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Abstract 

The virtual method is a useful concept in polymorphic behavior of object-oriented programs. By making a method virtual in a class, all 
classes derived from that class are allowed to modify or enhance the definition of the method (while retaining its original signature) providing 
one kind of polymorphism. In this article, we explore the virtues of virtual methods and introduce different ways of implementing additive 

virtual methods in C++. The concepts presented can find applications in shared software libraries, integrating software applications, and 
distributed computing. 0 1997 Elsevier Science B.V. 
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1. Introduction 

The polymorphic behavior of object-oriented programs 
could be achieved by different means, one of which is by 
virtual methods (or virtual member functions in C++ 
jargon). A member function can become virtual if it is 
explicitly specified using the keyword virtual in all classes 
in the inheritance hierarchy where the method must be 
visible.’ Derived classes that do not redefine a virtual 
method use the virtual method defined in the nearest base 
class as the default in all virtual calls using the dominance 
rule ([ 11, pp. 205-209). The signature of a virtual method is 
determined uniquely using the return type, method name, 
and an ordered specification of the parameters. Methods 
with a variable number of arguments, global functions and 
static functions cannot be virtual in C++. All virtual meth- 
ods with the same signature up in the inheritance lattice are 
automatically virtual methods in the derived classes if a path 
exists between the derived and base classes in the inheri- 
tance diagram. A virtual method can be overridden by a 
function in the derived class. All such overridden methods 
are unrelated independent functions, which simply hides the 
methods of the same name at a higher level in the 
inheritance hierarchy. 

When a method or member function* is declared as 

’ Since the class hierarchy is designed with maximum reuse in mind, 
most designers make even the last level methods virtual. 

‘We use the terms ‘method’ and ‘member function’ interchangeably in 
this article. Furthermore, for convenience, we may simply use the term 
‘function’ as we will only be dealing with member functions in this article. 
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virtual, an entry for it gets created in a virtual table vtbl, 

which is class specific (each class in which a virtual method 
is visible has its own copy of vtbl, while different instan- 
tiations of the same class simply set a pointer to the classes 
vtbl). All subsequent redefinitions of the function in 
derived classes set a pointer to their own table entry [l]. 
The derived classes are allowed to modify the implementa- 
tion of the virtual functions (called overloading) according 
to the complexity of the object they have to deal with, 
provided they do not conflict with the unique signature. 
The virtual method that is to be invoked is determined 
dynamically at run time; this is known as late binding. 

In a multiple inheritance hierarchy, an object can contain 
more than one vptr. This is necessary because an object 
in a derived class may contain all combinations of objects in 
the base classes. Hence, when an object S higher up in the 
inheritance hierarchy gets a pointer, it must be able to 
uniquely distinguish if it is an S or an S part of another 
object. This is most easily handled by storing a separate 
vtbl for alike classes higher in the directed acyclic 
graph (DAG) representing the inheritance relationship. 

Sometimes the virtual methods contribute incrementally 
to the method defined in base classes so that the derived 
class could implement its methods by first invoking the 
base methods, instead of code duplicating. This form of 
virtual method refinement will be called additive virtual 
methods. For example, if a base class draws rectangles 
using the known boundary point and other parameters like 
width, length and orientation, a derived class could make 
use of the base method to draw shaded rectangles or other 
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geometric figures in which rectangles (or other geometric 
figures defined in the base classes) are used as a component. 

If a base class is inherited as private, all members of the 
base class are visible in the immediate derived class only, 
unless the friend mechanism is used. However, if the 
derivation is public or protected, the methods higher up in 
the inheritance hierarchy could still be additively invoked. 
In Section 2, we look at various ways to implement additive 
virtual methods in C++. An application is discussed in 
Section 3. 

2. Virtual method invocation 

The natural way to invoke the base class method is by 
using an explicit address resolution operator, in which the 
fully qualified name of the base class method is used at the 
point of message passing. If the base method is called 
func, all derived classes could explicitly invoke func as 

base : . . func ( ) in their methods. However, this tech- 
nique uses static binding, in principle, because the virtual 
method to invoke is completely known at compile time. 

A more objective way of invoking the base method is by 
defining a pointer (or a reference) to the base class and using 
this pointer in all derived class methods for invoking base 
class methods, as shown in Scheme 1. Note that a pointer 
to the base class can be used in a derived class to access 
only those members that are inherited from the base class. 
However, members that are not inherited could still be 
accessed through casting of pointers to derived classes or 
using explicit pointers to derived classes. To simplify the 
code, we abbreviate the implementation of a method to 
tout <<“class: :method” < < endl. 

In Scheme 1, the class B uses a pointer to th; base class A 
to first invoke the method higher up in the hierarchy. Also, 
the class C has a pointer to the B object (which may also be 
initialized using a pointer to the A object) where standard 
conversion takes place. Because a constructor for the B 

C++ Listing 1 

class A { 
public : 

// constructors and other members 
virtual void f() { tout << “A::f” 

1; 

class B: public A i 
public : 

<< endl; 1 

// class B’s constructor gets a ptr to base class as an argument 
B (A *ptr) : a(ptr) 1); // initialize local pointer a 

‘B 0 {delete a;); 
A *a; 

// destructor 
// pointer to base class 

virtual void f (> { 
a -> f(); 
tout <C "B::f" << endl; // incrementally implemented 

I 

1; 

class C: public B { 
public : 

C (A *ptr) : b(ptr) 0; // standard conversion 
‘Co {delete b;) 

B *b; 
virtual void f 0 { 

b -> f(); 
tout C< Y::f” << endl; 

1 
3; 

Scheme 1. 
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object is automatically called when a C object is instan- 
tiated, a default B constructor must be provided as shown 
in Scheme 1. This rule applies to all classes in the inheri- 
tance DAG. When a pointer to a base class is used to invoke 
a virtual function, the specific function called depends on 
the type of the object rather than the type of the pointer 
([2]). Scheme 2 shows the sequence of steps involved in 
the invocation. 

This technique has the disadvantage that the constructor 
is used to initialize the pointer to the virtual methods. The 
applicability of this technique is hence limited, since the 
constructor is called on a per object basis at the time of 
object creation. A solution is to define another member 
function to dynamically initialize the pointers, as shown in 
Scheme 3. 

Because the pointers are now initialized using ordinary 
member functions, all the pointers used in calling virtual 

methods in their respective base classes must be properly 
initialized before the virtual methods may be additively 
invoked as shown in Scheme 3. For instance, if a C object 
needs to invoke one of the virtual methods in class B as well 
as A, the Ini t function for both B and C must be called 
properly so that when the C object sends a message to the B 
object, it knows exactly where the next message needs to be 
sent to additively invoke the method in one of its base 
classes. Since each class with virtual functions uses 
additional pointers which require memory indirection, this 
technique will be slower than standard function invocation. 
If the specific virtual method(s) to be invoked from the base 
classes are predetermined, one could use a pointer to the 
base class method itself, instead of a more general pointer to 
the base class, as shown in Scheme 4. 

However, there is a problem with the code in Scheme 4. 
The pointer which is passed as an argument to the construc- 
tor of B and C is a general function pointer which does not 
bind itself to a specific object. As discussed in Ref. [l] 
(p. 157), there are two simple ways to invoke a method 
using a pointer - either using the ( obj ec t . *ptr ) ( ) 
syntax which is consistent with C syntax, or using a pointer 
to the object as (cptr - > *mptr) ( ) where cptr is a 
pointer to the object and mptr is a pointer to the method to 
be invoked. If the second approach is followed, the code in 
Scheme 4 must be modified as shown in Scheme 5. The 
application of proper type casting allows selective invocation 
of methods additively as in the previous case (see Scheme 6). 

Another way of invoking base class methods is using a 
global non-member function. We could also use specialized 
member functions to return the address of virtual member 
functions, as shown in Scheme 7. 

Note that we have used typedef within the class Y to 
simplify the code. If the typedef is defined in the base 
class as xptr, all derived classes should type-cast the 
return function names as (xp t r ) f uncname. The address 
of a virtual function is defined relative to the class in which 
it belongs. Owing to a lack of proper terminology, we call 
the method that returns the address of (other) member func- 
tions an assistant function. To invoke a virtual method from 
a class derived from the class Y, we simply get the address 
of the method by invoking the assistant and then supply the 
proper parameters according to the signature of the virtual 
method to be invoked. If the class contains several virtual 
methods, we can pass the name of the virtual method to be 
invoked to the assistant which could search through the 
visible methods and return the correct address. For instance, 

C++ Listing la 

A animal; 
A *aptr = &animal; 

B bloodhound(aptr1; 

B *bptr = &bloodhound; 

bptr -> f(); // or equivalently bloodhound.f(); 

C cat(bptr); 

C *cptr = &cat; 

// The following invokes C::fO, which in turn calls B::f(), A::f() 

cptr -> f(); // or cat.fO; 

C bigcat( (B*) aptr); // pointer to animal is type casted 

cptr = &bigcat; 

// The following virtual call invokes C::f() and A::f() only 

cptr -> f0; 

Scheme 2. 
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C++ Listing lb 

class A C 

public: 

// Constructors and other members 

virtual void f() { tout << "A::f 'I; ) 

3; 

class B: public A 1 

public: 

BOC3; 
A *a; 

"B()(delete a;); 

void Init (A *aptr) c a = aptr;) // set a and other data members 
virtual void f() { a -> f(); tout << "B::f"; 1 

3; 

class C: public B i 

public: 

coc3; 
'C()(delete b;) 

B *b; 
virtual void f() { b -> f (); tout << "C::f "; 3 

void Init (B *bptr) { b = bptr; 3 

3; 

void main()C 

A animal; 

A *aptr = &animal; 

B bloodhound; 

B *bptr = &bloodhound; 

C cat; 

C *cptr = &cat; 

cptr -> Init( (B *)aptr ); 

cptr -> f0; // calls C::f() which in turn calls A::f() 

bptr -> Init(aptr); 

cptr -7 Init(bptr); 

cptr -7 f0; // calls C::f() which in turn calls B::f(), A::fO 

3 

Scheme 3. 

pmf in Scheme 8 is declared to be a pointer to the member 
function of class Y and assigns the address of the virtual 
method ‘ f' to it using a call to the assistant. It can be used to 
invoke the virtual method for an instantiated object (say y), 
as shown in Scheme 8. 

This technique is efficient only for small depths of inheri- 
tance with limited virtual function invocations from higher 

hierarchies. Note that the assistant function need return the 
addresses of only those methods which are to be reinvoked. 

Although constructors cannot be virtual in C++, destruc- 
tors can. When the classes in an inheritance hierarchy con- 
tain dynamically allocated objects, it is the usual practice to 
declare the destructors as virtual. Owing to an abnormal 
program condition or to a failed assertion, the destructor 
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C++ Listing 2 

class A i 
public: 

A(){ tout << "Constructor of A M << endl; ) 

‘A0I3; 

virtual void f() { tout << “A::f” << endl; 3 

3; 

class B: public A C 
public : 

// A pointer to base member fn is passed as argument to B’s constructor 

B (const void (A: :*ptr) 0) : a(ptr> C 
tout << “B’s constructor" << endl; 

3 
-B0<3; 

const void (A::*a)(); // define a ptr to A’s methods 

virtual void f() { 

(*a)(); 
tout << "B::f" << endl; 

3 
3; 

class C: public B { 

public: 

C (const void (A: :*ptr)()> : b(ptr) { 

tout C( "C's constructor" << endl; 

3 

const void (B::*b)(); // define a ptr to B's method 

virtual void f() { 

(*b)O; 
tout << "C::f" << endl; 

3 
3; 

Scheme 4. 

of a derived class may have to call some or all of the destruc- 
tors of its base classes. This could be achieved by many 
means, one of which is explored in Scheme 9. 

In some applications, need may arise to invoke several 
virtual functions of the base class(es) collectively. This is 
most easily implemented by storing the addresses of the 
virtual methods in an array of pointers (see Scheme 9) and 
storing the names of these functions in an associated tag- 
array. Because the constructors of all base classes are auto- 
matically invoked in reverse order when a derived class 
object is instantiated, one could define a public method in 
the top level base class to be automatically invoked by the 
constructors to set up the pointer arrays. 

3. Practical application 

In this section we demonstrate the effectiveness of the 
proposed method over the ordinary subclassing with virtual 
method inheritance. We consider the well-known problem 
of a planar drawing of a n-dimensional hypercube for small 
vaiues of n up to 4. We assume that, in addition to the 
intrinsic geometric aspect of the planar drawing, each 
node of the hypercube also has some data associated with 
it because a planar drawing could be accomplished even 
without the class concept. 

A two-dimensional hypercube is a square and we assume 
that it is drawn with one pair of sides parallel to the X-axis 
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C++ Listing 3 

class A { 

public: 

-AOiI; 
A() { tout << "Constructor of A " << endl; 1 
virtual void f() { tout << "A:: f” << endl; ) 

); 

class B: public A i 

public: 

// A pointer to base member fn is passed as argument to B’S constructor 

B (void (A: :*ptr) 0, A *cptr) : a(ptr) , aa(cptr) c 
tout << "Constructor for B" << endl; 

3; 

void (A:: *a)(); // define a ptr to A’S methods 
A *aa; // define a ptr to the class itself 

-B 0{3; 
virtual void f0 { 

(aa -> *a)(); 

tout << "B::f" << endl; 

3 
3; 

class C: public B i 
public: 

C (const void (A::*ptr)O, A *cptr) : b(ptr). bb((B *)cptr) c 
tout <c “Constructor for C” << endl; 

3; 

const void (B::*b)(); // define a ptr to A's methods 

B *bb; // define ptr to the class itself 

virtual void f() ( 

(bb -> *b)O; 

tout << "C::f" C< endl; 

3 
3; 

Scheme 5. 

and the other pair parallel to the Y-axis. A three-dimensional 
hypercube is drawn in two dimensions with pairs of opposite 
edges parallel to the X-axis and the other pairs parallel to the 
Y-axis. The two-dimensional hypercube is drawn by addi- 
tively invoking the one-dimensional hypercube program 
with the direction reversed orthogonally as shown in the 
code (listed in ). For drawing the three-dimensional hyper- 
cube, we invoke the two-dimensional program, which in 
turn invokes the one-dimensional program additively. The 
three-dimensional program then draws the slanted sides. We 
use the arcs of an ellipse to represent the node connections 

in a four-dimensional hypercube (called a tesseruct), which 
is drawn using two three-dimensional hypercubes. 

In a situation like the above, if the method does not utilize 
data other than its own parameters, we could very well 
implement it as ordinary C functions. If the method does 
not access the private data members, another possibility is to 
implement it using ordinary subclassing with virtual method 
inheritance. However, maximum code reuse is achieved by 
structuring the class hierarchies and invoking the base class 
methods additively. Notice that we have not used the 
pointers to base classes or pointers to base ciass methods 
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_ C++ Listing 3a 

A animal; 
A *aptr = &animal; 
void (A::*af)(>= auima1.f; 

B bloodhound (af, aptr); 
B *bptr = &bloodhound; 
bptr -> f0; 

C cat (af , bptr) ; 
cat.fO; // Calls C::f() uhich in turn calls B: :fO, A: :fO 

void (B::*bf)() = b1oodbound.f; 
C bigcat (bf, (B *)aptr ); 
C *cc = kbigcat; 
cc -> f0; // Calls C::f() and A::f() only 

Scheme 6. 

in the exampIe because each of the methods in the DAG of 

the class hierarchy is invoked in succession. 
In essence, additive invocation of methods defined in the 

higher level classes in the inheritance DAG simplifies soft- 
ware development and significantly improves reuse of pre- 
viously integrated class hierarchies. For example, if a 

software system needs to be deveioped at different expertise 
levels (like a junior version, a professional version and an 
advanced user version) we could hierarchically build up the 
class library by moving down more sophisticated functional- 
ities towards the lower level classes, which then additively 
invoke the less sophisticated methods defined at higher level 

C++ Listing 4 

class X i 

public : 
// constructors and other members 
virtual void f() C tout << “Base: : f 'I << endl; 1 
friend void fg(char *>; 

3; 

class Y: public X C 
public : 

// constructors and other members 
typedef void (Y* .:*vptr)(); // pointer to member function 
virtual void f 0 i tout << “Derived f I’ <C endl; 3 
virtual void g() < tout << “Derived g” << endl; ) 

vptr fg (char *method-name) ( 

switch (*method_nsme) { 

case 'f': return f; // return address of 

case 'gr: return g; // return address of 

default : tout <C "Illegal function name 
return f; // return address of 

3 
3 

method f 

method g 

" << *method-name << endl; 

default method 

3; 

Scheme 7 
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C++ Listing 5 

Y y; 
void (Y::*pmf)(); 
pmf = y.fg(“f”); // assistant returns the address of specified method 

(y.*pmf)O; // call the virtual method 

Scheme 8 

C++ Listing 6 

class X I 
public : 

typedef void (X::*xptr)(); 

xptr fptrs ClO]; // pointer array to store address of virtual functions 
int iptr ; // index to the array 

X():iptr(O) C fptrs [iptr++] = f; ) 

virtual void f (> { tout << “Base : : f ‘I << endl; ) 

1; 

class Y: public X { 
public : 

// typedef void (Y: : *yptr) 0 ; 
Y(> { fptrs [iptr++] = (xptr)f; ) 

virtual void f (> ( tout << “Derived f ‘I C< endl; ) 
virtual void g() { tout << “Derived g” << endl; ) 

1; 

Scheme 9 

classes. The ordinary subclassing with virtual method 
inheritance is clearly inadequate and produces cumbersome 
code, compared to the concise code achieved with the aid 
of additive virtual methods, clearly demonstrating the use- 
fulness of our approach. The proposed methods are also 
useful in designing many software applications where hier- 
archically specialized shared class libraries will be heavily 
used. 

Although the suggested methods in Section 2 at first seem 
rather complicated, the stated objectives are best achieved 
using our method. The interested reader is referred to Refs. 
[3,4] for related issues. 

4. Conclusion 

Object-oriented software development techniques have 

already been found to be immensely useful in several dis- 
ciplines and continue to find many more applications. A 
class hierarchy with hundreds of virtual methods is not 
uncommon in practice. Designing the hierarchy with max- 
imum reusability and minimum code duplication yields 
fruitful results in the long run. Our discussion in this article 
has focused on simple ways of invoking virtual methods 
additively; however, these are by no means the only ways 
of implementing the problems discussed. In recent years, 
there has been an increasing trend towards applying object 
orientation to distributed computing, client server comput- 
ing and the like, in which improved productivity, better 
reuse of existing code and easy maintainability of large 
software systems are of prime concern. It is hoped that the 
discussion in this article will find applications in shared 
software libraries, in integrating software applications and 
in other emerging technologies as well. 
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// A program to draw the hypercube up to 4 dimensions using 
// additive virtual methods. Higher dimensional hypercubes 
// can be drawn recursively using lower dimensional methods. 
// 
// This program was implemented in Microsoft C++ version 7.0. 

#include <iostream.h> 
#include <stdio.h> 
#include Gtdlib.h> 
#include <math.h> 
#include <graph.h> 
#include <conio.h> 
#include <windows.h> 

#define regular-side 5 
#define slanted-side 8 
enum dir {left, right, up, down); 
float theta = 3.142/4; 

class dim-1 ( 
public: 
POINT u; 
dim_l(int i, int j) (u.x = i; u.y = j; ) 
"dim_10 0 

void SetxyCint p, int q) ( u.x = p; u.y = q; ) 
void draw(int direction) ( 

switch(direction) { 
case left: 

_lineto(u.x - regular-side, u.y>; 
u.x -= regular-side; 
break; 

case right: 
_lineto(u.X + regular-side, u.y); 
u.x += regular-side; 
break; 

case up: 
_lineto(u.x, u.y + regular-side); 
u.y += regular-side; 
break; 

case down: 
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_lineto(u.x, u.y - regular-side); 

u*Y -= regular-side; 
3 

3 
3; 

class dim_2: public dim-1 ( 
public : 

dim_2(int p, int q):dim_l(p, q> c 
3 
virtual void draw0 ( 

dim_ 1: : draw (right) ; 

// change orientation and draw again 
dim-l: :draw(up) ; 

dim-l: :draw(left) ; 

dim_l::draw(down); 
3 // draw 

3; // dim-2 

class dim-3 : public dim-2 ( 
public : 

dim_3(int p, int q> :dim_2(p, q> < 
3; 
void draw-slant 0 I 

int p = u-x, q = u.y, r, s; 
r=p + slanted-side * acos(theta) ; 

s= q + slanted-side * asinctheta); 
_lineto(r, s> ; 
p += regular-side; 
SetxyCp, q> ; 
r=p + slanted-side * acos(theta); 
_lineto(r, s> ; 
q += regular-side; 
Setxy (p, q) ; 

S = q + slanted-side * asinctheta); 
_lineto(r, s) ; 

P -= regular-side; 
Setxytp, q) ; 

r=p + slanted-side * acos(theta); 
_lineto (r , s) ; 

q -= regular-side; 
SetxyCp, q> ; 
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S = q + slanted-side * asinctheta); 
_lineto(r, s); 

3 // draw-slant 

413 

virtual void draw0 ( 
dim_2::draw(); 
draw_slanto; 
int p = dim-1 ::u.x + slanted-side * acos(theta); 
int q = dim_1::u.y + slanted-side * asinctheta); 
dim_l::Setxy(p, q>; 
// change orientation and draw again 
dim_2::draw(); 
// Now draw the slanted lines 

3 // draw 
3; // dim-3 

class dim-4 : public dim-3 C 
public: 

dim_4(int p, int q):dim_3(p, q) 0; 
void draw_arcs(int p, int q, int r, int s) ( 

int pl = p, ql = q, rl = I-, sl = s; 

_arck s, p, q-2, ;r, s, p, 9); 
r += regular-side; 
p += regular-side; 

_arck s, p, q-2, rl s, p, q); 
r += slanted_side * acos(thetd); 
s += slanted-side * asin(theta); 
p += slanted-side * acos(theta); 
q += slanted-side * asinctheta); 

_arc(r, s, p, q-2, r, s, p, q); 

r -= regular-side; 

P -= regular-side; 

_arc(r, s, p, q-2, r, s, p, q>; 

ql += regular-side; 
sl += regular-side; 
_arc (rl, sl, pl, ql-2, rl, sl, pl, ql); 
rl += regular-side; 

Pi += regular-side; 
_arc(rl, sl, pl, ql-2, rl, sl, pl, ql>; 
rl += slanted-side * acos(theta); 
sl += slanted-side * asin(theta); 

PI += slanted-side * acos(theta); 
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ql += slanted-side * asinctheta); 

_arc(rl, sl, pl, ql-2, rl, sl, pl, ql); 

rl -= regular-side; 

Pl -= regular-side; 

_arc(rl, sl, pl, ql-2, rl, Sl, Pl, ql); 

) // draw-arcs 

virtual void draw0 C 

dim_3::draw(); 

int p = dim-1 ::u.x+2 * regular-side; 

int q = dim_1::u.y; 

int r = dim_1::u.x; 

int s = dim_1::u.y; 

int pl, ql, rl, sl; 

pl = p; 

ql = 9; 
rl = r; 

sl = s; 

dim_l::Setxy(p, q>; 
dim_3::draw(); 

dim_l::Setxy(r, s>; 

draw_arcs(rl, sl, pl, ql); 

> // draw 

1; // dim-4 

void main (void) ( 

dim-4 tesseract(i2,30); 

tesseract.drawo; 

3 
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