
ELSEVIER Information and Software Technology 39 (1997) 449-462

An evaluation of extended entity-relationship model

Hossein Saiedian

Department of Computer Science. Universiry of Nebraska at Omaha, Omaha. NE 68182-0500. USA

Received 29 May 1995; revised I1 December 1996; accepted 18 December 1996

Abstract

The Entity-Relationship (ER) model allows a database designer to develop a high-level conceptual schema without having to consider
low-level issues such as efficiency, the underlying database management system model, or physical data structures. The ER model has
become very popular for database design and is used quite extensively. In order to strengthen its expressive power, many database
researchers have introduced or proposed certain extensions to this model. Some of these extensions are important, while others add little
expressive power but provide auxiliary features. Since the ER model is used so widely, it is important to know what extensions have been
proposed for this model and what these extensions offer to the users. The objective of this article is thus to survey major extensions to the ER
model and to evaluate their merits. We point out that lying behind the syntactical differences of the various extensions is the enriched

semantics about relationships among entities. We also point out the close relationship between ER modeling and object-oriented data
modeling. 0 1997 Elsevier Science B.V. 0 1997 Elsevier Science B.V.

Keywords: Conceptual modeling; Extended entity-relationship model; Object model

1. Introduction

In 1976 Peter Chen published the original entity-
relationship (ER) model which provided an easy to use

graphic approach to logical database design [I]. The
model is comprehensive, yet it avoids the complications
of storage and efficiency considerations, which are reserved
for physical database design. In the two decades since then,
many others have adopted the original model and used it

enthusiastically after minor changes. In addition, a number
of authors have extended the model to enhance its capabil-
ities so that it is more appropriate for their particular

endeavor. The most comprehensive extension includes
dynamic icons in an adaptation to object-oriented database

modeling.
In the preface to his paper, Chen states, “The entity-

relationship approach provides an easy to understand yet
comprehensive methodology for logical database design
independent of storage or efficiency considerations’ ’ [11.
The problem he solves with the ER model is the complexity

of logical database design. The conventional process of
database design is based upon mapping real-world informa-
tion directly to a user schema, specific to a certain type of
database management system (DBMS). The designer is con-
strained by limited data structure types, access path consid-
erations and efficiency of retrieval and updates, yet must

0950-5849/97/$17.00 0 I997 Elsevier Science B.V. All rights reserved
PI/ SO950-5849(97)00002-5

produce a user schema while considering all these issues.

The result can be a user schema that is difficult to under-

stand and change. The ER approach simplifies this process
by introducing an intermediate design called an enterprise

view or enterprise schema. The enterprise schema,
expressed as an ER diagram, is a conceptual database design
which is a pure representation of the real world and yet is
independent of storage and efficiency considerations. This

enterprise schema can later be translated into a DBMS spe-
cific user schema. This two-phase approach makes the

design process simpler and better organized. The enterprise
schema is easier to design, and, in case of transition from
one type of DBMS to another, can be remapped to a user

schema suited to the new DBMS.
The ER model is widely used during requirements ana-

lyses and for conceptual database modeling. Because of its

simplicity, it is more easily understood by non-technical
individuals. Tests in the real world environment have

shown it to be an effective communications tool between

database designers and end users.

I.I. Components of the entity-relationship model

The main components of the entity-relationship model
are entity types, relationship types, and attributes. An entity
is defined as a “thing” which can be uniquely identified. It

450 H. Saiedianhformation and So&are Technology 39 (1997) 449-462

Fig. 1. An ER diagram for a university database.

can be a person, an item, or a concept about which an
organization wants to store data. Entities sharing similar

properties can be classified into entity types, such as
EMPLOYEE and DEPARTMENT. Entities may have certain
relationships with one another which can also be classified

into relationship types. For example, MANAGES is a rela-
tionship type between entity types EMPLOYEE and
DEPARTMENT. The relationship may be one-to-one, as

MARRIAGE between exactly two PERSON entities, one-
to-many as TEACHES between one PROFESSOR and
many COURSE entities, or many-to-many as WORKS-ON

between many EMPLOYEE and many PROJECT entities.
In Chen’s model, entities and relationships have properties,

called attributes. For example, AGE is an attribute of an
EMPLOYEE entity and HOURS-WORKED is an attribute of

a WORKS-ON relationship between an EMPLOYEE and a
PROJECT entity. An attribute can attain values of a certain
value type. A multivalued attribute can have more than one
value. An example is the DEGREE attribute of a
PROFESSOR entity.

Each entity must have a unique identifier to distinguish it

from other entities of the same type. This might be an attri-
bute already in use, such as an employee’s name, or might
be an attribute introduced for its uniqueness, such as an

employee’s social security number. Chen compares the
entity identifier to the concept of primary key in conven-
tional databases. Relationships are identified by using the

identifiers of all entities involved in the relationship. In
the case of a relationship involving entities of the same

entity type, “roles” may be assigned such as HUSBAND

and WIFE in a MARRIAGE relationship. An entity may

depend upon entities of another entity type for its existence.

Chen calls this a “weak” entity. An example is
DEPENDENTS (of an employee), since an employee’s
dependents would no longer be of interest if the employee

left the company. An entity has an “ID-dependency” on
another entity if it does not have its own identifier and can
only be uniquely identified by its relationship with the other

entity. For example, a city can only be uniquely identified
within a particular state.

1.2. Entity-relationship diagrams

In the original ER model, an entity type is represented by
a rectangle with the name of the entity type inside it. A
relationship type is represented by a diamond, with the rela-
tionship type name inside. Related entity types are con-
nected to this diamond by straight lines. Each line is
marked with a “l”, “N”, or “M” to indicate 1 : 1, 1 : N

or M: N relationship types. A weak entity type is enclosed
within a double-lined rectangle, an “E” is placed in the

relationship type diamond and an arrow is on the connecting
line pointing toward the weak entity type. The double-lined

rectangle is also used for an ID-dependent entity type, with
an “ID” in the relationship type diamond and an arrow on
the line, pointing to the dependent entity type. These are in

the “upper conceptual domain” of the diagram (see Fig. 1).
Attributes and their value types are shown in the “lower

Fig. 2. Attributes and value types for STUDENT, TAKES and COURSE.

H. Saiediatilnformation and Sojlware Technology 39 (1997) 449-462 451

conceptual domain” (see Fig. 2). An attribute’s value type

is represented by a circle with the value type name inside,

connected by an arrow to its entity type. The attribute name

is added by the connecting arrow unless the name is the

same as the value type name. An example of different

names is a value type DATE which is used for the BIRTH-
DATE attribute of an EMPLOYEE entity. Multivalued attri-

butes are indicated by putting “1 : IV” beside the connecting
arrow.

1.3. Data modeling emphasizing relationships

The original ER model was proposed to provide a unified

view of data [l]. As noted by Hull and King [2], two oppos-
ing research directions in databases were initiated in the

early 1970s. The relational model revolutionized the field

by separating logical data representation from physical

implementation. Semantic models were introduced primar-
ily as schema design tools. The emphasis of the initial

semantic models was to accurately model data relationships
that arise frequently in typical database applications. Con-

sequently, semantic models are more complex than the rela-

tional model and encourage a more navigational view of

data relationships.
The ER model was the first semantic model centered

around relationships rather than attributes. It views the
world as consisting of entities and relationships between

entities. The underlying philosophy is that an attribute is
restricted to being a single fact about an entity, whereas a

relationship can model the construction of more complex

entities from other entities.
In recent years, object-oriented data modeling has

become very popular, but the ER modeling approach is
still also very popular and has found many new applications.
The continuation of the international conference on ER

modeling as well as many books and articles devoted to

ER modeling in recent years bear witness to the importance
of the ER approach. An examination of the evolution of the

ER model is thus important to understand why this model is
so popular. In this paper we examine and compare various

extensions of ER models, pointing out how syntactical
extensions have been made to enhance the representation
and modeling power of the original ER model.

1.4. Organization

The modeling power of the ER approach largely depends
on ER diagrams. That is why in this paper our discussion on

the evolution of ER modeling will be largely centered
around the evolution of ER diagrams. A good understanding
of the semantics involved in ER modeling cannot be carried
out without a careful study of syntactical representation in
ER diagrams. Underlying a simple syntactical change may
be an important semantic improvement, a shift of meaning,
or some other changes crucial to the data modeling. A good

example is the meaning of ternary relationship.

Syntactically, a ternary relationship is very similar to binary

relationships; however, untit very recently [3], a detailed

analysis of the binary/ternary cardinality combinations
was not available. Seemingly minor syntactical differences

may be the tip of big semantic icebergs; they should not be

overlooked. Whenever appropriate, we will use a university
schema (or its variations) as an example to compare

different extensions. However, sometimes we have to use
different examples for better illustration.

The rest of the paper is organized as follows. In Section 2

we provide a brief description of the enhancements to the

original ER model. This includes a survey of terminology
additions and diagram variations. In Section 3 we describe

several extended ER models and include diagrams to illus-

trate their important features. Section 4 provides a similar

account of object-oriented ER models. A brief sketch of
object-oriented schema diagram is provided in Section 5.

We evaluate the enhancements along with the extended
models and close the paper by drawing some conclusions

in Section 6.
We assume that the reader is familiar with the basic con-

cepts of database systems. Some knowledge of object-

oriented concepts is also desirable.

2. Expansions to the original ER model

More recent authors have added further explanation and
used different terms to describe Chen’s original model.

Some of these follow.

2.1. Objects and classes

Batini et al. [4] speak of entity types and relationship

types as classes of objects. According to them, an entity
type represents a class of real world objects whereas a rela-

tionship type represents the aggregation of two or more
entity types. They introduce the term “rings” to describe
“binary relationships connecting an entity to itself’ ‘, which

are called recursive relationships by some authors. Teorey et
al. [5] refer to Chen’s “three classes of objects: entities,
attributes and relationships”. They explain, “Entity sets

were the principal objects about which information was to
be collected and usually denoted a person, place, thing or
event of informational interest. Attributes were used to
detail the entities by giving them descriptive properties

such as name, color and weight.” In reference to Chen’s

“basic ER model”, Markowitz and Shoshani [6] state, “the
atomic objects are called entities. Associations of entities
are represented by relationships.” They add, “Objects are
qualified by attributes and are classified into object sets.” It
is helpful to understand the basic model in terms of objects
and ,classes as this terminology will be used to explain
advanced concepts.

452 H. SaiedianDnformation and Software Technology 39 (1997) 449-462

2.2. Relationship constraints

In Chen’s original model, the connectivity of a relation-

ship specifies the mapping of associated entity occurrences.
The values for connectivity are either “one” or “many”.

Teorey et al. [S] define cardinality as the actual number

associated with the term “many”. Like Chen, they use a

1 : 1, 1 : N, M: N notation in their model. Batini et al. [4] use

a more specific notation which shows the minimum cardin-

ality, called “min-card”, and the maximum cardinality,

called “max-card”. This is expressed in the diagram as

(min-card, max-card). For example, (15) means that an
entity must participate in a minimum of 1 and a maximum

of 5 relationship instances at all times. The minimum of 1

also implies that the entity’s participation in a relationship is
mandatory. Another example is (0,lO) where the 0 means
that the entity is not required to participate in a relationship.

A value of n for max-card means “no limit.” This conven-

tion is also used by Navathe et al. [7]. Czejdo et al. [8] use a

similar notation, except an asterisk is used instead of n to
represent no limit on the maximum number.

2.3. Composite attributes

As pointed out by Hull and King [2], the way to represent

a composite attribute in the original model is to use an entity
type and a relationship type. Their example is ADDRESS,
which is an entity type having attributes STREET, CITY

and ZIP. ADDRESS is associated with another entity type,

PERSON, by a LIVES-AT relationship type. Batini et al.
[4] add a composite attribute to their model. They also use
ADDRESS as an example and show it in their diagram as a

composite attribute in an oval. Each single attribute

(STREET, CITY, etc.) is shown by a small circle with the
name alongside, connected by a short line to the oval. The
oval itself is connected by a line to the entity type PERSON

and (min-card,max-card) shown for the composite attribute
rather than each single attribute. Elmasri and Navathe [9]
also allow a composite attribute in their basic model, show-
ing a tier of attributes, each represented by an oval with the
name inside.

2.4. Identljiers

Although Chen discussed identifiers, he did not include

them in his ER diagram. Later authors generally do, usually
by underlining the attribute name or names if attributes are
included in the diagram.

Batini et al. [4] take a slightly different approach to
identifiers in that either or both attributes and other entity
types can be identifiers. They define an identifier for entity
type E as a set:

I=IA,, A,, E,, &,I,

where n?O, mL0, n+mr 1

where A,, A,, are attributes and E 1, . . ., E, are entity
types other than E. An identifier is classified as simple if

n + m = 1 or is composite if n + m > 1. An identifier is
internal if m=O, or is external if n = 0. An identifier is

mixed if n > 0 and m > 0. They observe that entity types

having internal identifiers are sometimes called “strong’ ’
entity types and those which have only external identifiers

are sometimes called “weak” entity types. In their diagram,

they use a small open circle for most attributes. If an attri-
bute is simple and internal, the circle is blackened. A com-

posite internal identifier is shown by connecting an

additional blackened circle to the lines of the attributes
which form the identifier. Mixed identifiers also have lines

extending to the external entity type’s connecting line.
Because of this the double-lined weak entity type rectangle

used by Chen is absent. Teorey et al. [5] view attributes as

being of two types, “identifiers” and “descriptors.” Iden-

tifiers uniquely distinguish between the occurrences of an

entity type, while descriptors describe an entity occurrence.

2.5. Diagrams for basic models

All authors reviewed in this paper use a rectangle to
represent an entity type and a diamond to represent a rela-
tionship type in their ER diagrams. Some, but not all,

include attributes in the diagram, and those who do so use

either an oval with the name inside (identifiers underlined),
a small circle with the name by the side (identifiers have a
darkened circle) or a bent line with the name by the side
(identifier not indicated). Cardinality is either the 1 : 1, 1 : N,

M: N notation as used by Chen or the (min-card,max-card)
notation discussed in Section 2.2. Elmasri and Navathe [9]

use a double line connecting an entity type and a relation-

ship type to show total (mandatory) participation. Teorey et
al. [5] blacken the half of the relationship type diamond that
is toward an entity type whose connectivity is many (toward

a one remains unblackened), and put a small circle on the
line near the diamond if membership is optional (mandatory
is a line with no circle).

Wertz [lo] discusses other diagramming styles. One of
these, attributed to Clive Finkelstein, skips the diamond and
puts a crow’s foot symbol on the connecting line at the many
side of a relationship type, and also uses a vertical bar
(across the connecting line) to indicate a mandatory parti-

cipation and an open circle for an optional participation.

Another approach, attributed to Charles Bachman, also
skips the diamond and uses an arrow on the many side of
the relationship type. He uses a small open circle at the
junction of the entity type rectangle and the connecting
line to indicate optional participation and a darkened circle
for mandatory. Regarding Chen’s model, Wertz [lo] also
states, “minor variants include use of a single arrow to
indicate the one side of a relationship and a double arrow
to indicate the many side, use of a dot to indicate the many
side of a relationship and use of a double box to indicate a
weak entity.”

H. Saiedianhformation and Software Technology 39 (1997) 449-462 453

2.6. Summary

Various syntactical revisions discussed in this section

offer increased convenience for database designers. Expan-
sions discussed in this section are concerned with entities as

well as on relationships. Although these revisions or expan-
sions do not significantly enrich the modeling power of the

ER model, some of them have provided new ways to inter-

pret the original model. For example, viewing an entity type
as a class provides an interpretation of this model, thus

enriching its semantics.

3. Extended ER models

A number of extended ER (EER) models have appeared

in recent literature. In general, their contribution is to add

the generalization abstraction to Chen’s original model and
variations thereof which were discussed in Section 2 above.

3.1. The EER model by Teorey, Yang and Fry

Teorey et al. [5] state that “The introduction of the cate-
gory abstraction into the ER model resulted in two addi-

tional types of objects: subset hierarchies and

generalization hierarchies.” They describe the subset
hierarchy as specifying possibly overlapping subsets and
the generalization hierarchy as specifying strictly non-

overlapping subsets. An entity type El is a subset of
another entity type E2 if every occurrence of E, is also an

occurrence of EZ. In a generalization hierarchy, where entity

type E is a generalization of entity types E ,, EZ, . . ., E,,
every occurrence of entity type E is also an occurrence of

one and only one of the entity types E ,, EZ, . . ., E,. For

example, in the EER diagram of Fig. 3, FACULTY and
STUDENT are subsets of PERSON (assuming that a person

can be a faculty member as well as a student), whereas

COURSE is a generalization of CREDIT-COURSE and

NON-CREDIT-COURSE. A generalization hierarchy is
called an “IS-A” exclusive hierarchy. Each subset entity

type is shown in the EER diagram with a fat double-lined

arrow pointing to the entity type of which it is a subset. The
generalization hierarchy is shown with a fat double-lined

arrow from each subset to a hexagon which contains a

name characterizing all subsets (COURSE TYPE in the
above example), and another fat arrow from the hexagon

to the generalization entity type. In the steps for using their
model, Teorey et al. instruct the user to put identifier and

generic descriptors in the generic entity type and to put
identifier and specific descriptors in the subset entity

types. Thus in our example EER diagram, SSN and NAME

are shown as attributes of PERSON, while FACULTY and
STUDENT have their own unique attributes besides the

identifier SSN.

3.2. The EER model by Markowitz and Shoshani

Markowitz and Shoshani [6] offer an extended ER model

which is similar to that of Teorey et al. [5] but has more
features and definitions. They describe generalization as

PERSON m

FACULTY STUDENT

TEACHES

+
TAKES

CREDIT-COURSE NON-CREDIT-COURSE

Fig. 3. An EER diagram for a university database [5]

454 H. SaiedianAnfonnation and Sojware Technology 39 (1997) 449-462

STUDENT
h

ISA

Fig. 4. A sample EER diagram [6].

“an abstraction mechanism that allows viewing a set of

entity sets (e.g. SECRETARY,FACULTY) as a single generic
entity set (e.g. EMPLOYEE)." Note that the authors use the
terms “entity-set” and “relationship-set” to respectively

denote entity types and relationship types. For purposes of

clarity, we will use the terms “entity type” and “relation-
ship type.” Markowitz and Shoshani state that generaliza-
tion defines a transitive relationship, so if entity type Et is a

direct generalization of entity type Ez, and E2 is a direct
generalization of entity type Es, then El is a transitive gen-
eralization of E3. Specialization is the inverse of general-
ization. A specialization entity type inherits the attributes of
all its direct and transitive generic entity types, including the

entity type identifier. Such attributes are called inherited
attributes. Entity types which are not weak, and are not a
specialization of other entity types, are called “indepen-

dent” entity types. In the example EER diagram (Fig. 4),

PERSON is a generalization of FACULTY and STUDENT,
whereas STUDENT is ageneralizationof GRAD-STUDENT.

Thus PERSON is the transitive generalization of GRAD-

STUDENT. GRAD-STUDENT inherits all the attributes
from STUDENT and PERSON, besides having its own
unique attribute DEGREE. Markowitz and Shoshani also
allow “full” aggregation, so relationship types can associ-
ate both relationship types and entity types rather than only

entity types. For example, in the EER diagram of Fig. 4, full

aggregation allows the association between the TEACHES
relationship type and the OFFERS relationship type. Mar-
kowitz and Shoshani define their diagram as a directed
graph. Arrows show the direction and represent interaction
of elements and existence dependencies. The graph must be
acyclic since directed cycles imply redundant entity types.

3.3. The ECER model

The extended conceptual entity-relationship (ECER)

model developed by Czejdo et al. [8] uses graphical inter-

faces to formulate queries and updates. This concept retains

the ER diagram advantages normally used only for database
design and applies them to a “point and click” user inter-
face. A number of operators for updates, retrievals, compu-

tations, etc., are included.
Czejdo et al. define three types of generalization/

specialization. Type 1 involves exactly two entity types,
one being a subset of the other. Note that in the original

text, the authors use the term “entity set” to denote an
entity type. For clarity’s sake, we will stay with “entity
type”. A Type 1 generalization/specialization is shown in

the diagram with a subset symbol on the line connecting the
two entity types. In the sample ECER diagram of Fig. 5,
GRAD-STUDENT is such a specialization of STUDENT.

Type 2 involves one generalization entity type A and any
number of specialization entity types Bt, BZ, B,, where

A=B, u B2... U B,. This is represented in the diagram by
connecting each entity type to a small circle with a “U”

inside. For example, in Fig. 5, PERSON is the union of

FACULTY and STUDENT, thus every person is a faculty
member, a student, or both. Type 3 is like Type 2 except
the specialization types are disjoint. They are connected in
the diagram to a circle containing a plus symbol. Consider
the example of CREDIT-COURSE and NON-CREDIT-

COURSE being such specializations of COURSE.

3.4. The EER model by Hohenstein and Gogolla

The Hohenstein and Gogolla model [ll] is defined in
connection with proposing a calculus for the model. Their
model is based on Chen’s and is similar to Teorey et al. [5]
in that it includes generalization. Hohenstein and Gogolla
present generalization and specialization as “type con-
struction” with input types and output types. The “already
defined or basic” input types are used in the construction of

H. Saiedianllnfonnation and Software Technology 39 (1997) 449-462 455

SSN -f+ii+- NAME

o:*
DEGREE

NAME

Fig. 5. An ECER diagram for a university database

output types, meaning that “all entities from the input types
are put together and are distributed over the output types”.
This is shown in the diagram by connecting all input types to
the base of a triangle, and connecting the apex of the triangle
to the output types. Either a subset symbol or an equality
symbol is inside the triangle. For example, in the sample
EER diagram of Fig. 6, FACULTY and STUDENT are the
input types used in the construction of output type PERSON.
The model also allows attributes to have values of complex
and enumerated data types. Users can define operations to
manipulate complex data items. In the diagram, an
attribute’s data type is indicated along with the attribute’s
name. Attributes may be multivalued and the set of values

for a multivalued attribute can be classified into three
different categories, namely “sets”, “bags” and “lists.”
Elements in a set occur only once, elements in a bag may
occur more than once, whereas elements in a list are stored
in an enumerated form. Besides generalization and specia-
lization, this model also includes the concept of “complex
structured” entity types. An entity of a complex structured
entity type is composed of other entities, called its “com-
ponents.” In our example diagram, DEPARTMENT is a
complex structured entity type as it includes two compo-
nents, namely CHAIR and GRAD-COMMITTEE (a list).
Both these components are of another entity type
FACULTY.

f
cHAIR:tl

GRAD-COMMITTEE : lis

SSN : string

PERSON

DEPARTMENT

NAMFi : suing

GPA : red

COURSE 1

(IW : string) NAME : string

Fig. 6. An EER diagram for a university database [l I].

456 H. Saiedian/lnfonnation and So&are Technology 39 (1997) 449-462

3.5. The ECR model

Navathe et al. [7] propose an entity-category-
relationship (ECR) model which they use for view inte-

gration. A category is “a subset of entities from an entity

type.” A set of entities is called an object class, whether the
set is an entity type or a category. The categories usually

share most attributes, but some are not shared. For example,

FACULTY and STUDENT are categories of entity type
PERSON. Both share the attributes SSN and NAME, yet

have their own unique attributes RANK and GPA respec-

tively. The ECR model uses diagram notations similar to

Czejdo et al. [8] (See Fig. 5). The categories are shown in

the diagram as hexagons, connected to the entity type with a

subset symbol drawn on the line. Shared attributes are con-
nected to the entity type and non-shared category attributes
are connected to the hexagon. The categories are the focus

for view integration. Categories are defined for each data
source for the integration and those categories are compared

during the process.

3.6. Summary

Discussion on the enhanced power for modeling has

accompanied ER approach for two decades. Smith and
Smith [121 present the concepts of generalization and aggre-

gation. The semantic data model of Hammer and McLeod
[131 introduced the concepts of class and subclass lattices,
as well as other advanced modeling concepts.

Various extensions of the original ER model, as we have
already summarized in previous sections, address the

semantics in various degrees. Behind the syntactical differ-
ences of various extensions is the enriched semantics about

relationships among entities. For example, many of the pro-
posed syntactical changes are around generalization/
specialization, a clear indication of semantic improvement.

The models summarized in this section are stand-alone data
models, but they can also be viewed as stepping-stones

toward object-oriented data models or object-oriented ER
models, as we compare in the next section.

4. Object-oriented ER models

With continuing advances in object-oriented databases,

interest has increased in favor of including features of the
object-oriented paradigm, in order to adapt the ER model
for object-oriented database design. These features include
generalization and inheritance, enforcement of the informa-
tion hiding principle, abstract data type encapsulation and
message passing. The following models incorporate object-
oriented concepts into the ER model.

4.1. The OOER model

Navathe and Pillalamarri [14] use an object-oriented

approach for their data model. Since semantic models

accomplish their goals by using abstraction, which they
define as a “semantically irreducible modeling primitive

that allows us to model a fundamental type of data relation-

ship in a way that hides detail and differences, and concen-

trates on the common properties of a set of objects”, they
present their model in terms of five commonly used abstrac-

tions. These are aggregation (I S-PART-OF), general-

ization (Is-A), classification (IS-A-CLASS-OF),

association (IS-ASSOCIATED-WITH), and identification
(IS-IDENTIFIED-BY).

Navathe and Pillalamarri examined the basic ER model

because of its widespread popularity, but found it deficient
for its failure to explicitly model generalization and classi-

fication, and for its limited capability for describing the

interaction between constructs. This led to the object-
oriented entity-relationship (OOER) model which retains

many features of Chen’s model, but expands its capabilities.
The aggregation abstraction involves the entity (also

referred to as an object), which Navathe and Pillalamarri

define as something that exists in the real world and has

attributes to describe it. Attribute values of a similar type
are grouped into attribute classes or domains. Entities

having similar attributes are classified into entity classes
or entity types, and an entity can be defined as either an

aggregation of attributes or an aggregation of other entities
(which distinguishes the OOER model from the ER model).

Many operations, including update, relational (select, join
and project), comparison, aggregation and arithmetic can be
defined for the entity classes.

With the generalization abstraction, two or more object

classes can be generalized to form a higher level object

class. Specialization is the inverse notion whereby new
object classes can be defined to be subclasses of one or
more object classes. For example, in the OOER diagram

of Fig. 7, EMPLOYEE is a generalization of MANAGER,
ENGINEER and SECRETARY, whereas OVERSEAS-

CUSTOMER is a specialization of CUSTOMER. The con-

struct used is the object class of type superclass or subclass,

which are relative terms since the same object class can be
either depending on whether it is formed by generalization
or specialization. In the case of multiple inheritance, the

user must specify precedence. Generalization object class
relationships can be further defined with Set Exclusion, Set

Intersection or Set Equality constraints. Respectively, these
indicate no common instances, some common instances, or

a 1 : 1 relationship between objects participating in a gen-
eralization. All operations that have been defined for the
entity classes are also applicable to the subclasses and
superclasses.

The classification abstraction is based on the notion of a
set. This concept forces the distinction between individual
instances and a class of those instances. If certain properties
apply to an entire set, then they can be modeled as class
attributes. Grouping of instances can form an entity class, a
relationship class, or a class of a superclass/subclass. In

H. Saiedian/lnformation and Sofhvare Technology 39 (1997) 449-462

DEPARTMENT

Fig. 7. An OOER diagram for a company database.

457

addition, a metaclass is a grouping in which all objects are

themselves classes, in other words a set of sets of instances.

As indicated in Fig. 7, the instances of metaclass PERSON
are entity class CUSTOMER and generalization object class

EMPLOYEE. Aggregate operations, like count, sum, etc.,
can be defined for the class attributes.

The association abstraction in the OOER model is the
relationship, which represents the interaction between
object classes as a higher level object class. It exhibits an

existence dependency on the objects participating in the

association.
Identification is the abstraction used to uniquely identify

the object structures that have been formed. Each entity

class has at least one attribute which is declared as its iden-
tifier (primary key) and is used to access an object. The
instances of a generalization object class can be identified

by the corresponding instances in the defining class(es) or
by any key attributes of the generalization class itself.

Navathe and Pillalarnarri [141 evaluate their OOER
model in terms of its level of object-orientation. They con-

clude that it has structural and operational but not behavioral

object-orientation. Structural object-orientation refers to
allowing for the defining of data structures to represent
complex objects. Operational object-orientation is allowing
the definition of generic operators to deal with complex

objects in their entirety, rather than decomposing into

primitive operations on simpler objects. The OOER model
is defined such that structure and operations are encapsu-
lated together in each object class. However, the syntactic
details for specifying abstract data types, data encapsula-
tion, message passing and operator overloading have yet
to be formulated, so behavioral object-orientation is not in

place.

The OOER model uses conventional ER diagram nota-

tions to denote entity classes, attributes and relationship
classes, with the addition of arrows from related entity

classes pointing to the relationship class diamond. Both
generalization and specialization are represented in the
diagram by a six-sided polygon. The difference is shown
by the direction of the connecting arrow, which is toward

the polygon for generalization and away from the polygon
for specialization. A class is shown in the OOER model as a
five-sided polygon. Objects which form the class are con-

nected by an arrow pointed toward the polygon, whereas
objects that are attributes of the class are connected without

arrows.

4.2. The BIER model

In a behavior-integrated entity-relationship (BIER)
approach to the design of object-oriented databases, Kappel
and Schrefl [15] establish a static model and a behavior

model. The static model represents the structural properties
of real-world objects and the behavior model explains real-

world events in terms of object behavior. While the behavior
model is based on a Petri net graph, the static model uses an
extended ER diagram approach. In the static model, real-
world structures are represented as object types (similar to

entity types in the ER model). Object characteristics are
represented as attributes. The value of an attribute could

be of a data type or an object type. This concept is used to
represent inter-object relationships. Generalization and
inheritance are also included.

The model defines the concepts of “primitive” and

“complex” objects. Primitive objects are stand-alone as
they are not defined upon other objects, whereas complex

458 H. Saiedian/lnfonnation and Software Technology 39 (1997) 449-462

NUMBER(integer) DEPARTMENT

N-(string) +-7
SSN(string) EMPLOYEE
NAME(string)

- ‘i

WORKS-ON
(EE NE(integer)

NAME(string)

Nz(stnng) 4-1

AGE(integer)

Fig. 8. A static BIER model for a company database.

objects are defined upon one or more lower level objects.

Complex objects can be further classified into “group”

objects and “aggregate” objects. A group object is defined

upon lower level objects of the same class, called its
“members”; this abstraction is called grouping. An aggre-
gate object is defined upon lower level objects of different

classes, called its “components,” with this abstraction
being referred to as aggregation. Aggregation and grouping
employ the relationship concept. The lower level objects are
called “independent” if they participate only in a relation-

ship that is represented by the higher level object. They must
exist before the higher level object is created, and they
continue to exist if the higher level object is deleted.

“Dependent” objects are private to a higher level object

and are created and deleted along with that object. In our
example diagram (Fig. 8), DEPARTMENT is an aggregate
object type with dependent component types EMPLOYEE

and PROJECT. This aggregation may be used to represent
the WORKS-FOR relationship type between DEPARTMENT

and EMPLOYEE, and the CONTROLS relationship type
between DEPARTMENT and PROJECT. An EMPLOYEE

object’s WORKS-ON attribute can ha& a value of object
type PROJECT. EMPLOYEE itself is a group object type
with dependent member type, CHILDREN.

4.3. The OOERM model

Like the BIER model [15], the object-oriented entity-
relationship model (OOERM) developed by Gorman and

Choobineh [161 also includes behavioral object-orientation.
Gorman and Choobineh present the object-oriented view as

a natural extension of the entity-attribute-relationship view:
“When we think of an object or entity (e.g. a bicycle), we
consider its attributes, such as color. We also naturally con-
sider the things we can normally do with it (ride it, lock
it.. .).” In defining terms, they discuss an object as “a ‘pack-
age’ of information and a description of its manipulation”.
This corresponds to a set of related variables and a set of
operations on these variables in procedural programming
terms. A message is defined as a specification of one
manipulation on an object, the specification consisting of

the receiver (object to be manipulated), the selector (sym-

bolic name of the manipulation), and optional arguments

(possible other objects taking part). A message resembles
a procedure call. A method is a description of a single type
of manipulation, a procedure-like object found in receivers

and selected in response to messages.

In object-oriented programming, a class or object type
corresponds to an entity type in the ER model, and the
object’s set of variables and methods correspond to attri-
butes. The visibility of an object, which refers to what
objects it can access and what objects it can be accessed

by, is similar to the relationship concept in the ER model.
Message passing uses object visibility, allowing the sending

object to access the variables of the receiving object.

An OOERM schema consists of a number of diagrams,
called object-oriented entity-relationship diagrams
(OOERD). OOERDs are used to represent both the struc-

tural and behavioral properties of the database. A “struc-
tural” OOERD is drawn to define the classification and
hierarchy of objects, including inter-object relationships.

In addition, a separate OOERD is drawn for modeling
each application process. In an OOERD, entity classes and
relationships use the normal rectangles and diamonds, while
attributes are represented by circular nodes with the attribu-

te’s name beside (Fig. 9). A generalization hierarchy is

represented by a fat double-lined arrow pointing to the
higher level class. If the tail of the arrow is hollow, it repre-

sents a subclass that is a subset of the higher level class with
no additional properties. If the tail is filled in, it represents a
subclass that is a specialization of the higher level class with

its own additional properties. As shown in Fig. 9, AUTHOR
is a subset of PERSON whereas STUDENT is a specializa-
tion of PERSON.

Methods are shown in an OOERD as ovals with the
method name inside. They are attached to their entity
class by a solid line, similar to an attribute. Message passing
is shown by a dotted-line arrow from the sending class to the
receiving class. The position of the message in a sequence of
messages is shown by an integer in parentheses. Optional
parameters being sent are shown above the arrow and
optional results returned are shown below the arrow.

H. Saiedian/lnformation and Sojiware Technology 39 (1997) 449-462 459

Fig. 9. A sample structural OOERD.

Forking dotted-line arrows are used to indicate conditional

branching and each branch is marked with “T” for true or

“P” for false. These methods, message passing and branch-
ing indicators are referred to as dynamic icons. All entity

classes have five predefined operations as implicitly
specified properties. These operations are “create”, “add

to subclass”, “remove from subclass”, “delete” and

“select”. They have the same default definition for all

classes. Messages invoking these predefined operations
can be specified interactively by the user or in the action
portion of methods. A “where” clause, similar to SQL, is
used to identify specific class instances to which the opera-
tion applies. The predefined operations are represented in

the OOERD with a method oval superimposed over the
entity class to which it applies. The letter representing the

predefined operation is placed in the right portion of the oval
and the ordinal sequence of the operation is in parentheses

in the left portion of the oval. Another feature of this model
is attribute derivation. In this case the value of an object’s

attribute can be derived as a result of a message received by

that object.

A process can have a sequence of many operations.

OOERDs are intended to model individual application pro-
cesses encoded in the data model scheme description. The

diagram provides a pictorial view of state changes resulting

from process execution. Therefore, the authors recommend

that a separate OOERD should be drawn for each applica-

tion process and each OOERD should contain only the

structural and operational details relevant to that process.
For example, in the OOERD for the “Book-Borrowing”

process (Fig. lo), only the relevant classes and operations

are shown.

4.4. Comments

In the 1980s we have witnessed a shift in the emphasis of

data modeling: the general interests related to conceptual
modeling (inspired partly by artificial intelligence) [171
have converged to object-oriented data models. According

to Hull and King [2], essentially, semantic models encapsu-
late structural aspects of objects whereas object-oriented

languages encapsulate behavioral aspects of objects.
Object-oriented data models have incorporated some

important concerns addressed by conceptual modeling
(such as aggregation) as well as concerns addressed by

logical modeling models (such as non-first normal form in
some extended relational models and navigation in the

network model). As a consequence, the boundary between
logical/conceptual models is blurred. An object-oriented
data model can be viewed as a model at the level of
conceptual modeling as well as a model at the logical

level.
As pointed out by Loomis [181, an object model includes

relationships between objects. These relationships, which

are associations between objects, are like the relationships
between entities in ER data modeling. An object model may
also include containment relationships and recursive

structures. An object DBMS builds these relationships into

the object database and can use them directly at runtime
when returning objects to applications. The relationships

(3) j I /’
’ /’

h___________________---_-----------_-$4,

Fig, 10. An OOERD for the “book-borrowing” process.

460 H. SaiedianAtzformation and Software Technology 39 (1997) 449-462

in ER data models are purely abstract, while object-

oriented data models carry relationship semantics into

implementation.
Another aspect that must be pointed out is the behavior

part of a full fledged object-oriented database. Chen [19]

argues that ER does have a behavior part, but without giving

any explanation. He claims, “. . . in the ER world view,

‘data’ and ‘processes’ are on equal footing, while in the

object-oriented world view, ‘processes’ are encapsulated

with the data accessed. If we think deeply, the encapsulation
of processes with data is a ‘packaging’ issue and has nothing

to do with the argument on whether object-orientation has

more dynamic behavior specifications than ER (or other

paradigms). The object-oriented way of packaging pro-
cesses with data will work well in certain kinds of applica-

tions but not in other applications.” Although Chen himself
does not provide any elaboration, some models as summar-

ized in this section have indicated how object-orientation
and ER can approach each other.

5. Object-oriented schema diagrams

Finally, let us take a look at some related issues beyond

ER modeling. Particularly, we provide a brief sketch of

object-oriented schema diagrams as used in ODMG-93 [20].
Graphical representations have been used in object-

oriented data models to represent database schema. We
will refer to them as object-oriented schema diagrams.

Here we examine the graphical representation used in
Object Database Standard ODMG-93, which narrows the
gap between ER modeling and object-oriented modeling.

ODMG-93 has adopted basic notations from ER diagrams
with important extensions. The graphical representation
uses the following notations:

1. object types are shown as rectangles;

2. relationship types are shown as labeled lines;
3. the cardinality permitted by the relationship type is indi-

cated by the arrows on the ends of the lines:

4 + one-to-one

- *t one-to-many
441 Wb many-to-many

4. large gray arrows point to super-type from subtype.

In this graphical representation, object types are repre-
sented in exact the same way as entity types in ER models.
This is a clear indication that object types are extended from
entity types. Relationship types have made significant
changes. The traditional diamond representation in ER dia-
grams is replaced by labeled lines. The labels are the names
of the relationship types; however, relationships in ODMG-
93 have directions. A relationship in ER diagrams is now
replaced by a pair of relationships (called inverse relation-
ships) with opposite directions. For example, the connection
between two object types course and student can be

represented by relationship take from student to

course and its inverse relationship taken-by from

course to student. An ODL (Object Definition Lan-

guage) definition for the interface of course should include
the following:

interfacecourse 1

. . .
relationshipset
taken_by inverse
. . .

< Student> is_

Student:takes;

Fig. 11 is an example of object-oriented schema diagram

(attributes not included).
The improved representation of relationships in ODMG-

93 diagrams, along with the explicit inclusion of cardinality

as mentioned earlier (such as one-to-many or many-to-
many), has brought significant semantic enrichment. The

lack of directions in relationship types in the original ER

diagram has always been a potential source of confusion in
semantics; the problem is now solved. More importantly,
the explicit inclusion of the directions can facilitate the

construction of navigation paths in answering queries. Con-

struction of navigation paths is crucial to object-oriented
databases.

A sample query in SQL-like syntax is:

select teaching (student: x-name,
professor: z.name)

from x in Students, y in x. takes, z in
y.taught-by
where z . rank = “associate_professor”

Note that directions of relationship are important in
specifying query paths: the relationship takes follows

the direction from student to professor, whereas
the relationship taught-by follows the direction from
prof essortostudent.

6. Discussion

In this paper we started by viewing ER as the first rela-

tionship-centered data model and we examined and com-
pared various extensions. Although simple extensions to the

original model have only added minor improvements,
extended ER models have significantly improved the mod-
eling power, bridging the gap to object-oriented data mod-
els. We noted that behind syntactical extension lies
semantical enrichment.

The entity-relationship model is a very powerful and
useful tool for many modeling purposes. It is very popular
and all authors speak highly of its capabilities. Its funda-
mentals are relatively simple, yet effective, which seems to
explain its wide following. The diagram literally draws a

H. Saiedian/lnformation and Software Technology 39 (1997) 449-462 461

taken_byi”‘-- I 9

m
taught-by l-._.- I3

teaches
pzz-J

Fig. Il. An object-oriented schema diagram.

picture of the real world being modeled, and a picture can be

understood by even the less sophisticated end users.
The enhancements and variations discussed in Section 2

add relatively little to the power of the model. Many of them

are differences reflecting personal preferences, such as ways

of drawing the diagrams. In fact, some of these may hinder

the use of the basic model because they could cause con-
fusion. It may help to have a standard for ER diagrams so
that one set of symbols could be used by all database
designers. This could be particularly helpful to end users

who may interact with many designers but would not like
to re-learn the notations each time.

Some of the differences shown in Section 2 are with
respect to terminology or presentation. The original ER

model [I] was very straightforward and practical. Later
authors attempted to give more scholarly dissertations and
spent more time on definitions and terminology. More

recent authors have tended to use terms such as “object”

and “class” that are more consistent with object-oriented
modeling concepts. One concept from Section 2 that has a
notable difference is cardinality. Chen’s model relied on the
1 : 1, 1 : N, M : N notation, but the (min-card,max-card) nota-

tion adds the capability to place lower and upper limits on an
entity’s participation in a relationship. This could be used to
specify cardinality ratios as well as participation constraints.
By contrast, the composite attribute concept may be lost by

the the time the diagram is mapped to a relation. However, it
is still helpful for understanding the relationship among

attributes during the conceptual modeling and analysis

stages.
The major contribution of the extended models in Section

3 is generalization. While there are some differences in

definitions and diagrams, the point is that a hierarchy of
classes is recognized and the inheritance concept is used

either to share or to separate specific attributes. In Section
4, we examined the OOER model by Navathe and Pillala-
marri [141 that adds more to the terminology discussion, but
it is similar to those discussed in Section 3. A notable excep-
tion is the “class” concept represented by a five-sided poly-
gon, particularly when used as a metaclass. They present a
commendable dissertation in object-oriented terms.

The BIER model by Kappel and Schrefl [151 and the
OOER model by Gorman and Choobineh [16] both repre-

sent a considerable advancement, as both can be regarded as
truly object-oriented data models. The incorporation of

methods, messages and operations makes these a better

choice for object-oriented database design. As object-
oriented databases become more popular, these models
and their inevitable clones will undoubtedly find a more

widespread audience. Finally the object-oriented schema
diagrams as used in ODMG-93 reveal the prevalence of
ER notations, as well as the conceptual relationship between

these two data modeling approaches (i.e. entity-
relationship and object-oriented).

7. Conclusions

In the past two decades we have witnessed a very power-
ful tool, the entity-relationship model, grow into a widely

recognized technique. The enhancements to this model, par-
ticularly generalization and an object-oriented approach,
have added capability and power to the original model.
Many articles written within the past decade have helped

by discussing and explaining the concepts, as well as by
offering examples of the model’s use. Many of the exten-
sions have added a little to the expressive power of the ER
model, but later extensions, especially those related to
object concepts have introduced some added capabilities.

Acknowledgements

The author would like to acknowledge Munib Siddiqi’s
efforts and contributions during the earlier parts of this pro-
ject. Comments by Z. Chen have been very helpful.

References

[I] P. Chen, The entity-relationship model: Towards a unified view of

data, ACM Trans. Database Systems I (1) (1976) 9-36.

462 H. SaiedianLnformation and Software Technology 39 (1997) 449~462

[2] R. Hull, R. King, Semantic database modelling: Survey, applications, [121 J. Smith, D. Smith, Database abstractions: Aggregation and general-

and research issues, ACM Computing Surveys 19 (3) (1987) 201-260. ization, ACM Trans. Database Systems 2 (2) (1977) 105-33.

[3] T. Jones, I. Song, Analysis of binary/ternary cardinality combinations [13] M. Hammer, D. McLeod, Database description with SDM: A

in entity-relationship modeling, Data and Knowledge Engineering 19 semantic data model, ACM Trans. Database Systems 6 (3) (1980)

(1) (1996) 39-64. 351-386.

[4] C. Batini, S. Ceri, S. Navathe, Conceptual Database Design,

Benjamin/Cummings, Redwood City, CA, 1992.

[5] T. Teorey, D. Yang, and J. Fry. A logical design methodology for

relational databases using the extended E-R model. ACM Computing

Surveys, 18(2):197-222, 1986.

[6] V. Markowitz, A. Shoshani, Representing extended entity-relation-

ship structures in relational databases: A modular approach, ACM

Trans. on Database Systems 17 (3) (1992) 423-464.

[7] S. Navathe, R. Elmasri, J. Larson, Integrating user views in database

design, IEEE Computer 19 (1) (1986) 50-62.

[S] B. Czejdo, R. Elmasri, M. Rusinkiewicz, D. Embley, A graphical data

manipulation language for an extended entity-relationship model,

IEEE Computer 23 (3) (1990) 26-35.

[9] R. Elmasri, S. Navathe, Fundamentals of Database Systems,

Benjamin/Cummings, Redwood City, CA, 1994.

[lo] C. Wertz, Relational Database Design, CRC Press, Greenwich, CT,

1993.

[14] S. Navathe, M. Pillalamarri, Toward making the ER approach object-

oriented, in: C. Batini (Ed.),,Entity-Relationship Approach: A Bridge

to the User, Proc. 7th Int. Conf. on Entity-Relationship Approach,

1988, Rome, Italy, North-Holland, 1988.

[151 G. Kappel, M. Schrefl, A <behavior-integrated entity-relationship

approach for the design of object-oriented databases, in: C. Batini

(Ed.), Entity-Relationship Approach: A Bridge to the User, Proc.

7th Int. Conf. on Entity-Relationship Approach, 1988, Rome, Italy,

North-Holland, 1988. ’
[161 K. Gorman, J. Choobineh, The object-oriented entity-relationship

model (OOERM), J. Management Inf. Sys. 7 (3) (1991) 41-65.

[171 M. Brodie, J. Mylopoulos, J. Schmidt, On Conceptual Modelling:

Perspectives from Artificial Intelligence, Databases, and Program-

ming Languages, Springer-Verlag. New York, NY, 1984.

[18] M. Loomis, Object Databases’: The Essentials, Addison-Wesley,

Reading, MA, 1995.

[I l] U. Hohenstein, M. Gogolla, A calculus for an extended entity-

relationship model incorporating arbitrary data operations and aggre-

gate functions, in: C. Batini (Ed.), Entity-Relationship Approach: A

Bridge to the User, Proc. 7th Int. Conf. on Entity-Relationship

Approach, 1988, Rome, Italy, North-Holland, 1988.

[19] P. Chen, Entity-relationships vs. object-orientation, in: G. Pemul,

A.M. Tjoa (Eds.), Proc. 11th Int. Conf. on Entity-Relationship

Approach, October 1992, pp. l-2.

[20] R. Cattel (Ed.), Object-Database Standard: ODMG-93, Morgan

Kaufmann, San Mateo, CA, 1994.

