in the C. The product, which was officially deliv-
ered in June of 1994, was coded using structured programming techniques. However, after the product had
been in use for some time, maintaining and extending the code for additional functionality and portability was
less than desirable. A decision was made by the programmers who support the host-side code to restructure
(re-engineer) it such that certain software engineering principles be included into the product to make the
product more maintainable and portable. This paper discusses the factors that led to the initial decisions of
the designers and programmers, the evaluation of the existing code, and the resulting code with software engi-
neering principles re-engineered into the existing code, and how the incorporation of these principles make
maintenance simpler and how they may prevent or minimize defects in the future.

Keywords: design principles, re-engineering, re-structuring, quality software

1. Introduction
Changing active program code ‘to make it better’ has been described by some as reverse engi-
neering, restructuring, or re-engineering. Reverse engineering, according to Chikofsky and Cross
[1], is the process of analysing a subject system to identify the system’s components and their inter-
relationships and to create representations of the system in another form or at a higher level of
abstraction. Glass [2] calls it the process of examining a completed software system to abstract out
its design and underlying requirements. Choi and Scacchi [3] mention four properties that reverse
engineering possesses: structural, functional, dynamic and behavioural. Restructuring is the trans-
formation from one representation form to another at the same relative abstraction level, while
preserving the subject system’s external behaviour of functionality and semantics [1]. It is the act of
taking a possibly unstructured program and adding structure to it [2].

Re-engineering is the examination and alteration of a subject to re-constitute it in a new form
and the subsequent implementation of the new form [1]. Glass [2] adds to the definition by saying
that re-engineering is the revising of a program semantically as well as syntactically to improve its
operation. It may involve adding function, but most commonly, it is restricted to improving its main-
tainability.

0963-9314 © 1997 Chapman & Hall

338 Saiedian

These definitions are virtually the same when you consider that the intent of each of these activ-
ities is improving existing software quality. The question then becomes, when to start the activity?
That depends entirely on the present state of the software and the amount of changes made to the
software over its lifetime from its initial implementation. Some software that was well written to
begin with will take more time to get into the state of un-maintainability while poorly written
software may require immediate attention. The key is recognition that the software is in a state of
un-maintainability in its life-cycle.

2. Background of the case study

To describe the decisions when improving a piece of software, it is necessary in this case study to
describe what the product is supposed to accomplish so that the reader can more easily follow along
when certain references are made. The product’s name for the case study is called SMCF which
stands for System Monitor and Control Facility. SMCF has a number of pieces. Some of which run
on a stand-alone OS/2 workstation while other parts run on midrange and mainframe systems
which the workstation monitors. For this case study, the software that is run on the host system will
be analysed and in particular the UNIX based product.1 The reason that this part of the SMCF
code was selected was the large amount of maintenance performed thus far and the need to isolate
and separate the client/server communication code from the application code for better portability
to different hardware. SMCF uses RPC (remote procedure call) software to establish a connection
to the workstation monitor. Messages are then passed between the host and workstation with the
objective that the workstation will be used to alarm on situations that require operator intervention
or for an operator to enter commands as a response to a host situation. RPC allows the
programmer to write a generic interface routine and then generate the connection code ‘stubs’ with
the rpcgen2 code compiler. The programmer would have to write the application code associated
with the activity on the host or the workstation and interface with the connection code ‘stubs’. Even
though a simplified view, there are three distinct pieces of code designed and written for the SMCF
client/server model: code on the workstation, code on the host system, and communication code
that the two other pieces of code must interface with to pass messages.

3. Original development decisions

The RPC version of this program had a predecessor that lacked reliability. Reliability is the sense
of robustness, correctness, and consistency. The code was written using a combination of Bourne
shell code and C code. It received its systems messages from the RS232C connection port on the
workstation. In certain situations, the product either didn’t work under abnormal conditions or
didn’t behave the same in relatively the same conditions. There was also the performance issue of
the shell code and the number of processes necessary to be created and utilized in the UNIX archi-
tecture when the OS/2 workstation was initializing. The major flaw in the design, however, was that
for a OS/2 workstation to monitor more than one UNIX system, a UNIX system (or focal point
system) had to be used to filter messages from all other monitored systems. If the focal point system
crashed or its communications failed, messages from other systems could be and at times did get

1SMCF can also monitor MVS mainframe systems with separately written software specifically for that operating system’s
architecture.
2rpcgen is a utility tool that generate client/server interface C code to implement an RPC protocol.

The impact of quality design principles when restructuring software 339

lost until the backup focal point system became operational. The rewrite of the code had to correct
this critical exposure and eliminate the additional overhead incurred by the focal point domain in
watching other UNIX systems.

Therefore, in early 1994 a design session was held, and the objective of the session was to come
up with a common piece of software that could be used by the OS/2 workstation and run on a
TCP/IP type network to monitor MVS mainframes, UNIX mainframes and midrange systems. The
C language was the logical choice as the programming language for all environments.

DCE (Distributed Computing Environment) was considered as the communication interface but
was immediately turned down as an option as most UNIX systems installed at the telecommunica-
tions company did not support the environment. RPC was the next piece of software that was
considered. Since it appeared as though most UNIX systems were at a level of their operating
system capable of supporting the software, the RPC software was to be the common communica-
tion protocol as it was also supported on the workstation in the OS/2 software and on the MVS
mainframes.

The architectural design process included a discussion of security and the possible use of light-
weight processes. It was decided that the software that was about to be written must incorporate
security features employed on the most current release of UNIX and MVS. In addition, the soft-
ware must check to verify that a workstation, group ID, and login ID were authorized to run the
software. The use of light-weight processes would be incorporated if the programming environment
allowed it. Only the OS/2 workstation and MVS environment could take full advantage of light-
weight processes. Since most UNIX systems don’t employ such a facility at this time, heavy-weight
processes would have to be used (i.e. fork system call).

The detailed design took place over a period of approximately three weeks with coding of the
design immediately afterwards. The first release of the code was ready for implementation by the
end of May 1994.

4. Observations in the delivered design

The delivered product of the group’s efforts was viewed as an immediate replacement for the old
method of communication and monitoring. However, to determine the total quality of the delivered
product from a software engineering point of view, a ‘break-in’ period was used to acquaint the
users to the product. The ‘break-in’ period was informally set up after the product was system
tested. The development staff kept a list of operational items for correction as suggested by the
users to build on the existing quality of the product.

Quality factors of delivered products are determined to be documents, reliability, understand-
ability, maintainability, usability, integrity, efficiency, testability, re-usability, portability,
interoperability, correctness, flexibility, structuredness, module coupling, module cohesion and
completeness [4–7]. Most of these quality factors were considered by the time the product was
ready for official deployment. The users were patient as the production environment was system-
atically and in gradual stages converted to the new software. The users pointed out the problems as
they occurred and turned them over to the development staff for maintenance.

This version of the code required five corrective fixes, one perfective fix, one preventive fix, and
four adaptive fixes. The corrective fixes were mostly minor in nature requiring between three and
fifteen lines of code with appropriate comments added to the module to explain the changes to the
original deployed code. There was only one corrective fix that required changes to multiple
modules. This particular fix was urgent as it caused monitoring of systems from the SMCF product
to not take place when a distinct situation occurred.

340 Saiedian

Basic cleanup of the code was performed after the fix was implemented to allow a better under-
standing of the fix that was employed. The cleanup was necessary to make the code more under-
standable before the next major change needed to take place. Understandable programs according
to Martin and McClure [7] are considered to be modular, consistency of style, avoid obscure code,
have meaningful data and procedure names, structuredness, are concise, and complete.

Code for the perfective and preventive maintenance required adding as few as fifteen lines to an
entire module for the incidence of debugging problems when they occur. The adaptive maintenance
that was performed included the addition of code to support other hardware environments and
their version of the UNIX operating system using the #ifdef statement.

The code that was delivered in May had now changed over a short period of time. There was no
consideration given to the idea of long-term maintenance when the architectural design turned into
detailed design and coding. The reason for the large amount of maintenance in a relatively short
period of time was attributed to the immediate need to replace the prior version of SMCF code that
resided on the UNIX systems.

According to Schneidewind [8], unless the programming staff design for maintenance, the main-
tenance staff will always be in trouble after a system goes into production. Fenton [5] makes the
point that maintenance can degrade code by low-grade staff used for maintenance, fast response to
make changes, or design documentation not used. Jarzabek [9] agrees by adding that after years of
maintenance, program quality drops and it becomes more difficult to do trivial modification of
code.

The demand for an immediate response to problems may have had some effect on the state of
the product at the time. The amount of maintenance done at this time would definitely be consid-
ered as being nontrivial. To say that the code was less maintainable was probably true but it was not
unmaintainable. Making this statement is subjective as the maintainable attribute cannot be
measured [5]. A definition of maintainability of software would be the ease with which software can
be understood, corrected, adapted and/or enhanced [5]. It should be testable, modifiable, portable,
reliable, efficient, and usable [7]. The use of software metrics to measure internal attributes of the
product could give a reasonable picture of the maintainability of the code. Software metrics is also
the key to improving software quality [5].

5. Analysis of code prior to restructure

To make the maintainability of the product better, it was necessary to evaluate the software using
objective measures. However, there is no single test or metric that has been developed to measure
overall software quality since many individual quality characteristics are in conflict [7]. So the ques-
tion remains in measuring internal attributes. Fenton [5] indicates that the complexity metric is
used to capture the totality of all internal attributes. Even though considered by some as not being
an accurate picture of length and complexity, LOC is still used today as is McCabe’s metric and
Halstead’s metric [5–7, 10–12].

Fenton [5] indicates that complexity increases with size. Martin and McClure [7] go even farther
by saying that program complexity increases disproportionately as a program’s size increases.
Therefore, size of a module will be measured using different software engineering metrics. The
following is a list of the metrics used to describe the SMCF product:

● Lines of code (LOC) is measured in terms of total executable, and non-executable code.
Some examples of executable lines of code (ELOC) are declarations, calculations, or string
manipulations. Some examples of non-executable lines of code (NELOC) are comments

The impact of quality design principles when restructuring software 341

spanning the entire line up until the ‘newline’ character or blank lines. Optimum size,
depending on which expert is speaking should be between 50 and 200 lines of code [5, 12].

● Cohesion is the extent to which the individual module components are needed to perform
the same task and for each module measured with a number between zero and six. This value
should be as high as possible with functional cohesion being the best (value of six) and coin-
cidental cohesion being the worst (value of zero).

● Coupling is the degree of interdependence between modules and for each module measured
with a number between zero and five. This value should be as low as possible with no
coupling (value of zero) being the best and content coupling being the worst (value of five).

● McCabe’s cyclomatic complexity measure is the number of linear independent paths through
a program and should be as low as possible with a value no greater than 10 being ideal.

● McClure’s complexity measure is the number of compares in a module and the number of
control variables referenced in the module. This value should be as low as possible.

● Halstead’s software science module length is the total number of occurrences of operators
and the total number of occurrences of operands in a module. This value should be as low as
possible.

Function points will not be measured because of the subjective nature of the values assigned to the
various function points. An average module size and complexity will be computed for the entire
program to determine as a whole if the exercise of code restructuring was successful. The terms
restructure and re-engineering will be used interchangeably at times.

Table 1 shows various software engineering metrics applied to the product after the above
mentioned initial maintenance was performed. The objective of this table is to establish a baseline
by which future changes and evaluations can be measured against.

Table 1. Pre-evaluation of SMCF software

Halstead’s
McCabe’s McClure’s software

Co- Coup- comp- comp- science
File Module ELOC NELOC Total hesion ling lexity lexity length

hostmsg.c 77 31 108 – – – – –
msgthread 1001 611 1612 3 3 273 317 6348
add-to-list 12 13 25 6 2 13 16 220
msgCleanup 5 3 8 5 3 19 20 225
writepip 18 5 23 5 3 14 17 269

log-svc.c. 11 5 16 – – – – –
main 55 37 92 4 3 13 15 333
smcflog-1 40 9 49 6 0 8 14 250

log-xdr.c 2 4 6 – – – – –
xdr-host-logon 19 7 26 6 0 5 6 117
xdr-logon-result 10 4 14 6 0 2 3 49

msg-clnt.c 7 13 20 – – – – –
sendmessage-1 13 5 18 6 0 3 5 97
hostinitcomplete-1 33 9 42 6 0 10 13 172
hostinitcompletewithtoken-1 33 9 42 6 0 10 13 172
sendmessagewithextra-1 13 5 18 6 0 3 5 97
senddata-1 13 5 18 6 0 3 5 97

342 Saiedian

Table 1. (continued) Pre-evaluation of SMCF software

Halstead’s
McCabe’s McClure’s software

Co- Coup- comp- comp- science
File Module ELOC NELOC Total hesion ling lexity lexity length

msg-xdr.c 2 10 12 – – – – –
xdr-host-singlemessage 13 5 18 6 0 3 4 71
xdr-host-message 21 7 28 6 0 5 6 134
xdr-host-messagewithextra 16 6 22 6 0 4 5 95
xdr-host-dataelement 11 4 15 6 0 2 3 64
xdr-host-data 18 6 24 6 0 4 5 117
xdr-host-initcomplete 13 5 18 6 0 3 4 71
xdr-message-result 10 4 14 6 0 2 3 49
xdr-data-result 10 4 14 6 0 2 3 49

cmd-xdr.c 2 5 7 – – – – –
xdr-host-command 13 5 18 6 0 3 4 71
xdr-command-result 10 4 14 6 0 2 3 49
xdr-checkstatus-result 10 4 14 6 0 2 3 49

hostcmd.c 68 15 83 – – – – –
cmdthread 45 30 75 4 4 12 21 442
IssueCmd 416 77 493 2 4 82 117 3217
LogSMCF 284 34 318 5 3 62 80 2512
DebugSMCF 255 14 269 5 0 58 70 2322
cmdCleanup 8 3 11 6 4 16 19 222

hostlog.c 54 34 88 – – – – –
requestlogon-1 334 75 409 3 3 92 111 1586
AddNoteToList 48 6 54 5 3 19 28 387
GetRPCWrksFromAddr 11 5 16 6 3 15 17 180
DeleteRPCWrksFromAddr 78 9 87 5 3 25 29 594
VerifyIPAddr 23 5 28 5 0 17 21 280
CheckLogin 166 16 182 5 0 58 72 1073
smcfcmd-1 54 12 66 6 0 23 30 431
sendcommand-1 44 9 53 6 0 23 29 348
requestcommandtoken-1 45 4 49 6 0 23 28 334
checkstatus-1 44 5 49 6 0 23 28 323
terminateconnect-1 57 13 70 5 0 24 29 337
PrintList 26 5 31 6 3 17 18 300
PrintNextFDs 11 4 15 6 0 13 14 213
logCleanup 33 5 38 6 3 18 20 312
logRestart 44 5 49 5 3 20 23 390
set-f1 12 7 19 6 0 15 18 201
procCleanup 71 13 84 5 3 32 38 411

server.h 101 34 135 – – – – –
smcfcmd.h 30 5 35 – – – – –
smcflog.h 28 4 32 – – – – –
smcfmsg.h 83 22 105 – – – – –
strstr.c 9 23 32 – – – – –

strstr 9 5 14 6 0 3 4 73
strdup 8 4 12 6 0 4 5 73

Average 73.6 23.7 97.4 5.47 1.1 22.96 28.35 538.02

The impact of quality design principles when restructuring software 343

6. Decision to restructure

Table 1, even though enlightening with respect to the SMCF software’s module length and
complexity, did not force the decision to restructure the code among the programming and main-
tenance staff entirely. If major changes needed to be made to the code, the programming and main-
tenance staff felt that the current structure would not easily support such changes. The demand on
the programming staff to initially deliver the product in a relatively short amount of time was the
chief reason behind this feeling. Decisions made at the beginning of the project did not support
long-term maintainability. Future needs in the area of maintenance were not clear at that time.
Another reason for the restructuring decision included the possibility that changes in the program-
ming and maintenance staff could occur thereby making the current state of the code difficult to
understand and maintainability less than desirable. It was apparent that the programming staff
were new to this type of software (i.e. RPC) and the goal of replacing the current system was a high
priority. The interest of correctness was placed over that of a total quality system with maintain-
ability built in. According to Parikh [13], amateur DP shops are more interested in a correct
computer report than in a quality system. Portability of the SMCF product to other hardware was
a distinct possibility. There needed to be better organization in the code to account for these hard-
ware differences. The upgrade of the operating system software needed to be accounted for when
a different compiler or internal structure changed. The product needed to handle abnormal
network state changes more robustly to keep the SMCF product functioning in all conditions. Even
though common and global data passing are undesirable [12, 13], some global data was needed in
the product but felt by the programming staff that the amount could be reduced. Documentation
in each module was limited and lacked meeting company coding standards. All of these concerns
needed to be addressed and remedied with the restructure of the code.

7. Decisions to improve maintainability

It was decided to follow a plan according to Schneidewind [8] to identify candidates for restructure.
The number of entry points were looked at first. Secondly, modules were examined with respect to
the degree of structure, the level of nesting, the degree of complexity, break-out of verb utilization,
the analysis of potential failure modes, and the trace of control logic.

Glass [2] indicates that modules, named constants, data abstraction, table-driven code, file-
driven code and documentation are good preventive maintenance tactics when looking at the
restructuring of code. He also indicates that use of defensive programming tactics (exception
handling, assertions, margins, and audit trails) limit unsafe programming and complexity. On a
down side to restructuring, Jarzabek [9] indicates that re-engineering may effect system require-
ments by adding new functionality to the system. The programming staff was aware that a close
examination of the code may lead to new ideas being generated. These new ideas may tempt the
programming staff to the point of adding the additional feature during the time of restructure,
which is supposed to be a time of minimal change to functionality. The programming staff was
aware that the addition of new functionality has been implemented before during other code
rewrites. In fact according to Chikofsky and Cross [1], it is rare that an application is re-engineered
without additional functionality being added. The programming staff had to make sure that any
new functionality added to the code did not place the state of the code back in to a state of poor
maintainability.

The idea of evolution of the code was about to occur. Evolution (or more appropriately perfective

344 Saiedian

software evolution) means a continuous change from a lesser simpler or worse state to a higher or
better state [1, 4, 8]. It is correcting defects, enhancing software functionality, improving the quality
of existing software. The benefits of perfective software evolution are improved maintenance skill,
reduced exposure to risk, reduced maintenance costs, more time for enhancement and new
development, and enhanced system maintainability [4].

It was apparent that code evolution does not occur all at one time. The better thing to do for the
sake of understandability is to evolve the code gradually over a longer period of time than to make
giant leaps and lots of changes at any one time and come to the conclusion that the code has
evolved to its highest point.

There was no immediate need to make changes to the code at this time at the request of the users
so it was determined that this was a good time to look at re-engineering the code. According to
Arthur [4], a complete restructure of code or partial change of the code is done best when there is
minimal change.

To isolate modules further, the first major change to the code was to move modules to their own
system file depending on where it was created. The displacement of modules isolates changes to a
single physical and logical module thereby lessening the possibility of other modules getting
changed accidentally resulting in additional debugging. Some of these modules were written by the
application development team while other modules were generated by the rpcgen system utility that
allows for the communication to the SMCF workstation. The separation between a communication
module from an application module made logical sense because of the system dependent nature of
these modules. This notion of separation is backed up by Jarzabek [9] who indicates that code
should be isolated removing implementation dependent details.

Documentation was added to each module as specified by the telecommunication company C
coding standards describing the characteristics of each module, the algorithms used, other modules
called, modules that call each module, known defects, and a revision history. Comments were
added to each variable declaration.

Common sections of code functionality were broken out to separate modules. An example of this
idea of separation was the retrieval of the system clock time. To go even farther, some hardware
manufacturers had enhanced their API (application program interface) to format the system time
thereby reducing the number of lines of code needed to complete this function. It was decided to
make the code more portable by using a common system clock call API. This common system call
would then avoid code dependence upon hardware vendor’s enhanced system clock call. The use
of #ifdef was employed to reduce common sections of code that would describe what was to take
place depending on the type of manufacturer’s hardware the code was running on. Global variables,
even though required by the application, were reduced from nine to six at this time. It was felt that
the number of global variables reduced was an appropriate number in the evolution of the code at
this stage. Global variables would be looked at again at a future time to see if they could be reduced
further.

8. Analysis of code after restructure

Each restructured module was tested individually after the change to it occurred. Sometimes it was
necessary that two modules be tested together because of the functionality that was broken out of
a module thereby making two modules from a single module. It was found that if no new function-
ality was added to a module the testing was more likely to show fewer or no errors. Integration
testing was completed at the same time as unit testing. Regression testing came up with few errors
and were mostly due to changes made as a result of changes to or removal of global variables. These

The impact of quality design principles when restructuring software 345

types of errors as a result of changes to other modules are mentioned by Schneidewind [8] and
Kafura and Reddy [10]. The phenomenon is called the ripple effect. Testing continued until it was
felt that a module’s actions were stable. Stability of a module is the inverse of the ripple effect.

Table 2 shows the results of the restructure. The average number of lines of executable code per
module decreased significantly showing simplification of the modules. Non-executable lines of code
per module increased mainly because of the addition of documentation added to describe the
modules’ characteristics. Total lines of code per module dropped slightly which was viewed as being
insignificant. It was not expected that a great change would occur in the average cohesion and
average coupling. Only a tenth of a point was gained for both average measurements. The reason
for this prediction was that the code was very well constructed using structured techniques before
the restructure began. The programming staff felt that to increase these numbers significantly,
global variables needed to be reduced significantly or altogether. The greatest gain occurred in the
reduction of complexity of each module. The metrics show complexity of each module reduced as
much as 67% and length of each module reduced as much as 50%. There is no metric to describe
understandability of a module. It was the intention of the maintenance staff that by adding more
comments to each module that quick searches of the modules’ descriptions would yield a better
understanding among the programming staff. Only time will tell if detailed descriptions inside a
module as an element of the restructure was a success.

Table 2. Post-evaluation of SMCF software

Halstead’s
McCabe’s McClure’s software

Co- Coup- comp- comp- science
File Module ELOC NELOC Total hesion ling lexity lexity length

msgthread.c msgthread 441 360 801 3 4 85 116 3062
addtolist.c add-to-list 19 74 93 6 2 3 5 79
msgcleanup.c msgCleanup 18 61 79 5 3 1 3 84
writepip.c writepip 24 62 86 5 3 3 7 133
cmdthread.c cmdthread 66 123 189 5 4 5 21 358
issuecmd.c IssueCmd 179 156 335 2 4 27 56 1049
logsmcf.c LogSMCF 46 96 142 5 3 6 14 275
debugsmcf.c DebugSMCF 10 68 78 6 0 1 2 45
cmdcleanup.c cmdCleanup 18 61 79 6 4 3 5 84
gettime.c gettime 84 55 139 6 0 14 17 696
main.c main 67 114 181 4 3 15 17 353
strstr.c strstr 11 60 71 6 0 3 5 74
strdup.c strdup 13 57 70 6 0 2 3 61
smcfcmd-svc.c smcfcmd-1 63 9 72 6 0 11 12 330
smcfcmd-xdr.c 2 20 22 – – – – –

xdr-host-command 13 0 13 6 0 3 4 71
xdr-host-data-in 13 0 13 6 0 3 4 84
xdr-command-result 10 0 10 6 0 2 3 49
xdr-checkstatus-result 10 0 10 6 0 2 3 49
xdr-senddatain-result 10 0 10 6 0 2 3 49

smcflog-svc.c smcflog-1 42 5 47 6 0 7 8 223
smcflog-xdr 2 8 10 – – – – –

xdr-host-logon 19 0 19 6 0 5 6 117
xdr-logon-result 10 0 10 6 0 2 3 49

smcfmsg-clnt.c 4 11 15 – – – – –

346 Saiedian

Table 2. (continued) Post-evaluation of SMCF software

Halstead’s
McCabe’s McClure’s software

Co- Coup- comp- comp- science
File Module ELOC NELOC Total hesion ling lexity lexity length

sendmessage-1 12 1 13 6 0 2 3 91
hostinitcomplete-1 12 1 13 6 0 2 3 95
hostinitcomplete

withtoken-1 12 1 13 6 0 2 3 95
sendmessagewith

extra-1 12 1 13 6 0 2 3 91
senddata-1 12 1 13 6 0 2 3 91

smcfmsg-xdr.c 2 32 34 – – – – –
xdr-host-single

message 13 0 13 6 0 3 4 71
xdr-host-message 19 0 19 6 0 5 6 134
xdr-host-messagewith

extra 16 0 16 6 0 4 5 95
xdr-host-dataelement 10 0 10 6 0 2 3 64
xdr-host-data 16 0 16 6 0 4 5 117
xdr-host-initcomplete 13 0 13 6 0 3 4 71
xdr-message-result 10 0 10 6 0 2 3 49
xdr-data-result 10 0 10 6 0 2 3 49

addnodetol.c AddNodeToList 60 94 154 5 3 7 17 296
checklogin.c CheckLogin 115 98 213 5 0 25 37 738
checkstatu.c checkstatus-1 34 62 96 6 0 5 9 170
deleterpcw.c DeleteRPCWrksFromAddr 85 84 169 5 3 11 15 485
extract.c extract 28 75 103 6 0 5 10 150
getrpcwrks.c GetRPCWrksFromAddr 16 58 74 6 3 3 5 58
logcleanup.c logCleanup 39 73 112 6 3 4 6 197
logrestart.c logRestart 53 96 149 5 3 6 10 299
printlist.c PrintList 42 70 112 6 3 4 5 261
printnextf.c PrintNextFDs 15 68 83 6 0 1 2 85
proccleanu.c procCleanup 55 80 135 5 3 13 18 313
requestcom.c requestcommandtoken-1 36 70 106 6 0 6 10 184
requestlog.c requestlogon-1 279 154 433 3 3 45 74 1679
sendcomman.c sendcommand-1 43 69 112 6 0 6 10 231
senddatain.c senddatain-1 15 57 72 6 0 2 4 54
set-fl.c set-fl 16 71 87 6 0 3 5 72
sig-child.c sig-child 18 55 73 6 0 2 4 92
terminatec.c. terminateconnect-1 42 75 117 5 0 8 12 220
verifyipad.c. VerifyIPAddr 31 85 116 5 0 5 9 176
hostcmd.h 16 36 52 – – – – –
hostmsg.h 15 39 54 – – – – –
server.h 98 93 191 – – – – –
smcfcmd.h 47 12 59 – – – – –
smcflog.h 29 6 35 – – – – –
smcfmsg.h 72 18 90 – – – – –

Average 43.9 52.9 96.9 5.57 1 7.43 11.61 263.83

The impact of quality design principles when restructuring software 347

Table 3 compares the analyses of Tables 1 and 2. It shows the number of increases, decreases and
no changes to the modules under analysis with respect to the different software engineering
metrics. The executable lines of code (ELOC) showed about a 50-50 split from the modules with
lines added to those with lines taken away or unchanged. Non-executable lines of code (NELOC)
showed that almost all modules received additional lines. The increase in non-executable lines of
code was entirely due to additional documentation added to describe the module’s characteristics
as specified by the company’s C coding standard. The additional comment lines also contributed to
the overall total of lines for each module. As mentioned earlier, cohesion and coupling values had
little change. The result of the metric analysis is reflected on this table. The complexity and length
for all modules either decreased or stayed the same. The number of modules with decreasing
complexity is the best indicator that the restructure of the code was meaningful and accomplished
it’s purpose at this stage of the product’s evolution. The restructure yielded eight new modules that
were broken away from the original modules for functionality.

Table 3. Changes from pre– to post–analysis

Metrics Increased Decreased No change

ELOC 27 15 10
NELOC 49 3 0
Total lines 47 5 0
Cohesion 2 0 46
Coupling 1 0 47
McCabe’s complexity 0 34 14
McClure’s complexity 0 34 14
Halstead’s software science length 1 34 13
Number of modules 8 – –

9. Conclusion

On the whole, the development and maintenance staff felt that the restructure of the code was
worth the time and effort spent not only working with the code but also using the software engi-
neering metrics to characterize the code. The results in Table 2 will be used again when the code
goes through the next stage of its evolution in order to determine its maturity.

Strictly looking at the recommendations made by some of the authors with regard to module
length and complexity, the average value in Table 2 meets or exceeds the thresholds on the side of
acceptability. However, there are a few modules that do not meet recommended length and
complexity values. These modules will be looked at next with respect to further restructuring and
evolution. In particular, when changes or additions need to be made to these modules, there will be
a strong effort to reduce the size of the modules by dividing each of them up in to two or more
smaller modules.

The telecommunications company standards, concerning coding modules of an application, did
not mention software engineering practices directly but made reference to defensive programming
and gave twelve rules to follow. These rules had more to do with proper C coding than with soft-
ware engineering quality controls. On the plus side the standards did provide a good framework for
commenting a module that took more time to initially code. The consensus among the maintenance
staff indicates that the extra time applied now was worth the added effort. Until the view of

348 Saiedian

programmers and managers change with respect to the prioritization of results over long-term
maintainability, this type of restructuring could occur again on future products. According to Glass
[2], the developer should avoid getting into the situation of having to re-engineer.

Acknowledgement

Hossein Saiedian’s research was partially supported by a summer fellowship grant from the
University Committee on Research, University of Nebraska at Omaha

References

1. Chikofsky E.J. and Cross H. II Reverse engineering and design recovery: a taxonomy. IEEE Software,
January (1990) 13–17.

2. Glass R.L. Building Quality Software (Prentice-Hall, Englewood Cliffs, NJ, 1992) pp. 180–195.
3. Choi S.C. and Scacchi W. Extracting and restructuring the design of large systems. IEEE Software, January

(1990) 66–71.
4. Arthur L.J. Improving Software Quality: An Insider’s Guide to TQM (John Wiley & Sons, New York, 1993)

pp. 217–231, 247–259.
5. Fenton N.E. Software Metrics: A Rigorous Approach (Chapman & Hall, New York, 1991) Chapters 1–3, 5,

10, 11 and 14.
6. Lew K.S., Dillon T.S. and Forward K.E. (1988) Software complexity and its impact on software reliability.

IEEE Transactions on Software Engineering, 14, 1645–1655.
7. Martin J. and McClure C. Software Maintenance: The Problem and Its Solutions. Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1983. Chapters 3, 4, & 17.
8. Schneidewind N.F. (1987) The state of software maintenance. IEEE Transaction on Software Engineering,

SE-13, 303–310.
9. Jarzabek S. (1994) Life-cycle approach to strategic re-engineering of software. Journal of Software

Maintenance: Research and Practice, 6, 287–317.
10. Kafura D. and Reddy G.R. (1987) The use of software complexity metrics in software maintenance. IEEE

Transactions on Software Engineering, SE-13, 335–343.
11. Kelly M. Management and Measurement of Software Quality (Ashgate Publishing, Brookfield, VT, 1993).
12. Shere K.D. Software Engineering and Management (Prentice-Hall, Englewood Cliffs, NJ, 1988) Chapters

2 and 3.
13. Parikh G. Techniques of Program and System Maintenance (Winthrop Publishers, Cambridge, MA, 1982)

pp. 9–13, 25–35, 101–104, 201–202.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Abstract
	Introduction
	Background of the case study
	Original development decisions
	Observations in the delivered design
	Analysis of code prior to restructure
	Decision to restructure
	Decisions to improve maintainability
	Analysis of code after restructure
	Conclusion
	Acknowledgement
	References

