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Abstract 

The Entity-Relationship (ER) model allows a database designer to develop a high-level conceptual schema without having to consider 
low-level issues such as efficiency, the underlying database management system model, or physical data structures. The ER model has 
become very popular for database design and is used quite extensively. In order to strengthen its expressive power, many database 
researchers have introduced or proposed certain extensions to this model. Some of these extensions are important, while others add little 
expressive power but provide auxiliary features. Since the ER model is used so widely, it is important to know what extensions have been 
proposed for this model and what these extensions offer to the users. The objective of this article is thus to survey major extensions to the ER 
model and to evaluate their merits. We point out that lying behind the syntactical differences of the various extensions is the enriched 

semantics about relationships among entities. We also point out the close relationship between ER modeling and object-oriented data 
modeling. 0 1997 Elsevier Science B.V. 0 1997 Elsevier Science B.V. 
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1. Introduction 

In 1976 Peter Chen published the original entity- 
relationship (ER) model which provided an easy to use 

graphic approach to logical database design [I]. The 
model is comprehensive, yet it avoids the complications 
of storage and efficiency considerations, which are reserved 
for physical database design. In the two decades since then, 
many others have adopted the original model and used it 

enthusiastically after minor changes. In addition, a number 
of authors have extended the model to enhance its capabil- 
ities so that it is more appropriate for their particular 

endeavor. The most comprehensive extension includes 
dynamic icons in an adaptation to object-oriented database 

modeling. 
In the preface to his paper, Chen states, “The entity- 

relationship approach provides an easy to understand yet 
comprehensive methodology for logical database design 
independent of storage or efficiency considerations’ ’ [ 11. 
The problem he solves with the ER model is the complexity 

of logical database design. The conventional process of 
database design is based upon mapping real-world informa- 
tion directly to a user schema, specific to a certain type of 
database management system (DBMS). The designer is con- 
strained by limited data structure types, access path consid- 
erations and efficiency of retrieval and updates, yet must 

0950-5849/97/$17.00 0 I997 Elsevier Science B.V. All rights reserved 
PI/ SO950-5849(97)00002-5 

produce a user schema while considering all these issues. 

The result can be a user schema that is difficult to under- 

stand and change. The ER approach simplifies this process 
by introducing an intermediate design called an enterprise 

view or enterprise schema. The enterprise schema, 
expressed as an ER diagram, is a conceptual database design 
which is a pure representation of the real world and yet is 
independent of storage and efficiency considerations. This 

enterprise schema can later be translated into a DBMS spe- 
cific user schema. This two-phase approach makes the 

design process simpler and better organized. The enterprise 
schema is easier to design, and, in case of transition from 
one type of DBMS to another, can be remapped to a user 

schema suited to the new DBMS. 
The ER model is widely used during requirements ana- 

lyses and for conceptual database modeling. Because of its 

simplicity, it is more easily understood by non-technical 
individuals. Tests in the real world environment have 

shown it to be an effective communications tool between 

database designers and end users. 

I.I. Components of the entity-relationship model 

The main components of the entity-relationship model 
are entity types, relationship types, and attributes. An entity 
is defined as a “thing” which can be uniquely identified. It 
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Fig. 1. An ER diagram for a university database. 

can be a person, an item, or a concept about which an 
organization wants to store data. Entities sharing similar 

properties can be classified into entity types, such as 
EMPLOYEE and DEPARTMENT. Entities may have certain 
relationships with one another which can also be classified 

into relationship types. For example, MANAGES is a rela- 
tionship type between entity types EMPLOYEE and 
DEPARTMENT. The relationship may be one-to-one, as 

MARRIAGE between exactly two PERSON entities, one- 
to-many as TEACHES between one PROFESSOR and 
many COURSE entities, or many-to-many as WORKS-ON 

between many EMPLOYEE and many PROJECT entities. 
In Chen’s model, entities and relationships have properties, 

called attributes. For example, AGE is an attribute of an 
EMPLOYEE entity and HOURS-WORKED is an attribute of 

a WORKS-ON relationship between an EMPLOYEE and a 
PROJECT entity. An attribute can attain values of a certain 
value type. A multivalued attribute can have more than one 
value. An example is the DEGREE attribute of a 
PROFESSOR entity. 

Each entity must have a unique identifier to distinguish it 

from other entities of the same type. This might be an attri- 
bute already in use, such as an employee’s name, or might 
be an attribute introduced for its uniqueness, such as an 

employee’s social security number. Chen compares the 
entity identifier to the concept of primary key in conven- 
tional databases. Relationships are identified by using the 

identifiers of all entities involved in the relationship. In 
the case of a relationship involving entities of the same 

entity type, “roles” may be assigned such as HUSBAND 

and WIFE in a MARRIAGE relationship. An entity may 

depend upon entities of another entity type for its existence. 

Chen calls this a “weak” entity. An example is 
DEPENDENTS (of an employee), since an employee’s 
dependents would no longer be of interest if the employee 

left the company. An entity has an “ID-dependency” on 
another entity if it does not have its own identifier and can 
only be uniquely identified by its relationship with the other 

entity. For example, a city can only be uniquely identified 
within a particular state. 

1.2. Entity-relationship diagrams 

In the original ER model, an entity type is represented by 
a rectangle with the name of the entity type inside it. A 
relationship type is represented by a diamond, with the rela- 
tionship type name inside. Related entity types are con- 
nected to this diamond by straight lines. Each line is 
marked with a “l”, “N”, or “M” to indicate 1 : 1, 1 : N 

or M: N relationship types. A weak entity type is enclosed 
within a double-lined rectangle, an “E” is placed in the 

relationship type diamond and an arrow is on the connecting 
line pointing toward the weak entity type. The double-lined 

rectangle is also used for an ID-dependent entity type, with 
an “ID” in the relationship type diamond and an arrow on 
the line, pointing to the dependent entity type. These are in 

the “upper conceptual domain” of the diagram (see Fig. 1). 
Attributes and their value types are shown in the “lower 

Fig. 2. Attributes and value types for STUDENT, TAKES and COURSE. 
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conceptual domain” (see Fig. 2). An attribute’s value type 

is represented by a circle with the value type name inside, 

connected by an arrow to its entity type. The attribute name 

is added by the connecting arrow unless the name is the 

same as the value type name. An example of different 

names is a value type DATE which is used for the BIRTH- 
DATE attribute of an EMPLOYEE entity. Multivalued attri- 

butes are indicated by putting “1 : IV” beside the connecting 
arrow. 

1.3. Data modeling emphasizing relationships 

The original ER model was proposed to provide a unified 

view of data [l]. As noted by Hull and King [2], two oppos- 
ing research directions in databases were initiated in the 

early 1970s. The relational model revolutionized the field 

by separating logical data representation from physical 

implementation. Semantic models were introduced primar- 
ily as schema design tools. The emphasis of the initial 

semantic models was to accurately model data relationships 
that arise frequently in typical database applications. Con- 

sequently, semantic models are more complex than the rela- 

tional model and encourage a more navigational view of 

data relationships. 
The ER model was the first semantic model centered 

around relationships rather than attributes. It views the 
world as consisting of entities and relationships between 

entities. The underlying philosophy is that an attribute is 
restricted to being a single fact about an entity, whereas a 

relationship can model the construction of more complex 

entities from other entities. 
In recent years, object-oriented data modeling has 

become very popular, but the ER modeling approach is 
still also very popular and has found many new applications. 
The continuation of the international conference on ER 

modeling as well as many books and articles devoted to 

ER modeling in recent years bear witness to the importance 
of the ER approach. An examination of the evolution of the 

ER model is thus important to understand why this model is 
so popular. In this paper we examine and compare various 

extensions of ER models, pointing out how syntactical 
extensions have been made to enhance the representation 
and modeling power of the original ER model. 

1.4. Organization 

The modeling power of the ER approach largely depends 
on ER diagrams. That is why in this paper our discussion on 

the evolution of ER modeling will be largely centered 
around the evolution of ER diagrams. A good understanding 
of the semantics involved in ER modeling cannot be carried 
out without a careful study of syntactical representation in 
ER diagrams. Underlying a simple syntactical change may 
be an important semantic improvement, a shift of meaning, 
or some other changes crucial to the data modeling. A good 

example is the meaning of ternary relationship. 

Syntactically, a ternary relationship is very similar to binary 

relationships; however, untit very recently [3], a detailed 

analysis of the binary/ternary cardinality combinations 
was not available. Seemingly minor syntactical differences 

may be the tip of big semantic icebergs; they should not be 

overlooked. Whenever appropriate, we will use a university 
schema (or its variations) as an example to compare 

different extensions. However, sometimes we have to use 
different examples for better illustration. 

The rest of the paper is organized as follows. In Section 2 

we provide a brief description of the enhancements to the 

original ER model. This includes a survey of terminology 
additions and diagram variations. In Section 3 we describe 

several extended ER models and include diagrams to illus- 

trate their important features. Section 4 provides a similar 

account of object-oriented ER models. A brief sketch of 
object-oriented schema diagram is provided in Section 5. 

We evaluate the enhancements along with the extended 
models and close the paper by drawing some conclusions 

in Section 6. 
We assume that the reader is familiar with the basic con- 

cepts of database systems. Some knowledge of object- 

oriented concepts is also desirable. 

2. Expansions to the original ER model 

More recent authors have added further explanation and 
used different terms to describe Chen’s original model. 

Some of these follow. 

2.1. Objects and classes 

Batini et al. [4] speak of entity types and relationship 

types as classes of objects. According to them, an entity 
type represents a class of real world objects whereas a rela- 

tionship type represents the aggregation of two or more 
entity types. They introduce the term “rings” to describe 
“binary relationships connecting an entity to itself’ ‘, which 

are called recursive relationships by some authors. Teorey et 
al. [5] refer to Chen’s “three classes of objects: entities, 
attributes and relationships”. They explain, “Entity sets 

were the principal objects about which information was to 
be collected and usually denoted a person, place, thing or 
event of informational interest. Attributes were used to 
detail the entities by giving them descriptive properties 

such as name, color and weight.” In reference to Chen’s 

“basic ER model”, Markowitz and Shoshani [6] state, “the 
atomic objects are called entities. Associations of entities 
are represented by relationships.” They add, “Objects are 
qualified by attributes and are classified into object sets.” It 
is helpful to understand the basic model in terms of objects 
and ,classes as this terminology will be used to explain 
advanced concepts. 
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2.2. Relationship constraints 

In Chen’s original model, the connectivity of a relation- 

ship specifies the mapping of associated entity occurrences. 
The values for connectivity are either “one” or “many”. 

Teorey et al. [S] define cardinality as the actual number 

associated with the term “many”. Like Chen, they use a 

1 : 1, 1 : N, M: N notation in their model. Batini et al. [4] use 

a more specific notation which shows the minimum cardin- 

ality, called “min-card”, and the maximum cardinality, 

called “max-card”. This is expressed in the diagram as 

(min-card, max-card). For example, (15) means that an 
entity must participate in a minimum of 1 and a maximum 

of 5 relationship instances at all times. The minimum of 1 

also implies that the entity’s participation in a relationship is 
mandatory. Another example is (0,lO) where the 0 means 
that the entity is not required to participate in a relationship. 

A value of n for max-card means “no limit.” This conven- 

tion is also used by Navathe et al. [7]. Czejdo et al. [8] use a 

similar notation, except an asterisk is used instead of n to 
represent no limit on the maximum number. 

2.3. Composite attributes 

As pointed out by Hull and King [2], the way to represent 

a composite attribute in the original model is to use an entity 
type and a relationship type. Their example is ADDRESS, 
which is an entity type having attributes STREET, CITY 

and ZIP. ADDRESS is associated with another entity type, 

PERSON, by a LIVES-AT relationship type. Batini et al. 
[4] add a composite attribute to their model. They also use 
ADDRESS as an example and show it in their diagram as a 

composite attribute in an oval. Each single attribute 

(STREET, CITY, etc.) is shown by a small circle with the 
name alongside, connected by a short line to the oval. The 
oval itself is connected by a line to the entity type PERSON 

and (min-card,max-card) shown for the composite attribute 
rather than each single attribute. Elmasri and Navathe [9] 
also allow a composite attribute in their basic model, show- 
ing a tier of attributes, each represented by an oval with the 
name inside. 

2.4. Identljiers 

Although Chen discussed identifiers, he did not include 

them in his ER diagram. Later authors generally do, usually 
by underlining the attribute name or names if attributes are 
included in the diagram. 

Batini et al. [4] take a slightly different approach to 
identifiers in that either or both attributes and other entity 
types can be identifiers. They define an identifier for entity 
type E as a set: 

I=IA,, . . . . A,, E,, . . . . &,I, 

where n?O, mL0, n+mr 1 

where A,, . . . . A,, are attributes and E 1, . . ., E, are entity 
types other than E. An identifier is classified as simple if 

n + m = 1 or is composite if n + m > 1. An identifier is 
internal if m=O, or is external if n = 0. An identifier is 

mixed if n > 0 and m > 0. They observe that entity types 

having internal identifiers are sometimes called “strong’ ’ 
entity types and those which have only external identifiers 

are sometimes called “weak” entity types. In their diagram, 

they use a small open circle for most attributes. If an attri- 
bute is simple and internal, the circle is blackened. A com- 

posite internal identifier is shown by connecting an 

additional blackened circle to the lines of the attributes 
which form the identifier. Mixed identifiers also have lines 

extending to the external entity type’s connecting line. 
Because of this the double-lined weak entity type rectangle 

used by Chen is absent. Teorey et al. [5] view attributes as 

being of two types, “identifiers” and “descriptors.” Iden- 

tifiers uniquely distinguish between the occurrences of an 

entity type, while descriptors describe an entity occurrence. 

2.5. Diagrams for basic models 

All authors reviewed in this paper use a rectangle to 
represent an entity type and a diamond to represent a rela- 
tionship type in their ER diagrams. Some, but not all, 

include attributes in the diagram, and those who do so use 

either an oval with the name inside (identifiers underlined), 
a small circle with the name by the side (identifiers have a 
darkened circle) or a bent line with the name by the side 
(identifier not indicated). Cardinality is either the 1 : 1, 1 : N, 

M: N notation as used by Chen or the (min-card,max-card) 
notation discussed in Section 2.2. Elmasri and Navathe [9] 

use a double line connecting an entity type and a relation- 

ship type to show total (mandatory) participation. Teorey et 
al. [5] blacken the half of the relationship type diamond that 
is toward an entity type whose connectivity is many (toward 

a one remains unblackened), and put a small circle on the 
line near the diamond if membership is optional (mandatory 
is a line with no circle). 

Wertz [lo] discusses other diagramming styles. One of 
these, attributed to Clive Finkelstein, skips the diamond and 
puts a crow’s foot symbol on the connecting line at the many 
side of a relationship type, and also uses a vertical bar 
(across the connecting line) to indicate a mandatory parti- 

cipation and an open circle for an optional participation. 

Another approach, attributed to Charles Bachman, also 
skips the diamond and uses an arrow on the many side of 
the relationship type. He uses a small open circle at the 
junction of the entity type rectangle and the connecting 
line to indicate optional participation and a darkened circle 
for mandatory. Regarding Chen’s model, Wertz [lo] also 
states, “minor variants include use of a single arrow to 
indicate the one side of a relationship and a double arrow 
to indicate the many side, use of a dot to indicate the many 
side of a relationship and use of a double box to indicate a 
weak entity.” 
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2.6. Summary 

Various syntactical revisions discussed in this section 

offer increased convenience for database designers. Expan- 
sions discussed in this section are concerned with entities as 

well as on relationships. Although these revisions or expan- 
sions do not significantly enrich the modeling power of the 

ER model, some of them have provided new ways to inter- 

pret the original model. For example, viewing an entity type 
as a class provides an interpretation of this model, thus 

enriching its semantics. 

3. Extended ER models 

A number of extended ER (EER) models have appeared 

in recent literature. In general, their contribution is to add 

the generalization abstraction to Chen’s original model and 
variations thereof which were discussed in Section 2 above. 

3.1. The EER model by Teorey, Yang and Fry 

Teorey et al. [5] state that “The introduction of the cate- 
gory abstraction into the ER model resulted in two addi- 

tional types of objects: subset hierarchies and 

generalization hierarchies.” They describe the subset 
hierarchy as specifying possibly overlapping subsets and 
the generalization hierarchy as specifying strictly non- 

overlapping subsets. An entity type El is a subset of 
another entity type E2 if every occurrence of E, is also an 

occurrence of EZ. In a generalization hierarchy, where entity 

type E is a generalization of entity types E ,, EZ, . . ., E,, 
every occurrence of entity type E is also an occurrence of 

one and only one of the entity types E ,, EZ, . . ., E,. For 

example, in the EER diagram of Fig. 3, FACULTY and 
STUDENT are subsets of PERSON (assuming that a person 

can be a faculty member as well as a student), whereas 

COURSE is a generalization of CREDIT-COURSE and 

NON-CREDIT-COURSE. A generalization hierarchy is 
called an “IS-A” exclusive hierarchy. Each subset entity 

type is shown in the EER diagram with a fat double-lined 

arrow pointing to the entity type of which it is a subset. The 
generalization hierarchy is shown with a fat double-lined 

arrow from each subset to a hexagon which contains a 

name characterizing all subsets (COURSE TYPE in the 
above example), and another fat arrow from the hexagon 

to the generalization entity type. In the steps for using their 
model, Teorey et al. instruct the user to put identifier and 

generic descriptors in the generic entity type and to put 
identifier and specific descriptors in the subset entity 

types. Thus in our example EER diagram, SSN and NAME 

are shown as attributes of PERSON, while FACULTY and 
STUDENT have their own unique attributes besides the 

identifier SSN. 

3.2. The EER model by Markowitz and Shoshani 

Markowitz and Shoshani [6] offer an extended ER model 

which is similar to that of Teorey et al. [5] but has more 
features and definitions. They describe generalization as 

PERSON m 

FACULTY STUDENT 

TEACHES 

+ 
TAKES 

CREDIT-COURSE NON-CREDIT-COURSE 

Fig. 3. An EER diagram for a university database [5] 
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STUDENT 
h 

ISA 

Fig. 4. A sample EER diagram [6]. 

“an abstraction mechanism that allows viewing a set of 

entity sets (e.g. SECRETARY,FACULTY) as a single generic 
entity set (e.g. EMPLOYEE)." Note that the authors use the 
terms “entity-set” and “relationship-set” to respectively 

denote entity types and relationship types. For purposes of 

clarity, we will use the terms “entity type” and “relation- 
ship type.” Markowitz and Shoshani state that generaliza- 
tion defines a transitive relationship, so if entity type Et is a 

direct generalization of entity type Ez, and E2 is a direct 
generalization of entity type Es, then El is a transitive gen- 
eralization of E3. Specialization is the inverse of general- 
ization. A specialization entity type inherits the attributes of 
all its direct and transitive generic entity types, including the 

entity type identifier. Such attributes are called inherited 
attributes. Entity types which are not weak, and are not a 
specialization of other entity types, are called “indepen- 

dent” entity types. In the example EER diagram (Fig. 4), 

PERSON is a generalization of FACULTY and STUDENT, 
whereas STUDENT is ageneralizationof GRAD-STUDENT. 

Thus PERSON is the transitive generalization of GRAD- 

STUDENT. GRAD-STUDENT inherits all the attributes 
from STUDENT and PERSON, besides having its own 
unique attribute DEGREE. Markowitz and Shoshani also 
allow “full” aggregation, so relationship types can associ- 
ate both relationship types and entity types rather than only 

entity types. For example, in the EER diagram of Fig. 4, full 

aggregation allows the association between the TEACHES 
relationship type and the OFFERS relationship type. Mar- 
kowitz and Shoshani define their diagram as a directed 
graph. Arrows show the direction and represent interaction 
of elements and existence dependencies. The graph must be 
acyclic since directed cycles imply redundant entity types. 

3.3. The ECER model 

The extended conceptual entity-relationship (ECER) 

model developed by Czejdo et al. [8] uses graphical inter- 

faces to formulate queries and updates. This concept retains 

the ER diagram advantages normally used only for database 
design and applies them to a “point and click” user inter- 
face. A number of operators for updates, retrievals, compu- 

tations, etc., are included. 
Czejdo et al. define three types of generalization/ 

specialization. Type 1 involves exactly two entity types, 
one being a subset of the other. Note that in the original 

text, the authors use the term “entity set” to denote an 
entity type. For clarity’s sake, we will stay with “entity 
type”. A Type 1 generalization/specialization is shown in 

the diagram with a subset symbol on the line connecting the 
two entity types. In the sample ECER diagram of Fig. 5, 
GRAD-STUDENT is such a specialization of STUDENT. 

Type 2 involves one generalization entity type A and any 
number of specialization entity types Bt, BZ, . . . . B,, where 

A=B, u B2... U B,. This is represented in the diagram by 
connecting each entity type to a small circle with a “U” 

inside. For example, in Fig. 5, PERSON is the union of 

FACULTY and STUDENT, thus every person is a faculty 
member, a student, or both. Type 3 is like Type 2 except 
the specialization types are disjoint. They are connected in 
the diagram to a circle containing a plus symbol. Consider 
the example of CREDIT-COURSE and NON-CREDIT- 

COURSE being such specializations of COURSE. 

3.4. The EER model by Hohenstein and Gogolla 

The Hohenstein and Gogolla model [ll] is defined in 
connection with proposing a calculus for the model. Their 
model is based on Chen’s and is similar to Teorey et al. [5] 
in that it includes generalization. Hohenstein and Gogolla 
present generalization and specialization as “type con- 
struction” with input types and output types. The “already 
defined or basic” input types are used in the construction of 
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SSN -f+ii+- NAME 

o:* 
DEGREE 

NAME 

Fig. 5. An ECER diagram for a university database 

output types, meaning that “all entities from the input types 
are put together and are distributed over the output types”. 
This is shown in the diagram by connecting all input types to 
the base of a triangle, and connecting the apex of the triangle 
to the output types. Either a subset symbol or an equality 
symbol is inside the triangle. For example, in the sample 
EER diagram of Fig. 6, FACULTY and STUDENT are the 
input types used in the construction of output type PERSON. 
The model also allows attributes to have values of complex 
and enumerated data types. Users can define operations to 
manipulate complex data items. In the diagram, an 
attribute’s data type is indicated along with the attribute’s 
name. Attributes may be multivalued and the set of values 

for a multivalued attribute can be classified into three 
different categories, namely “sets”, “bags” and “lists.” 
Elements in a set occur only once, elements in a bag may 
occur more than once, whereas elements in a list are stored 
in an enumerated form. Besides generalization and specia- 
lization, this model also includes the concept of “complex 
structured” entity types. An entity of a complex structured 
entity type is composed of other entities, called its “com- 
ponents.” In our example diagram, DEPARTMENT is a 
complex structured entity type as it includes two compo- 
nents, namely CHAIR and GRAD-COMMITTEE (a list). 
Both these components are of another entity type 
FACULTY. 

f 
cHAIR:tl 

GRAD-COMMITTEE : lis 

SSN : string 

PERSON 

DEPARTMENT 

NAMFi : suing 

GPA : red 

COURSE 1 

(IW : string) NAME : string 

Fig. 6. An EER diagram for a university database [l I]. 
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3.5. The ECR model 

Navathe et al. [7] propose an entity-category- 
relationship (ECR) model which they use for view inte- 

gration. A category is “a subset of entities from an entity 

type.” A set of entities is called an object class, whether the 
set is an entity type or a category. The categories usually 

share most attributes, but some are not shared. For example, 

FACULTY and STUDENT are categories of entity type 
PERSON. Both share the attributes SSN and NAME, yet 

have their own unique attributes RANK and GPA respec- 

tively. The ECR model uses diagram notations similar to 

Czejdo et al. [8] (See Fig. 5). The categories are shown in 

the diagram as hexagons, connected to the entity type with a 

subset symbol drawn on the line. Shared attributes are con- 
nected to the entity type and non-shared category attributes 
are connected to the hexagon. The categories are the focus 

for view integration. Categories are defined for each data 
source for the integration and those categories are compared 

during the process. 

3.6. Summary 

Discussion on the enhanced power for modeling has 

accompanied ER approach for two decades. Smith and 
Smith [ 121 present the concepts of generalization and aggre- 

gation. The semantic data model of Hammer and McLeod 
[ 131 introduced the concepts of class and subclass lattices, 
as well as other advanced modeling concepts. 

Various extensions of the original ER model, as we have 
already summarized in previous sections, address the 

semantics in various degrees. Behind the syntactical differ- 
ences of various extensions is the enriched semantics about 

relationships among entities. For example, many of the pro- 
posed syntactical changes are around generalization/ 
specialization, a clear indication of semantic improvement. 

The models summarized in this section are stand-alone data 
models, but they can also be viewed as stepping-stones 

toward object-oriented data models or object-oriented ER 
models, as we compare in the next section. 

4. Object-oriented ER models 

With continuing advances in object-oriented databases, 

interest has increased in favor of including features of the 
object-oriented paradigm, in order to adapt the ER model 
for object-oriented database design. These features include 
generalization and inheritance, enforcement of the informa- 
tion hiding principle, abstract data type encapsulation and 
message passing. The following models incorporate object- 
oriented concepts into the ER model. 

4.1. The OOER model 

Navathe and Pillalamarri [14] use an object-oriented 

approach for their data model. Since semantic models 

accomplish their goals by using abstraction, which they 
define as a “semantically irreducible modeling primitive 

that allows us to model a fundamental type of data relation- 

ship in a way that hides detail and differences, and concen- 

trates on the common properties of a set of objects”, they 
present their model in terms of five commonly used abstrac- 

tions. These are aggregation (I S-PART-OF), general- 

ization (Is-A), classification (IS-A-CLASS-OF), 

association (IS-ASSOCIATED-WITH), and identification 
(IS-IDENTIFIED-BY). 

Navathe and Pillalamarri examined the basic ER model 

because of its widespread popularity, but found it deficient 
for its failure to explicitly model generalization and classi- 

fication, and for its limited capability for describing the 

interaction between constructs. This led to the object- 
oriented entity-relationship (OOER) model which retains 

many features of Chen’s model, but expands its capabilities. 
The aggregation abstraction involves the entity (also 

referred to as an object), which Navathe and Pillalamarri 

define as something that exists in the real world and has 

attributes to describe it. Attribute values of a similar type 
are grouped into attribute classes or domains. Entities 

having similar attributes are classified into entity classes 
or entity types, and an entity can be defined as either an 

aggregation of attributes or an aggregation of other entities 
(which distinguishes the OOER model from the ER model). 

Many operations, including update, relational (select, join 
and project), comparison, aggregation and arithmetic can be 
defined for the entity classes. 

With the generalization abstraction, two or more object 

classes can be generalized to form a higher level object 

class. Specialization is the inverse notion whereby new 
object classes can be defined to be subclasses of one or 
more object classes. For example, in the OOER diagram 

of Fig. 7, EMPLOYEE is a generalization of MANAGER, 
ENGINEER and SECRETARY, whereas OVERSEAS- 

CUSTOMER is a specialization of CUSTOMER. The con- 

struct used is the object class of type superclass or subclass, 

which are relative terms since the same object class can be 
either depending on whether it is formed by generalization 
or specialization. In the case of multiple inheritance, the 

user must specify precedence. Generalization object class 
relationships can be further defined with Set Exclusion, Set 

Intersection or Set Equality constraints. Respectively, these 
indicate no common instances, some common instances, or 

a 1 : 1 relationship between objects participating in a gen- 
eralization. All operations that have been defined for the 
entity classes are also applicable to the subclasses and 
superclasses. 

The classification abstraction is based on the notion of a 
set. This concept forces the distinction between individual 
instances and a class of those instances. If certain properties 
apply to an entire set, then they can be modeled as class 
attributes. Grouping of instances can form an entity class, a 
relationship class, or a class of a superclass/subclass. In 
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DEPARTMENT 

Fig. 7. An OOER diagram for a company database. 
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addition, a metaclass is a grouping in which all objects are 

themselves classes, in other words a set of sets of instances. 

As indicated in Fig. 7, the instances of metaclass PERSON 
are entity class CUSTOMER and generalization object class 

EMPLOYEE. Aggregate operations, like count, sum, etc., 
can be defined for the class attributes. 

The association abstraction in the OOER model is the 
relationship, which represents the interaction between 
object classes as a higher level object class. It exhibits an 

existence dependency on the objects participating in the 

association. 
Identification is the abstraction used to uniquely identify 

the object structures that have been formed. Each entity 

class has at least one attribute which is declared as its iden- 
tifier (primary key) and is used to access an object. The 
instances of a generalization object class can be identified 

by the corresponding instances in the defining class(es) or 
by any key attributes of the generalization class itself. 

Navathe and Pillalarnarri [ 141 evaluate their OOER 
model in terms of its level of object-orientation. They con- 

clude that it has structural and operational but not behavioral 

object-orientation. Structural object-orientation refers to 
allowing for the defining of data structures to represent 
complex objects. Operational object-orientation is allowing 
the definition of generic operators to deal with complex 

objects in their entirety, rather than decomposing into 

primitive operations on simpler objects. The OOER model 
is defined such that structure and operations are encapsu- 
lated together in each object class. However, the syntactic 
details for specifying abstract data types, data encapsula- 
tion, message passing and operator overloading have yet 
to be formulated, so behavioral object-orientation is not in 

place. 

The OOER model uses conventional ER diagram nota- 

tions to denote entity classes, attributes and relationship 
classes, with the addition of arrows from related entity 

classes pointing to the relationship class diamond. Both 
generalization and specialization are represented in the 
diagram by a six-sided polygon. The difference is shown 
by the direction of the connecting arrow, which is toward 

the polygon for generalization and away from the polygon 
for specialization. A class is shown in the OOER model as a 
five-sided polygon. Objects which form the class are con- 

nected by an arrow pointed toward the polygon, whereas 
objects that are attributes of the class are connected without 

arrows. 

4.2. The BIER model 

In a behavior-integrated entity-relationship (BIER) 
approach to the design of object-oriented databases, Kappel 
and Schrefl [15] establish a static model and a behavior 

model. The static model represents the structural properties 
of real-world objects and the behavior model explains real- 

world events in terms of object behavior. While the behavior 
model is based on a Petri net graph, the static model uses an 
extended ER diagram approach. In the static model, real- 
world structures are represented as object types (similar to 

entity types in the ER model). Object characteristics are 
represented as attributes. The value of an attribute could 

be of a data type or an object type. This concept is used to 
represent inter-object relationships. Generalization and 
inheritance are also included. 

The model defines the concepts of “primitive” and 

“complex” objects. Primitive objects are stand-alone as 
they are not defined upon other objects, whereas complex 
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Fig. 8. A static BIER model for a company database. 

objects are defined upon one or more lower level objects. 

Complex objects can be further classified into “group” 

objects and “aggregate” objects. A group object is defined 

upon lower level objects of the same class, called its 
“members”; this abstraction is called grouping. An aggre- 
gate object is defined upon lower level objects of different 

classes, called its “components,” with this abstraction 
being referred to as aggregation. Aggregation and grouping 
employ the relationship concept. The lower level objects are 
called “independent” if they participate only in a relation- 

ship that is represented by the higher level object. They must 
exist before the higher level object is created, and they 
continue to exist if the higher level object is deleted. 

“Dependent” objects are private to a higher level object 

and are created and deleted along with that object. In our 
example diagram (Fig. 8), DEPARTMENT is an aggregate 
object type with dependent component types EMPLOYEE 

and PROJECT. This aggregation may be used to represent 
the WORKS-FOR relationship type between DEPARTMENT 

and EMPLOYEE, and the CONTROLS relationship type 
between DEPARTMENT and PROJECT. An EMPLOYEE 

object’s WORKS-ON attribute can ha& a value of object 
type PROJECT. EMPLOYEE itself is a group object type 
with dependent member type, CHILDREN. 

4.3. The OOERM model 

Like the BIER model [15], the object-oriented entity- 
relationship model (OOERM) developed by Gorman and 

Choobineh [ 161 also includes behavioral object-orientation. 
Gorman and Choobineh present the object-oriented view as 

a natural extension of the entity-attribute-relationship view: 
“When we think of an object or entity (e.g. a bicycle), we 
consider its attributes, such as color. We also naturally con- 
sider the things we can normally do with it (ride it, lock 
it.. .).” In defining terms, they discuss an object as “a ‘pack- 
age’ of information and a description of its manipulation”. 
This corresponds to a set of related variables and a set of 
operations on these variables in procedural programming 
terms. A message is defined as a specification of one 
manipulation on an object, the specification consisting of 

the receiver (object to be manipulated), the selector (sym- 

bolic name of the manipulation), and optional arguments 

(possible other objects taking part). A message resembles 
a procedure call. A method is a description of a single type 
of manipulation, a procedure-like object found in receivers 

and selected in response to messages. 

In object-oriented programming, a class or object type 
corresponds to an entity type in the ER model, and the 
object’s set of variables and methods correspond to attri- 
butes. The visibility of an object, which refers to what 
objects it can access and what objects it can be accessed 

by, is similar to the relationship concept in the ER model. 
Message passing uses object visibility, allowing the sending 

object to access the variables of the receiving object. 

An OOERM schema consists of a number of diagrams, 
called object-oriented entity-relationship diagrams 
(OOERD). OOERDs are used to represent both the struc- 

tural and behavioral properties of the database. A “struc- 
tural” OOERD is drawn to define the classification and 
hierarchy of objects, including inter-object relationships. 

In addition, a separate OOERD is drawn for modeling 
each application process. In an OOERD, entity classes and 
relationships use the normal rectangles and diamonds, while 
attributes are represented by circular nodes with the attribu- 

te’s name beside (Fig. 9). A generalization hierarchy is 

represented by a fat double-lined arrow pointing to the 
higher level class. If the tail of the arrow is hollow, it repre- 

sents a subclass that is a subset of the higher level class with 
no additional properties. If the tail is filled in, it represents a 
subclass that is a specialization of the higher level class with 

its own additional properties. As shown in Fig. 9, AUTHOR 
is a subset of PERSON whereas STUDENT is a specializa- 
tion of PERSON. 

Methods are shown in an OOERD as ovals with the 
method name inside. They are attached to their entity 
class by a solid line, similar to an attribute. Message passing 
is shown by a dotted-line arrow from the sending class to the 
receiving class. The position of the message in a sequence of 
messages is shown by an integer in parentheses. Optional 
parameters being sent are shown above the arrow and 
optional results returned are shown below the arrow. 
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Fig. 9. A sample structural OOERD. 

Forking dotted-line arrows are used to indicate conditional 

branching and each branch is marked with “T” for true or 

“P” for false. These methods, message passing and branch- 
ing indicators are referred to as dynamic icons. All entity 

classes have five predefined operations as implicitly 
specified properties. These operations are “create”, “add 

to subclass”, “remove from subclass”, “delete” and 

“select”. They have the same default definition for all 

classes. Messages invoking these predefined operations 
can be specified interactively by the user or in the action 
portion of methods. A “where” clause, similar to SQL, is 
used to identify specific class instances to which the opera- 
tion applies. The predefined operations are represented in 

the OOERD with a method oval superimposed over the 
entity class to which it applies. The letter representing the 

predefined operation is placed in the right portion of the oval 
and the ordinal sequence of the operation is in parentheses 

in the left portion of the oval. Another feature of this model 
is attribute derivation. In this case the value of an object’s 

attribute can be derived as a result of a message received by 

that object. 

A process can have a sequence of many operations. 

OOERDs are intended to model individual application pro- 
cesses encoded in the data model scheme description. The 

diagram provides a pictorial view of state changes resulting 

from process execution. Therefore, the authors recommend 

that a separate OOERD should be drawn for each applica- 

tion process and each OOERD should contain only the 

structural and operational details relevant to that process. 
For example, in the OOERD for the “Book-Borrowing” 

process (Fig. lo), only the relevant classes and operations 

are shown. 

4.4. Comments 

In the 1980s we have witnessed a shift in the emphasis of 

data modeling: the general interests related to conceptual 
modeling (inspired partly by artificial intelligence) [ 171 
have converged to object-oriented data models. According 

to Hull and King [2], essentially, semantic models encapsu- 
late structural aspects of objects whereas object-oriented 

languages encapsulate behavioral aspects of objects. 
Object-oriented data models have incorporated some 

important concerns addressed by conceptual modeling 
(such as aggregation) as well as concerns addressed by 

logical modeling models (such as non-first normal form in 
some extended relational models and navigation in the 

network model). As a consequence, the boundary between 
logical/conceptual models is blurred. An object-oriented 
data model can be viewed as a model at the level of 
conceptual modeling as well as a model at the logical 

level. 
As pointed out by Loomis [ 181, an object model includes 

relationships between objects. These relationships, which 

are associations between objects, are like the relationships 
between entities in ER data modeling. An object model may 
also include containment relationships and recursive 

structures. An object DBMS builds these relationships into 

the object database and can use them directly at runtime 
when returning objects to applications. The relationships 

(3) j I /’ 
’ /’ 

h___________________---_-----------_-$4, 

Fig, 10. An OOERD for the “book-borrowing” process. 
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in ER data models are purely abstract, while object- 

oriented data models carry relationship semantics into 

implementation. 
Another aspect that must be pointed out is the behavior 

part of a full fledged object-oriented database. Chen [19] 

argues that ER does have a behavior part, but without giving 

any explanation. He claims, “. . . in the ER world view, 

‘data’ and ‘processes’ are on equal footing, while in the 

object-oriented world view, ‘processes’ are encapsulated 

with the data accessed. If we think deeply, the encapsulation 
of processes with data is a ‘packaging’ issue and has nothing 

to do with the argument on whether object-orientation has 

more dynamic behavior specifications than ER (or other 

paradigms). The object-oriented way of packaging pro- 
cesses with data will work well in certain kinds of applica- 

tions but not in other applications.” Although Chen himself 
does not provide any elaboration, some models as summar- 

ized in this section have indicated how object-orientation 
and ER can approach each other. 

5. Object-oriented schema diagrams 

Finally, let us take a look at some related issues beyond 

ER modeling. Particularly, we provide a brief sketch of 

object-oriented schema diagrams as used in ODMG-93 [20]. 
Graphical representations have been used in object- 

oriented data models to represent database schema. We 
will refer to them as object-oriented schema diagrams. 

Here we examine the graphical representation used in 
Object Database Standard ODMG-93, which narrows the 
gap between ER modeling and object-oriented modeling. 

ODMG-93 has adopted basic notations from ER diagrams 
with important extensions. The graphical representation 
uses the following notations: 

1. object types are shown as rectangles; 

2. relationship types are shown as labeled lines; 
3. the cardinality permitted by the relationship type is indi- 

cated by the arrows on the ends of the lines: 

4 + one-to-one 

- *t one-to-many 
441 Wb many-to-many 

4. large gray arrows point to super-type from subtype. 

In this graphical representation, object types are repre- 
sented in exact the same way as entity types in ER models. 
This is a clear indication that object types are extended from 
entity types. Relationship types have made significant 
changes. The traditional diamond representation in ER dia- 
grams is replaced by labeled lines. The labels are the names 
of the relationship types; however, relationships in ODMG- 
93 have directions. A relationship in ER diagrams is now 
replaced by a pair of relationships (called inverse relation- 
ships) with opposite directions. For example, the connection 
between two object types course and student can be 

represented by relationship take from student to 

course and its inverse relationship taken-by from 

course to student. An ODL (Object Definition Lan- 

guage) definition for the interface of course should include 
the following: 

interfacecourse 1 

. . . 
relationshipset 
taken_by inverse 
. . . 

< Student> is_ 

Student:takes; 

Fig. 11 is an example of object-oriented schema diagram 

(attributes not included). 
The improved representation of relationships in ODMG- 

93 diagrams, along with the explicit inclusion of cardinality 

as mentioned earlier (such as one-to-many or many-to- 
many), has brought significant semantic enrichment. The 

lack of directions in relationship types in the original ER 

diagram has always been a potential source of confusion in 
semantics; the problem is now solved. More importantly, 
the explicit inclusion of the directions can facilitate the 

construction of navigation paths in answering queries. Con- 

struction of navigation paths is crucial to object-oriented 
databases. 

A sample query in SQL-like syntax is: 

select teaching (student: x-name, 
professor: z.name) 

from x in Students, y in x. takes, z in 
y.taught-by 
where z . rank = “associate_professor” 

Note that directions of relationship are important in 
specifying query paths: the relationship takes follows 

the direction from student to professor, whereas 
the relationship taught-by follows the direction from 
prof essortostudent. 

6. Discussion 

In this paper we started by viewing ER as the first rela- 

tionship-centered data model and we examined and com- 
pared various extensions. Although simple extensions to the 

original model have only added minor improvements, 
extended ER models have significantly improved the mod- 
eling power, bridging the gap to object-oriented data mod- 
els. We noted that behind syntactical extension lies 
semantical enrichment. 

The entity-relationship model is a very powerful and 
useful tool for many modeling purposes. It is very popular 
and all authors speak highly of its capabilities. Its funda- 
mentals are relatively simple, yet effective, which seems to 
explain its wide following. The diagram literally draws a 
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Fig. Il. An object-oriented schema diagram. 

picture of the real world being modeled, and a picture can be 

understood by even the less sophisticated end users. 
The enhancements and variations discussed in Section 2 

add relatively little to the power of the model. Many of them 

are differences reflecting personal preferences, such as ways 

of drawing the diagrams. In fact, some of these may hinder 

the use of the basic model because they could cause con- 
fusion. It may help to have a standard for ER diagrams so 
that one set of symbols could be used by all database 
designers. This could be particularly helpful to end users 

who may interact with many designers but would not like 
to re-learn the notations each time. 

Some of the differences shown in Section 2 are with 
respect to terminology or presentation. The original ER 

model [I] was very straightforward and practical. Later 
authors attempted to give more scholarly dissertations and 
spent more time on definitions and terminology. More 

recent authors have tended to use terms such as “object” 

and “class” that are more consistent with object-oriented 
modeling concepts. One concept from Section 2 that has a 
notable difference is cardinality. Chen’s model relied on the 
1 : 1, 1 : N, M : N notation, but the (min-card,max-card) nota- 

tion adds the capability to place lower and upper limits on an 
entity’s participation in a relationship. This could be used to 
specify cardinality ratios as well as participation constraints. 
By contrast, the composite attribute concept may be lost by 

the the time the diagram is mapped to a relation. However, it 
is still helpful for understanding the relationship among 

attributes during the conceptual modeling and analysis 

stages. 
The major contribution of the extended models in Section 

3 is generalization. While there are some differences in 

definitions and diagrams, the point is that a hierarchy of 
classes is recognized and the inheritance concept is used 

either to share or to separate specific attributes. In Section 
4, we examined the OOER model by Navathe and Pillala- 
marri [ 141 that adds more to the terminology discussion, but 
it is similar to those discussed in Section 3. A notable excep- 
tion is the “class” concept represented by a five-sided poly- 
gon, particularly when used as a metaclass. They present a 
commendable dissertation in object-oriented terms. 

The BIER model by Kappel and Schrefl [ 151 and the 
OOER model by Gorman and Choobineh [16] both repre- 

sent a considerable advancement, as both can be regarded as 
truly object-oriented data models. The incorporation of 

methods, messages and operations makes these a better 

choice for object-oriented database design. As object- 
oriented databases become more popular, these models 
and their inevitable clones will undoubtedly find a more 

widespread audience. Finally the object-oriented schema 
diagrams as used in ODMG-93 reveal the prevalence of 
ER notations, as well as the conceptual relationship between 

these two data modeling approaches (i.e. entity- 
relationship and object-oriented). 

7. Conclusions 

In the past two decades we have witnessed a very power- 
ful tool, the entity-relationship model, grow into a widely 

recognized technique. The enhancements to this model, par- 
ticularly generalization and an object-oriented approach, 
have added capability and power to the original model. 
Many articles written within the past decade have helped 

by discussing and explaining the concepts, as well as by 
offering examples of the model’s use. Many of the exten- 
sions have added a little to the expressive power of the ER 
model, but later extensions, especially those related to 
object concepts have introduced some added capabilities. 
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