
ELSEVIER Information and Software Technology 39 (1997) 403-415

IN~RMATION
AND

SOFTWARE
TECHNOLOGY

Enhanced reusability via polymorphic additive

R. Chattamvelli, H. Saiedian

virtual methods in C++

Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0500, USA

Received 1 March 1996; accepted 29 November 1996

Abstract

The virtual method is a useful concept in polymorphic behavior of object-oriented programs. By making a method virtual in a class, all
classes derived from that class are allowed to modify or enhance the definition of the method (while retaining its original signature) providing
one kind of polymorphism. In this article, we explore the virtues of virtual methods and introduce different ways of implementing additive

virtual methods in C++. The concepts presented can find applications in shared software libraries, integrating software applications, and
distributed computing. 0 1997 Elsevier Science B.V.

Keywords: Additive methods; Assistant functions; Late binding; Multiple inheritance; Virtual tables

1. Introduction

The polymorphic behavior of object-oriented programs
could be achieved by different means, one of which is by
virtual methods (or virtual member functions in C++
jargon). A member function can become virtual if it is
explicitly specified using the keyword virtual in all classes
in the inheritance hierarchy where the method must be
visible.’ Derived classes that do not redefine a virtual
method use the virtual method defined in the nearest base
class as the default in all virtual calls using the dominance
rule ([11, pp. 205-209). The signature of a virtual method is
determined uniquely using the return type, method name,
and an ordered specification of the parameters. Methods
with a variable number of arguments, global functions and
static functions cannot be virtual in C++. All virtual meth-
ods with the same signature up in the inheritance lattice are
automatically virtual methods in the derived classes if a path
exists between the derived and base classes in the inheri-
tance diagram. A virtual method can be overridden by a
function in the derived class. All such overridden methods
are unrelated independent functions, which simply hides the
methods of the same name at a higher level in the
inheritance hierarchy.

When a method or member function* is declared as

’ Since the class hierarchy is designed with maximum reuse in mind,
most designers make even the last level methods virtual.

‘We use the terms ‘method’ and ‘member function’ interchangeably in
this article. Furthermore, for convenience, we may simply use the term
‘function’ as we will only be dealing with member functions in this article.

0950-5849/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved

PII SO950-5849(96)00001-8

virtual, an entry for it gets created in a virtual table vtbl,

which is class specific (each class in which a virtual method
is visible has its own copy of vtbl, while different instan-
tiations of the same class simply set a pointer to the classes
vtbl). All subsequent redefinitions of the function in
derived classes set a pointer to their own table entry [l].
The derived classes are allowed to modify the implementa-
tion of the virtual functions (called overloading) according
to the complexity of the object they have to deal with,
provided they do not conflict with the unique signature.
The virtual method that is to be invoked is determined
dynamically at run time; this is known as late binding.

In a multiple inheritance hierarchy, an object can contain
more than one vptr. This is necessary because an object
in a derived class may contain all combinations of objects in
the base classes. Hence, when an object S higher up in the
inheritance hierarchy gets a pointer, it must be able to
uniquely distinguish if it is an S or an S part of another
object. This is most easily handled by storing a separate
vtbl for alike classes higher in the directed acyclic
graph (DAG) representing the inheritance relationship.

Sometimes the virtual methods contribute incrementally
to the method defined in base classes so that the derived
class could implement its methods by first invoking the
base methods, instead of code duplicating. This form of
virtual method refinement will be called additive virtual
methods. For example, if a base class draws rectangles
using the known boundary point and other parameters like
width, length and orientation, a derived class could make
use of the base method to draw shaded rectangles or other

404 R. Chattamvelli, H. Saiedian/lnformation and Software Technology 39 (1997) 403-415

geometric figures in which rectangles (or other geometric
figures defined in the base classes) are used as a component.

If a base class is inherited as private, all members of the
base class are visible in the immediate derived class only,
unless the friend mechanism is used. However, if the
derivation is public or protected, the methods higher up in
the inheritance hierarchy could still be additively invoked.
In Section 2, we look at various ways to implement additive
virtual methods in C++. An application is discussed in
Section 3.

2. Virtual method invocation

The natural way to invoke the base class method is by
using an explicit address resolution operator, in which the
fully qualified name of the base class method is used at the
point of message passing. If the base method is called
func, all derived classes could explicitly invoke func as

base : . . func () in their methods. However, this tech-
nique uses static binding, in principle, because the virtual
method to invoke is completely known at compile time.

A more objective way of invoking the base method is by
defining a pointer (or a reference) to the base class and using
this pointer in all derived class methods for invoking base
class methods, as shown in Scheme 1. Note that a pointer
to the base class can be used in a derived class to access
only those members that are inherited from the base class.
However, members that are not inherited could still be
accessed through casting of pointers to derived classes or
using explicit pointers to derived classes. To simplify the
code, we abbreviate the implementation of a method to
tout <<“class: :method” < < endl.

In Scheme 1, the class B uses a pointer to th; base class A
to first invoke the method higher up in the hierarchy. Also,
the class C has a pointer to the B object (which may also be
initialized using a pointer to the A object) where standard
conversion takes place. Because a constructor for the B

C++ Listing 1

class A {
public :

// constructors and other members
virtual void f() { tout << “A::f”

1;

class B: public A i
public :

<< endl; 1

// class B’s constructor gets a ptr to base class as an argument
B (A *ptr) : a(ptr) 1); // initialize local pointer a

‘B 0 {delete a;);
A *a;

// destructor
// pointer to base class

virtual void f (> {
a -> f();
tout <C "B::f" << endl; // incrementally implemented

I

1;

class C: public B {
public :

C (A *ptr) : b(ptr) 0; // standard conversion
‘Co {delete b;)

B *b;
virtual void f 0 {

b -> f();
tout C< Y::f” << endl;

1
3;

Scheme 1.

R. Chattamvelli, H. SaiedianDnformation and Sofhyare Technology 39 (1997) 403-4/S 405

object is automatically called when a C object is instan-
tiated, a default B constructor must be provided as shown
in Scheme 1. This rule applies to all classes in the inheri-
tance DAG. When a pointer to a base class is used to invoke
a virtual function, the specific function called depends on
the type of the object rather than the type of the pointer
([2]). Scheme 2 shows the sequence of steps involved in
the invocation.

This technique has the disadvantage that the constructor
is used to initialize the pointer to the virtual methods. The
applicability of this technique is hence limited, since the
constructor is called on a per object basis at the time of
object creation. A solution is to define another member
function to dynamically initialize the pointers, as shown in
Scheme 3.

Because the pointers are now initialized using ordinary
member functions, all the pointers used in calling virtual

methods in their respective base classes must be properly
initialized before the virtual methods may be additively
invoked as shown in Scheme 3. For instance, if a C object
needs to invoke one of the virtual methods in class B as well
as A, the Ini t function for both B and C must be called
properly so that when the C object sends a message to the B
object, it knows exactly where the next message needs to be
sent to additively invoke the method in one of its base
classes. Since each class with virtual functions uses
additional pointers which require memory indirection, this
technique will be slower than standard function invocation.
If the specific virtual method(s) to be invoked from the base
classes are predetermined, one could use a pointer to the
base class method itself, instead of a more general pointer to
the base class, as shown in Scheme 4.

However, there is a problem with the code in Scheme 4.
The pointer which is passed as an argument to the construc-
tor of B and C is a general function pointer which does not
bind itself to a specific object. As discussed in Ref. [l]
(p. 157), there are two simple ways to invoke a method
using a pointer - either using the (obj ec t . *ptr) ()
syntax which is consistent with C syntax, or using a pointer
to the object as (cptr - > *mptr) () where cptr is a
pointer to the object and mptr is a pointer to the method to
be invoked. If the second approach is followed, the code in
Scheme 4 must be modified as shown in Scheme 5. The
application of proper type casting allows selective invocation
of methods additively as in the previous case (see Scheme 6).

Another way of invoking base class methods is using a
global non-member function. We could also use specialized
member functions to return the address of virtual member
functions, as shown in Scheme 7.

Note that we have used typedef within the class Y to
simplify the code. If the typedef is defined in the base
class as xptr, all derived classes should type-cast the
return function names as (xp t r) f uncname. The address
of a virtual function is defined relative to the class in which
it belongs. Owing to a lack of proper terminology, we call
the method that returns the address of (other) member func-
tions an assistant function. To invoke a virtual method from
a class derived from the class Y, we simply get the address
of the method by invoking the assistant and then supply the
proper parameters according to the signature of the virtual
method to be invoked. If the class contains several virtual
methods, we can pass the name of the virtual method to be
invoked to the assistant which could search through the
visible methods and return the correct address. For instance,

C++ Listing la

A animal;
A *aptr = &animal;

B bloodhound(aptr1;

B *bptr = &bloodhound;

bptr -> f(); // or equivalently bloodhound.f();

C cat(bptr);

C *cptr = &cat;

// The following invokes C::fO, which in turn calls B::f(), A::f()

cptr -> f(); // or cat.fO;

C bigcat((B*) aptr); // pointer to animal is type casted

cptr = &bigcat;

// The following virtual call invokes C::f() and A::f() only

cptr -> f0;

Scheme 2.

406 R. Chattamvelli, H. Saiedian/lnformation and Software Technology 39 (1997) 403-415

C++ Listing lb

class A C

public:

// Constructors and other members

virtual void f() { tout << "A::f 'I;)

3;

class B: public A 1

public:

BOC3;
A *a;

"B()(delete a;);

void Init (A *aptr) c a = aptr;) // set a and other data members
virtual void f() { a -> f(); tout << "B::f"; 1

3;

class C: public B i

public:

coc3;
'C()(delete b;)

B *b;
virtual void f() { b -> f (); tout << "C::f "; 3

void Init (B *bptr) { b = bptr; 3

3;

void main()C

A animal;

A *aptr = &animal;

B bloodhound;

B *bptr = &bloodhound;

C cat;

C *cptr = &cat;

cptr -> Init((B *)aptr);

cptr -> f0; // calls C::f() which in turn calls A::f()

bptr -> Init(aptr);

cptr -7 Init(bptr);

cptr -7 f0; // calls C::f() which in turn calls B::f(), A::fO

3

Scheme 3.

pmf in Scheme 8 is declared to be a pointer to the member
function of class Y and assigns the address of the virtual
method ‘ f' to it using a call to the assistant. It can be used to
invoke the virtual method for an instantiated object (say y),
as shown in Scheme 8.

This technique is efficient only for small depths of inheri-
tance with limited virtual function invocations from higher

hierarchies. Note that the assistant function need return the
addresses of only those methods which are to be reinvoked.

Although constructors cannot be virtual in C++, destruc-
tors can. When the classes in an inheritance hierarchy con-
tain dynamically allocated objects, it is the usual practice to
declare the destructors as virtual. Owing to an abnormal
program condition or to a failed assertion, the destructor

R. Chattamvelli, H. Saiedian/Information and Sofhvare Technology 39 (1997) 403-415 401

C++ Listing 2

class A i
public:

A(){ tout << "Constructor of A M << endl;)

‘A0I3;

virtual void f() { tout << “A::f” << endl; 3

3;

class B: public A C
public :

// A pointer to base member fn is passed as argument to B’s constructor

B (const void (A: :*ptr) 0) : a(ptr> C
tout << “B’s constructor" << endl;

3
-B0<3;

const void (A::*a)(); // define a ptr to A’s methods

virtual void f() {

(*a)();
tout << "B::f" << endl;

3
3;

class C: public B {

public:

C (const void (A: :*ptr)()> : b(ptr) {

tout C("C's constructor" << endl;

3

const void (B::*b)(); // define a ptr to B's method

virtual void f() {

(*b)O;
tout << "C::f" << endl;

3
3;

Scheme 4.

of a derived class may have to call some or all of the destruc-
tors of its base classes. This could be achieved by many
means, one of which is explored in Scheme 9.

In some applications, need may arise to invoke several
virtual functions of the base class(es) collectively. This is
most easily implemented by storing the addresses of the
virtual methods in an array of pointers (see Scheme 9) and
storing the names of these functions in an associated tag-
array. Because the constructors of all base classes are auto-
matically invoked in reverse order when a derived class
object is instantiated, one could define a public method in
the top level base class to be automatically invoked by the
constructors to set up the pointer arrays.

3. Practical application

In this section we demonstrate the effectiveness of the
proposed method over the ordinary subclassing with virtual
method inheritance. We consider the well-known problem
of a planar drawing of a n-dimensional hypercube for small
vaiues of n up to 4. We assume that, in addition to the
intrinsic geometric aspect of the planar drawing, each
node of the hypercube also has some data associated with
it because a planar drawing could be accomplished even
without the class concept.

A two-dimensional hypercube is a square and we assume
that it is drawn with one pair of sides parallel to the X-axis

408 R. Chattamvelli. H. Saiedian/Information and Sofhuare Technology 39 (1997) 403-415

C++ Listing 3

class A {

public:

-AOiI;
A() { tout << "Constructor of A " << endl; 1
virtual void f() { tout << "A:: f” << endl;)

);

class B: public A i

public:

// A pointer to base member fn is passed as argument to B’S constructor

B (void (A: :*ptr) 0, A *cptr) : a(ptr) , aa(cptr) c
tout << "Constructor for B" << endl;

3;

void (A:: *a)(); // define a ptr to A’S methods
A *aa; // define a ptr to the class itself

-B 0{3;
virtual void f0 {

(aa -> *a)();

tout << "B::f" << endl;

3
3;

class C: public B i
public:

C (const void (A::*ptr)O, A *cptr) : b(ptr). bb((B *)cptr) c
tout <c “Constructor for C” << endl;

3;

const void (B::*b)(); // define a ptr to A's methods

B *bb; // define ptr to the class itself

virtual void f() (

(bb -> *b)O;

tout << "C::f" C< endl;

3
3;

Scheme 5.

and the other pair parallel to the Y-axis. A three-dimensional
hypercube is drawn in two dimensions with pairs of opposite
edges parallel to the X-axis and the other pairs parallel to the
Y-axis. The two-dimensional hypercube is drawn by addi-
tively invoking the one-dimensional hypercube program
with the direction reversed orthogonally as shown in the
code (listed in). For drawing the three-dimensional hyper-
cube, we invoke the two-dimensional program, which in
turn invokes the one-dimensional program additively. The
three-dimensional program then draws the slanted sides. We
use the arcs of an ellipse to represent the node connections

in a four-dimensional hypercube (called a tesseruct), which
is drawn using two three-dimensional hypercubes.

In a situation like the above, if the method does not utilize
data other than its own parameters, we could very well
implement it as ordinary C functions. If the method does
not access the private data members, another possibility is to
implement it using ordinary subclassing with virtual method
inheritance. However, maximum code reuse is achieved by
structuring the class hierarchies and invoking the base class
methods additively. Notice that we have not used the
pointers to base classes or pointers to base ciass methods

R. Chatramvelli, H. Saiedian/lnformation and Sofhvare Technology 39 (1997) 403-415 409

_ C++ Listing 3a

A animal;
A *aptr = &animal;
void (A::*af)(>= auima1.f;

B bloodhound (af, aptr);
B *bptr = &bloodhound;
bptr -> f0;

C cat (af , bptr) ;
cat.fO; // Calls C::f() uhich in turn calls B: :fO, A: :fO

void (B::*bf)() = b1oodbound.f;
C bigcat (bf, (B *)aptr);
C *cc = kbigcat;
cc -> f0; // Calls C::f() and A::f() only

Scheme 6.

in the exampIe because each of the methods in the DAG of

the class hierarchy is invoked in succession.
In essence, additive invocation of methods defined in the

higher level classes in the inheritance DAG simplifies soft-
ware development and significantly improves reuse of pre-
viously integrated class hierarchies. For example, if a

software system needs to be deveioped at different expertise
levels (like a junior version, a professional version and an
advanced user version) we could hierarchically build up the
class library by moving down more sophisticated functional-
ities towards the lower level classes, which then additively
invoke the less sophisticated methods defined at higher level

C++ Listing 4

class X i

public :
// constructors and other members
virtual void f() C tout << “Base: : f 'I << endl; 1
friend void fg(char *>;

3;

class Y: public X C
public :

// constructors and other members
typedef void (Y* .:*vptr)(); // pointer to member function
virtual void f 0 i tout << “Derived f I’ <C endl; 3
virtual void g() < tout << “Derived g” << endl;)

vptr fg (char *method-name) (

switch (*method_nsme) {

case 'f': return f; // return address of

case 'gr: return g; // return address of

default : tout <C "Illegal function name
return f; // return address of

3
3

method f

method g

" << *method-name << endl;

default method

3;

Scheme 7

410 R. Chattamvelli, H. Saiedian/lnformation and Sofiware Technology 39 (1997) 403-415

C++ Listing 5

Y y;
void (Y::*pmf)();
pmf = y.fg(“f”); // assistant returns the address of specified method

(y.*pmf)O; // call the virtual method

Scheme 8

C++ Listing 6

class X I
public :

typedef void (X::*xptr)();

xptr fptrs ClO]; // pointer array to store address of virtual functions
int iptr ; // index to the array

X():iptr(O) C fptrs [iptr++] = f;)

virtual void f (> { tout << “Base : : f ‘I << endl;)

1;

class Y: public X {
public :

// typedef void (Y: : *yptr) 0 ;
Y(> { fptrs [iptr++] = (xptr)f;)

virtual void f (> (tout << “Derived f ‘I C< endl;)
virtual void g() { tout << “Derived g” << endl;)

1;

Scheme 9

classes. The ordinary subclassing with virtual method
inheritance is clearly inadequate and produces cumbersome
code, compared to the concise code achieved with the aid
of additive virtual methods, clearly demonstrating the use-
fulness of our approach. The proposed methods are also
useful in designing many software applications where hier-
archically specialized shared class libraries will be heavily
used.

Although the suggested methods in Section 2 at first seem
rather complicated, the stated objectives are best achieved
using our method. The interested reader is referred to Refs.
[3,4] for related issues.

4. Conclusion

Object-oriented software development techniques have

already been found to be immensely useful in several dis-
ciplines and continue to find many more applications. A
class hierarchy with hundreds of virtual methods is not
uncommon in practice. Designing the hierarchy with max-
imum reusability and minimum code duplication yields
fruitful results in the long run. Our discussion in this article
has focused on simple ways of invoking virtual methods
additively; however, these are by no means the only ways
of implementing the problems discussed. In recent years,
there has been an increasing trend towards applying object
orientation to distributed computing, client server comput-
ing and the like, in which improved productivity, better
reuse of existing code and easy maintainability of large
software systems are of prime concern. It is hoped that the
discussion in this article will find applications in shared
software libraries, in integrating software applications and
in other emerging technologies as well.

R. ChattamveNi, H. Saiedian/lnformotion and Sofrware Technology 39 (1997) 403-415 411

// A program to draw the hypercube up to 4 dimensions using
// additive virtual methods. Higher dimensional hypercubes
// can be drawn recursively using lower dimensional methods.
//
// This program was implemented in Microsoft C++ version 7.0.

#include <iostream.h>
#include <stdio.h>
#include Gtdlib.h>
#include <math.h>
#include <graph.h>
#include <conio.h>
#include <windows.h>

#define regular-side 5
#define slanted-side 8
enum dir {left, right, up, down);
float theta = 3.142/4;

class dim-1 (
public:
POINT u;
dim_l(int i, int j) (u.x = i; u.y = j;)
"dim_10 0

void SetxyCint p, int q) (u.x = p; u.y = q;)
void draw(int direction) (

switch(direction) {
case left:

_lineto(u.x - regular-side, u.y>;
u.x -= regular-side;
break;

case right:
_lineto(u.X + regular-side, u.y);
u.x += regular-side;
break;

case up:
_lineto(u.x, u.y + regular-side);
u.y += regular-side;
break;

case down:

412 R. Chattamvelli, H. Saiedian/Information and Software Technology 39 (1997) 403-415

_lineto(u.x, u.y - regular-side);

u*Y -= regular-side;
3

3
3;

class dim_2: public dim-1 (
public :

dim_2(int p, int q):dim_l(p, q> c
3
virtual void draw0 (

dim_ 1: : draw (right) ;

// change orientation and draw again
dim-l: :draw(up) ;

dim-l: :draw(left) ;

dim_l::draw(down);
3 // draw

3; // dim-2

class dim-3 : public dim-2 (
public :

dim_3(int p, int q> :dim_2(p, q> <
3;
void draw-slant 0 I

int p = u-x, q = u.y, r, s;
r=p + slanted-side * acos(theta) ;

s= q + slanted-side * asinctheta);
_lineto(r, s> ;
p += regular-side;
SetxyCp, q> ;
r=p + slanted-side * acos(theta);
_lineto(r, s> ;
q += regular-side;
Setxy (p, q) ;

S = q + slanted-side * asinctheta);
_lineto(r, s) ;

P -= regular-side;
Setxytp, q) ;

r=p + slanted-side * acos(theta);
_lineto (r , s) ;

q -= regular-side;
SetxyCp, q> ;

R. Chattamvelli. H. Saiedidlnformation and Sofrware Technology 39 11997) 403-415

S = q + slanted-side * asinctheta);
_lineto(r, s);

3 // draw-slant

413

virtual void draw0 (
dim_2::draw();
draw_slanto;
int p = dim-1 ::u.x + slanted-side * acos(theta);
int q = dim_1::u.y + slanted-side * asinctheta);
dim_l::Setxy(p, q>;
// change orientation and draw again
dim_2::draw();
// Now draw the slanted lines

3 // draw
3; // dim-3

class dim-4 : public dim-3 C
public:

dim_4(int p, int q):dim_3(p, q) 0;
void draw_arcs(int p, int q, int r, int s) (

int pl = p, ql = q, rl = I-, sl = s;

_arck s, p, q-2, ;r, s, p, 9);
r += regular-side;
p += regular-side;

_arck s, p, q-2, rl s, p, q);
r += slanted_side * acos(thetd);
s += slanted-side * asin(theta);
p += slanted-side * acos(theta);
q += slanted-side * asinctheta);

_arc(r, s, p, q-2, r, s, p, q);

r -= regular-side;

P -= regular-side;

_arc(r, s, p, q-2, r, s, p, q>;

ql += regular-side;
sl += regular-side;
_arc (rl, sl, pl, ql-2, rl, sl, pl, ql);
rl += regular-side;

Pi += regular-side;
_arc(rl, sl, pl, ql-2, rl, sl, pl, ql>;
rl += slanted-side * acos(theta);
sl += slanted-side * asin(theta);

PI += slanted-side * acos(theta);

414 R. Chattamvelli, H. Saiedian/tnformarion and Sojbvare Technology 39 (1997) 403-415

ql += slanted-side * asinctheta);

_arc(rl, sl, pl, ql-2, rl, sl, pl, ql);

rl -= regular-side;

Pl -= regular-side;

_arc(rl, sl, pl, ql-2, rl, Sl, Pl, ql);

) // draw-arcs

virtual void draw0 C

dim_3::draw();

int p = dim-1 ::u.x+2 * regular-side;

int q = dim_1::u.y;

int r = dim_1::u.x;

int s = dim_1::u.y;

int pl, ql, rl, sl;

pl = p;

ql = 9;
rl = r;

sl = s;

dim_l::Setxy(p, q>;
dim_3::draw();

dim_l::Setxy(r, s>;

draw_arcs(rl, sl, pl, ql);

> // draw

1; // dim-4

void main (void) (

dim-4 tesseract(i2,30);

tesseract.drawo;

3

R. Chattamvelli, H. Saiedian/lnformation and Software Technology 39 (1997) 403-415 415

References [3] Eckel, B. (1994) Polymorphism and virtual function in C++,

Embedded Systems Programming, 7(IO), 42-47.

[I] Ellis, M., and Stroustrup, B., (1990), The Annotated C++ Reference
[4] Stroustrup, B. (1986), The C++ Programming Language (Addison

Manual (Addison Wesley, Reading).
Wesley, Reading).

[2] Koenig, A. (1989) How virtual functions work, Journal of Object-

Oriented Programming, January/February, pp. 73-74.

