
An Efficient Algorithm to Compute the
Candidate Keys of a Relational Database Schema

HO S S E I N SAI E D I A N A N D TH OM A S SP E N C E R

Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182, USA
email: hossein@cs.unomaha.edu

We provide an efficient algorithm for computing the candidate keys of a relational database schema.
The algorithm exploits the ‘arrangement’ of attributes in the functional dependencies to determine
which attributes are essential and useful for determining the keys and which attributes should not be
considered. A more generalized algorithm usingattribute graphsis then provided which allows a
uniform and simplified solution to find all possible keys of a relational database schema when the

attribute graph of Functional Dependencies (FDs) is not strongly connected.

Received August 1993; revised February 1996

1. BACKGROUND

A relational database schemaR, denoted byR�A1;A2; . . . ;An�,
is a set of attributes. An instance ofR, denoted byr, is a subset
of the Cartesian product of the domains of attributes ofR, i.e.
r�R� � domA1� domA2 � . . .� domAn. The elements of a
relation are referred to as tuples. Akeyof relationr is a subset
of attributes ofR with the following two properties:

. Uniqueness.No two distinct tuples ofr have the same
values for the key attributes. Thus ifK denotes a key ofr,
then for any two distinct tuples� and� of r,��K� 6� ��K�.

. Minimality. No proper subset ofK should have the above
property.

K is considered asuperkeyif it satisfies the uniqueness but
not the minimality property. Those attributes ofR that
participate in a key are calledprimeattributes. If a relation
has more than one key, each key is referred to as acandidate
key of R.

Functional dependencies(FDs) represent the inter-
relationship among attributes of a relation. A functional
dependency is denoted byX ! Y whereX � R andY � R,
and is read ‘X functionally determinesY.’ Such a
dependency specifies the following constraint on the current
value ofr: if 8�; � 2 r; ��X � � ��X� then��Y� � ��Y�.

Given a set of FDsÿ for R, ÿ is said tologically imply
X ! Y (written asÿ � X ! Y) if every instancer of R that
satisfies the dependencies inÿ also satisfiesX ! Y. The
closureof ÿ, denoted byÿ�, is a set of all FDs that are
logically implied by ÿ, i.e. ÿ� � fX ! Yjÿ � X ! Yg.
The inferencerules [1] (also in Ullman [2, pp. 384–385])
can be used to infer all FDs ofÿ�.

The inferences rules are as follows [2, pp. 384–385]:

. If Y � X � R thenX ! Y,

. X ! Y, thenXZ! YZ whereZ � R,

. fX ! Y;Y! Zg � X ! Z,

. fX ! Y;X ! Zg � X ! YZ,

. If X ! Y andZ � Y, thenX ! Z, and

. fX ! Y;WY! Zg �WX! Z.

A more formal definition of the key for a relationR can
now be given. Given a relationR with attributes
A1;A2; . . . ;An, and a set of FDsÿ, K � R, is a key ofR if:

. K ! A1A2 . . .An 2 ÿ

� and
. For noY;Y � K; is Y! A1A2 . . .An 2 ÿ

�.

In addition to computing the closure of a set of FDsÿ,
inference rules can be employed to compute the closure of a
set of attributesX . The closure of a set of attributesX ,
written asX�, is the set of attributesA that are functionally
determined byX, that is,X ! A can be deduced fromÿ via
inference rules.X� is called the closure ofX underÿ.

2. COMPUTING THE CANDIDATE KEYS OF R

A universal relation is a relation which includes all
attributes of the database. Given a universal relation
scheme,R, and a set of functional dependencies,ÿ, it is
essential to determine correctly all candidate keys ofR.
Most database authors provide a definition for the key, but
no algorithm for computing it. Others, e.g. Maier [3] and
Ullman [2], provide algorithms for computing the closure of
a set of attributes (or a set of FDs) but the calculation of a
key is left to the readers using the closure algorithms.
Determining the candidate keys for a small relation schema
with a small set of FDs may be trivial but, if a relation has a
relatively large number of attributes and/or FDs, then
determining the keys may not be a trivial process. Lucchesi
and Osborn [4] designed an algorithm which finds all the
keys and whose running time is a polynomial of the size of
the input and the size of the output. Specifically, their
algorithm runs inO�FKA�K � A��, whereA is the number
of attributes,F is the number of functional dependencies,
andK is the number of keys returned. We will re-visit this
algorithm in Section 4.

Elmasri and Navathe [5] offer the following algorithm:

set K R;
for each attribute A 2 K

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

compute fK ÿ Ag� with respect to ÿ

if fK ÿ Ag� contains all attributes of R then

set K K ÿ fAg

The above algorithm has one major deficiency: it returns
only one key forR, and the returned key depends on the
order in which attributes were removed. For example, for
R�ABCDEF� with a set of FDsÿ, if we start removing
attributes from the right side, that is,F, followed by E,
followed by D, we may conclude thatABC is a key, while
not realizing that, for example,E by itself, orF by itself, or a
combination ofEF, or E or F combined with any of the
attributesA, B or C are also keys ofR. An alternative
algorithm for finding a single key is given by Kundu [6].
(We will apply our algorithm to one of the examples in [6]
in Section 3 and invite interested readers to compare the two
solutions.) For some rare applications, itmaybe enough to
find only one candidate key and thus does not matter which
key is found. The problem of finding a candidate key is
much easier than finding all the candidate keys. In practice,
it is important to find all the candidate keys. Our algorithm
will find not one but all the candidate keys.

Using the closure algorithms while not considering the
arrangement of attributes inÿ may be time consuming and
inefficient. Some attributes may never participate in a key.
Consideration of other attributes may lead to superkeys
while late consideration of certain other attributes may
simply prolong the process or lead to incorrect answers.

We believe that a certaincategorizationof attributes
(based on their appearance on the left-hand side and right-
hand side of FDs) could expedite the process substantially
and lead to correct solutions, perhaps early in the process.
This categorization includes determining those attributes
that must be part of a key those attributes that will not be
part of any key and those attributes that may be part of the
key. The algorithm is described in Section 3. Examples are
provided to illustrate the algorithm.

We will introduce a generalized algorithm in Section 4
which usesattributegraphs to represent data dependencies.
This algorithm provides a uniform and simplified solution to
find all possible keys of a relational database scheme when
the attribute graph of FDs is notstrongly connected. We
note here that graph algorithms have been used in literature
to represent and manipulate functional dependencies in
relational database schemas. Of interest is an article by
Ausiello, D’atri and Sacca` [7] who provide an approach for
homogeneous treatment of several related aspects of
relational database schemas, namely closure, minimaliza-
tion and synthesizing a relational scheme in 3NF. But key
finding issues are not treated there. Yet another related
article by Biskupet al: [8] explores the relational database
schemes having a unique minimal key but the emphasis is
on their relationship with normal form relation schemes and
the lattice theoretic issues.

3. THE KEY FINDING ALGORITHM

We assume a relation schemeR and aminimalset of FDsÿ.
(Since the term ‘minimal’ has a different meaning in the

literature, some database authors, e.g. Maier [9], refer to a
minimal set of FDs as acanonical set of FDs.) A set of
functional dependenciesÿ is minimal (or canonical) if it has
the following properties [2, pp. 390–391]:

1. The right side of every FD contains a single attribute.
2. There is no extraneous attribute on the left side of any

FD, i.e. for no X ! A in ÿ, and Y � X is
ÿÿfX ! Ag [fY! Ag equivalent toÿ.

3. There are no redundant FDs inÿ, i.e. for noX ! A in ÿ

is the setÿÿfX ! Ag equivalent toÿ.

The following three steps are used to find the candidate keys
of a relation scheme.

Step 1: DeterminingL;B andR

Given a relationRand a set of FDsÿ, divide the attributes of
R into three distinct setsL;R andB. The setL contains
those attributes ofR that occur only on the left-hand side of
some FDs inÿ. Similarly, the setR represents those
attributes that occur only on the right-hand side of some FDs
in ÿ, while B is the set representing those attributes that
occur on both sides of some FDs inÿ. Observe that
L \R � ; andL \ B � ; andR\ B � ;. Furthermore, we
assume throughout this article thatL [R [B � R.

Step 2: ConsideringL

Consider the setL. If L is not empty, then all attributes
participating inL are prime attributes:

LEMMA 1. For every attribute A2 R, if A2 L, then A
must be part of every candidate key of R.

Proof 1. SupposeK is a candidate key of R andA=2K.
By definitionK ! A 2 ÿ

�

: This implies that there must be
an FDX ! A. HoweverX ! A contradictsA 2 L. ThusA
must be a part ofK. h

We begin our process by computing the closure of attributes
in L. If attributes contained inL form a key forR, thenL
will be the only key ofR:

LEMMA 2. If L� � R underÿ, thenL forms the only key
of R. (In other words, ifL ! R 2 ÿ

�, thenL would be the
only key of R.)

Proof 2. Let K be a key ofR. By Lemma 1L � K.
Since L� � R, if L � K, then K would be a superkey.
ThereforeL � K: h

If a key is found, stop. Otherwise proceed to Step 3.

Step 3: ConsideringB

If the setL does not produce a key forR in Step 2, then
begin adding attributes, one by one, from the set denoted by
B to attributes ofL and compute their closure. Attributes
should be added toL in turn to ensure that all candidate
keys of R are found. (If L is empty, then begin by
computing the closure of attributes in the setB.)

125A N EFF I C IE NT A L GOR I T H M T O COM PU T E T HE CA NDI DA TE K E YS O F A RE L AT IO NAL DAT AB ASE SC HE M A

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

Please note that since we are only interested in computing
the candidate keys of a universal relation, attributes inR
need not be considered as they will never end up in a key as
shown in the following lemma:

LEMMA 3. For every attribute A2 R, if A2 R, then A
will not be part of any candidate key of R.

Proof 3. SupposeK is a key ofR. Furthermore, suppose
there exists an attributeA 2 R. (Thus, A=2L and A=2B.)
AssumeA is a part ofK. Let X � �K ÿ A��: SinceK is key
of R, X � R. Let Y � Rÿ X . Also, sinceK is a key ofR,
K ! Y. There must exist an FDAW! V, whereV � Y and
W may or may not be empty. ButAW! V contradicts
A 2 R. ThereforeA cannot be a part ofK. h

EXAMPLE 1

Consider the relation schemaU�CTHRSG� introduced by
Ullman [2, pp. 407] to represent a small database in a
university, whereC � course,T � teacher,H � hour,R�
room, S� student andG� grade, and the following
functional dependenciesÿ:

1. C! T, i.e. each course has one teacher.
2. HR! C, i.e. only one course meets in a room at one

time.
3. HT ! R, i.e. a teacher is in at most one room at one

time.
4. CS! G, i.e. each students receives one grade in each

course.
5. HS! R, i.e. a student can be in only one room at a given

time.

Solution

Step 1: DetermineL;B; andR: L � fHSg;B � fCRTg;
andR � fGg. According to Lemma 1,H andSmust be part
of any key while, according to Lemma 3,G will not
participate in any key. Note that according to the
algorithm,

. we need not compute the closure of any single attribute
becauseL contains two attributes (namelyH andS),

. we need not consider attributeG because it appears inR,
and

. we should consider attributes ofL (namely,H and S)
before considering any other combination of attributes.

Step 2: ConsideringL: L� � fHSg� � HSRCTG. . .
ThusfHSg is a key ofU . According to Lemma 2,fHSg is
the only key of U . We need not consider any other
combination of attributes.

Note that in Example 1, we considered a schema for
which the setL was non-empty and formed the only key for
the schema. In other words, we only had to considerL (i.e.
step 2 of the algorithm). For the next example, we will
consider a schema for whichL will be non-empty but will
not form a key.

EXAMPLE 2

We now consider one of the examples of Kundu [6]. Note
that our algorithm will findall of the candidate keys. A
relational schemaS�ABCDEF� with the following set of
functional dependencies is assumed:ÿ� fAD! B;
AB! E;C! D;B! C;AC! Fg.

Solution

Step 1: DetermineL;B; andR: L � fAg;B � fBCDg;
R � fEFg. According to Lemma 1,A must be a part of
every candidate key ofS while, according to Lemma 3,E
andF may never participate in any. We begin by computing
the closure ofL in Step 2.

Step 2: ConsiderL only: L� � A� � A. ThusA is not a key
of S.

Step 3: ConsiderB: We now consider adding attributes
from B to L and compute their closure to find all candidate
keys:

fABg� � ABECDF: AB is a key of S:

fACg� � ACDB. . . AC is a key of S:

fADg� � ADB. . . AD is a key of S:

Thus,AB, AC andAD are the only candidate keys ofS. No
other single attribute or combination of attributes needs to
examined. h

Brief Discussion. According to our algorithm,AB, AC and
AD are the only keys ofS. Note that in order to find the
key(s) ofS:

. we did not need to compute the closure of any single
attribute other thanA,

. we did not need to consider any combination such as
BC;BD;DC;BCD, etc. becauseA must be in every
candidate ofS,

. we did not need to consider any combination ofA with
eitherE or F because these two attributes may never be
in any key ofS, and

. other combinations, e.g.ABC, will yield a superkey.

If L � ; and R 6� ;, it would imply that except for
attributes ofR, every other attribute has a fair chance of
being part of a candidate key. IfL � ; andR � ; (that is,B
contains all attributes), then it implies the worst case
scenario, i.e. every attribute might be a potential component
of a key. One solution is to use the existing approaches. We
provide a better approach in the following section.

4. A MORE GENERAL HEURISTIC

Even ifB contains all the attributes, it is still often possible
to generalize these ideas to obtain an algorithm that is
substantially better than the brute force algorithm of trying
all possible sets of attributes to find the keys. To define this
algorithm, we need some additional notation.

126 H. SAI E DI AN AND T. SPE NCE R

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

DEFINITION 1. Let R be the relational database scheme we
want to compute the keys of, and letA be the set of
attributes ofR. Then, ifB� A, define �

B � Aÿ B.

We will have occasion to talk about several different
relational database schemes with attributes that are subsets
of A. Thus, if we make a statement likeX ! Y, it matters
which relational database scheme we are talking about,
since the different relational database schemes may have a
totally different set of functional dependencies.

DEFINITION 2. We write �X ! Y�R0 to mean that X
functionally determinesY in the relational database
schemeR0. We only write X ! Y if it is clear which
relational database scheme we are talking about. Similarly,
we write �X��R0 � Y to mean that the closure ofX in the
relational database schemeR0 is Y.

The final tool that we need is the attribute graph of a
relational database scheme.

DEFINITION 3. The attribute graphG�R� of the relational
database schemeR is a directed graph with one vertex for
each attribute ofR. There is an edge fromA to B if and only
if A is on the left side of some functional dependency andB
is on the right side of the same functional dependency.

If G�R� is not strongly connected, then the problem of
finding the keys forR splits into the problems of finding the
keys of two smaller relational database schemesRc andRr

containing disjoint subsets of the attributes ofR. Consider
the relational database scheme with attributes
fA;B;C;D;E;Fg and functional dependenciesfA! B;
B!A;B!C;C!D;D! C; BD!E;E! F;F!Eg.
Its attribute graph is shown in Figure 1. To see howRc andRr

are defined, we need some concepts from graph theory.

DEFINITION 4. Two verticesu andv in a directed graphG
are in the same strongly connected componentif andonly if
there is a path fromu to v and fromv to u.

DEFINITION 5. A strongly connected componentC of a
directed graphG is a source componentif all edges to a
vertex in C also come from vertices in C.That is, there are
no edges from outside a source component into such a
component.

In the graph of Figure 1 there are three strongly connected
components,AB, CD andEF. The componentAB is a source
component; the componentsCD and EF are not source
components.

Now suppose thatC is a source component of the
attribute graph ofR and that the vertices inC correspond to
the attributes in some setC. Clearly, any key ofR must
functionally determine all the attributes inC. Thus, it makes
sense to find all minimal sets of attributes that functionally
determineC. SinceC is a source component, there is no
functional dependency with an attribute inC on the right
side and an attribute not inC on the left side. Thus, any
minimal set of attributes that functionally determineC
cannot contain any attribute that is not inC. Thus the
problem of finding minimal sets of keys the functionally
determineC is the problem of finding the keys of a smaller
relational database scheme. We call a relational database
scheme that can be used to find the minimal sets of keys that
functionally determine C a restriction of R to C,
restrict�R; C�. More formally, we have the following:

DEFINITION 6. If R is a relational database scheme with
attributesA andB � A, thenR0 is a restriction ofR to B, if
B is the set of attributes ofR0 and for all X ;Y � B,
�X ! Y�R0 if and only if �X ! Y�R.

If R is the relational database scheme whose attribute
graph is in Figure 1, thenR0 with attributesfA;Bg and
functional dependenciesfA! B;B! Ag is a restriction of
R to B. Restrictions defined this way have the property we
want.

LEMMA 4. If C is the set of attributes corresponding to a
source component of the attribute graph of a relational
database scheme R and R0 is a restriction of R toC, then K is
a key of R0 if and only if K is a minimal set of attributes that
functionally determineC in R0.

Proof 4. Let K � C be a set of attributes. Note that, by
the definition of restriction,�K ! C�R0 if and only if
�K ! C�R. Thus,K is a key or superkey ofR0 if and only if
K functionally determinesC in R.

We also need to show that minimality is preserved.
Suppose thatK is a minimal set of attributes such that
�K ! C�R, but thatK is a superkey, not a key, ofR0. But,

127A N EFF I C IE NT A L GOR I T H M T O COM PU T E T HE CA NDI DA TE K E YS O F A RE L AT IO NAL DAT AB ASE SC HE M A

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

FIGURE 1. An attribute graph.

then there existsK 0 � K that is a key ofR0. Moreover, by the
definition of restriction, �K 0 ! C�R, contradicting the
minimality of K. Alternatively, suppose thatK is a key of
R0, butK 0 � K satisfies�K 0 ! C�R. But then,K 0 is a key or
superkey ofR0, contradicting the fact thatK is a key ofR0.
Therefore, the keys ofR0 are the minimal sets of attributes
that functionally determineC in R. h

If C is the set of attributes corresponding to a source
component of the attribute graph ofR, then a restriction ofR
to C is easy to calculate. Letrestrict�R; C� be the relational
database scheme with attributesC and whose functional
dependencies are calculated by the following procedure.
Start with the functional dependencies ofR and remove all
functional dependencies that contain an attribute in�

C on the
left side. Next remove all attributes in�C from any of the
functional dependencies that remain. Finally, all functional
dependencies with an empty right side are trivial, so remove
them. The result is clearly a relational database scheme
whose attributes areC, but more is true.

LEMMA 5. The relational database scheme restrict�R; C�
defined above is a restriction of R toC, provided thatC is the
set of attributes associated with a source component of
G�R�.

Proof 5. Abbreviate restrict�R; C� by R0. Note that
every functional dependency ofR0 is also a functional
dependency ofR. Thus if �X ! Y�R0 , then�X ! Y�R.

Proving the converse is more difficult. Suppose that
�X ! Y�R. We would like to see that ifX;Y � C, then
�X ! Y�R0 . This functional dependency can be derived
from a sequence of functional dependencies�X ! Z0�R;

�X ! Z1�R; �X ! Z2�R; . . . �X ! Zk�R, where Z0 � X ,
Y � Zk, andZi�1 � Zi [Vi , whereUi ! Vi is a functional
dependency ofR and Ui � Zi . We would like to see that
�X ! �Z0 \ C��R0 ; �X ! �Z1 \ C��R0 ; �X ! �Z2 \ C��R0 ; . . .

�X ! �Zk \ C��R0 is a sequence of functional dependencies
in R0. The proof is by induction. Recall thatZ0 � X � C, so
the first functional dependency is just�X ! X�R0 . Now
suppose that�X ! �Zi \ C��R0 . There are two cases
depending on whetherVi \ C� ;. If Vi \ C� ;, then
�Zi [Vi� \ C� Zi \ C, so �X ! �Zi�1 \ C��R0 , since
Zi�1 \ C� Zi \ C. Alternatively, if Vi \ C6� ;, thenUi � C,
sinceC is the set of attributes from a source component of
G�R�. Moreover, �Ui ! �Vi \ C�� is a functional depen-
dency of R0. This means that Ui � Zi \ C, so
�X ! ��Zi \ C� [Ui��R0 , so �X ! ��Zi \ C� [�Vi \ C���R0 .
Thus, in either case,�X ! �Zi�1 \ C�R0 �, and by induction
�X ! �Zk \ C��R0 . SinceY � Zk \ C, we have�X ! Y�R0 .
This is what we needed to show thatR0 is a restriction ofR to
C. h

Intuitively, the proof of the preceding Lemma says that
sinceC is the set of attributes corresponding to a source
component ofG�R�, any derivation of�X ! Y�R with
Y � C can be mimicked inR0. This assumption is necessary
to the proof of the preceding Lemma. Indeed, the general-
ization of the Lemma to arbitrary sets of attributes is false.

In the example of Figure 1, recall thatfA;Bg is a source
component. Thusrestrict�R; fA;Bg� has attributesA andB
and the functional dependenciesA! B andB! A.

Once we have found the keys ofrestrict�R; C�, we would
like to add attributes to them to make them keys ofR. Recall
that if X is a set of attributes ofR then theclosureof X ,
written X�, is the set of all attributes thatX functionally
determines. LetK1 andK2 be keys ofrestrict�R; C�. Then,
K1 � C andK2 � C. Moreover,K1 andK2 each function-
ally determineC in R, and, hence, each other. Therefore,
�K
�

1 �R � �K
�

2 �R. In the example of Figure 1, the two keys of
restrict�R; fA;Bg� are A and B. It is easy to verify that
A� � B� � ABCDEF, so the keys of this relational
database scheme areA andB.

This suggests that the problem of extending a key of
restrict�R; C� to a key ofR, depends only onC and not on the
key to be extended. Intuitively, then the problem of
extending a keyK of restrict�R; C� to a key of R
corresponds to computation of the keys of another relational
database scheme that has attributes in�C, and whose
functional dependencies come from assuming that all
attributes inC are give for free. We call such a relational
database scheme acontraction of R to�C. It turns out that not
all attributes in �

C should be in the contraction ofR to �

C.
Note that ifK is a key ofrestrict�R; C�, then there may be an
attribute D 2 �K� ÿ C�. If such an attribute were in the
contraction ofR to �

C, it would be automatically functionally
determined by any set of attributes, including the empty set.
Since such attributes are not usually in relational database
schemes, we omit them from the contraction. More
formally, we have:

DEFINITION 7. Let R be a relational database scheme with
attributesA and letB� A. A contraction ofR to �

B, is a
relational database schemeR0 whose attributes areAÿB�

and whose functional dependencies satisfy for all
X;Y � AÿB�, �X ! Y�R0 if and only if ��X [B� ! Y�R.

In the first example,C� � A, so the empty relational
database scheme with no attributes is a contraction ofR to
�

C. It is instructive to consider an example with a less trivial
contraction. Consider the relational database schemeR2 with
attributesfA;B;C;D;E;F;Gg and functional dependencies
fA! B; B! A; B! D; BC! E; DG! F; EF! Gg.
The attribute graph for this relational database scheme is
shown in Figure 2. The attribute graph has two source
components,fA;Bg andfCg. Suppose that we choose the
source componentfA;Bg. Then restrict�R2; fA;Bg� has
two keys A and B. In the original relational database
scheme R2, A� � B� � fA;B;Dg. If we consider a
relational database scheme,contract�R2; fC;D;E;F;Gg�
with attributesfC;E;F;Gg and functional dependencies
fC! E;G! F;EF! Gg it is easy to verify that this
relational database scheme is, in fact, a contraction ofR2 to
fC;D;E;F;Gg.

Contractions can often be easily calculated. Suppose that
we wish to calculate the contraction of a relational database
schemeR toB and �

B is the set of attributes corresponding to
a source component of the attribute graph ofR. Consider the

128 H. SAI E DI AN AND T. SPE NCE R

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

relational database schemecontract�R;B� that is calculated
by the following steps:

1. Calculate the sets�B, � �B�� and Aÿ� �B��. The set
Aÿ�

�

B�
� is the set of attributes ofcontract�R;B�.

2. Remove all attributes not inAÿ� �B�� from each
functional dependency ofR.

3. Any resulting functional dependency with an empty right
side is trivial, so remove it. The resulting set of
functional dependencies is the set of functional depen-
dencies ofcontract�R;B�.

The relational database schemecontract�R;B� calculated
this way is a contraction ofR toB as we see in the following:

LEMMA 6. If R is a relational database scheme and�B is
the set of attributes corresponding to a source component of
the attribute graph of R, then contract�R;B� as defined
above is a contraction of R toB.

Proof 6. Let us abbreviateR0 � contract�R;B�. If
X ! Y is a functional dependency ofR and X � � �B��,
then Y � � �B��. Thus, if any functional dependency ofR
attains an empty left side after step 2, it also attains an empty
right after that step, so it is removed completely in step 3.
Therefore, no functional dependency ofR0 has an empty
right or left side.

SinceR0 was formed by deleting the attributes in� �B ��

from the functional dependencies ofR, if �X ! Y�R0 , then
��X [� �B ��� ! Y�R. Moreover, �

B ! �
�

B �
�

�R, so if
�X ! Y�R0 , then��X [�

B � ! Y�R.
To show thatR0 is a contraction ofR toB we also need to

show the converse. Suppose that��X [�

B� ! Y�R. Just as in
the proof of Lemma 5, the proof goes by taking a derivation
that ��X [�

B � ! Y�R and using it to construct a proof that
�X ! Y�R0 . Recall that a derivation of a functional
dependency, consists of a series of functional dependencies
��X [�

B � ! Z0�R; ��X [�

B � ! Z1�R; ��X [�

B� ! Z2�R;-
. . . ��X [�

B � ! Zk�R, whereZ0 � �X [�

B �, Y � Zk, and
Zi�1 � Zi [Vi , whereUi ! Vi is a functional dependency
of R and Ui � Zi . Since Ui ! Vi in R, we have that

�Ui \ �Aÿ�
�

B�
�

�� ! �Vi \ �Aÿ�
�

B�
�

�� in R0. Thus it
follows by induction that �X ! �Z0 \ �Aÿ�

�

B�
�

���R0 ;

�X!�Z1\�Aÿ�
�

B �
�

���R0 ; �X!�Z2\�Aÿ�
�

B�
�

���R0 ; . . .

�X ! �Zk \ �Aÿ�
�

B �
�

���R0 . Since Y � Zk and Y �
�Aÿ�

�

B �
�

�, we have that�X ! Y�R0 . This completes the
proof thatcontract�R;B� is a contraction ofR to B. h

The previous discussion suggests the following algorithm
to compute the keys of a relational database schemeR:

1. FindG�R� the attribute graph ofR.
2. If G�R� is strongly connected, then use some other

algorithm, e.g. the algorithm of [4]; otherwise do
steps 3–7.

3. Let C be the set of attributes of a source component of
G�R�.

4. Calculaterestrict�R; C� andcontract�R; �

C �.
5. CalculateSr , the set of keys ofrestrict�R; C�. The

attribute graph ofrestrict�R; C� will be strongly con-
nected, so use the same algorithm that would have been
used for step 2.

6. Recursively, calculateSc, the set of keys of
contract�R; C�.

7. LetS consist all sets of attributes that are the union of a
key inSr and a key inSc. More formally,S is the set of
unionsKr [Ks for each pair�Kr ;Ks� 2 Sr � Sc. That is,
S � fKr [KcjKr 2 Sr ;Kc 2 Scg. Return S as the
answer.

Clearly,S will be a set of sets of attributes ofR. It is less
clear that it contains the correct sets. That is, it contains
exactly the keys ofR. This means proving that every set inS
is a key ofR and that every key ofR is inS. The second fact
amounts to proving that ifK is key ofR, thenKr � K \ C is
a key of restrict�R; C� and Kc � K \ �

C is a key of
contract�R; �

C�. The proof of correctness comes down to
proving that certain sets of attributes are keys of certain
relational database schemes. It turns out to be easier to first
prove that the sets in question are either keys or superkeys
and then to prove that they are minimal and, hence, keys.

We can start the proof of correctness by showing that
every set inS is somewhat interesting in that it is a either a
key or a superkey.

LEMMA 7. LetA be the set of all attributes of R and let
C� A be a source component of G�R�, the attribute
graph of R. Furthermore, letKc be a key or superkey of
contract�R; �

C� and let Kr be a key or superkey of
restrict�R; C�. ThenKc [Kr is a key or superkey of R.

Proof 7. Since Kc is a key or superkey of the
contraction contract�R; �

C �, the setKc [C is a key or
superkey ofR. Since Kr is a key or superkey of the
restriction restrict�R; C�, we have�K�r �R � C. Therefore,
Kc [Kr is a key or superkey ofR. h

The previous lemma showed that one can make a key or
superkey ofR from a key or superkey ofrestrict�R; C� and a
key or superkey ofcontract�R; C�. It is possible to go in the
other direction.

129A N EFF I C IE NT A L GOR I T H M T O COM PU T E T HE CA NDI DA TE K E YS O F A RE L AT IO NAL DAT AB ASE SC HE M A

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

FIGURE 2. Another attribute graph.

LEMMA 8. Let A be the set of all attributes of R, let
C� A be a source component of G�R� and letK be a key or
superkey of R. ThenK\�AÿC�� is a key or superkey of
contract�R; �

C� and K\C is a key or superkey of
restrict�R; C�.

Proof 8. First, we would like to see thatK\C is a key
or superkey ofrestrict�R; C�. To save writing complicated
subscripts, letRr � restrict�R; C�. Consider a derivation of
the fact that �K��R � A. It consists of a sequence of
functional dependencies�K ! Z0�R; �K ! Z1�R; �K ! Z2�

R; . . . �K ! Zk�R, where Z0 � K, Zk � A, and
Zi�1 � Zi [Vi , whereUi ! Vi is a functional dependency
of R and Ui � Zi . Now we would like to see that
��K\ C� ! �Zi \ C��Rr

. For i � 0 this is trivially true. For
i > 0, we use induction. By induction,
��K\ C� ! �Zi \ C��Rr

. If Vi \ C� ;, then �Zi�1 \ C� �

�Zi \ C�, so ��K\ C� ! �Zi�1 \ C��Rr
, in this case. Alter-

natively, if Vi contains an attribute inC, then, sinceC is the
set of attributes corresponding to a source component,
Ui � C. By the definition of restriction,�Ui ! �Vi \ C��Rr

.
Thus, in this case,��K\ C� ! �Zi�1 \ C��Rr

too. Therefore,
��K\ C�! �Zk \ C��Rr

. But, sinceZk\ C � C,K\C is a key
of Rr .

Now we would like to see thatK\�AÿC�� is a key or
superkey of contract�R; �

C�. Note that ��K\�AÿC���[
C! �C

�

[�K\�AÿC
�

����R. Moreover, K� �C� [�K\
�AÿC

�

���. SinceK is a key or superkey ofR, �K! A�R.
Therefore,��K\�AÿC��� [C! A�R, soK\�AÿC�� is a
key of contract�R; �

C�. h

The correspondence between keys or superkeys ofR,
restrict�R; C� and contract�R; C� is close enough that it
extends to a correspondence between keys ofR,
restrict�R; C� and contract�R; C�. Basically, if we delete
an attribute fromK and the same attribute from eitherKr or
Kc, we still get keys in both or neither cases. We make this
argument precise in the next two lemmas.

LEMMA 9. LetA be the set of all attributes of R, letC� A
be a source component of G�R�, and letK be a key of R.
ThenK\�AÿC�� is a key of contract�R; �

C� andK\C is a
key of restrict�R; C�.

Proof 9. Because of Lemma 8, we know thatK\C and
K\�AÿC

�

� are keys or superkeys ofrestrict�R; C� and
contract�R; �

C�, respectively. Now we would like to see that
they are minimal.

To see thatK\C is a key ofrestrict�R; C�, consider the set
K
0 consisting of all but one of the attributes inK\C. If K0 is

a key of restrict�R; C�, then by Lemma 7,
K
0

� K
0

[�K\�AÿC
�

�� is a key or superkey ofR. Since
K
0 is a proper subset ofK, this contradicts the assumption

thatK is a key ofR. Therefore,K\C is minimal and a key of
restrict�R; C�.

Similarly, if we can delete an attribute fromK\�AÿC��
and stillof

K that is a key ofR. Again,
this means thatK\�AÿC�� is a key. h

LEMMA 10. LetA be the set of all attributes of R and let
C� A be a source component of G�R�. Furthermore, letKc

be a key of contract�R; �

C� and let Kr be a key of
restrict�R; C�. ThenKc [Kr is a key of R.

Proof 10. This time Lemma 7 shows thatKc [Kr is a
key or superkey ofR, and again we need to see that it is
minimal. If we delete an attribute fromKc to formK0c and
K
0

c [Kr is still a key ofR, then by Lemma 8,K0c is a key or
superkey of contract�R; �

C�. Similarly, if we delete an
attribute fromKr to formK0r andKc [K

0

r is still a key ofR,
then by Lemma 8,K0r is a key or superkey ofrestrict�R; C�.
In either case we have a contradiction, soKc [Kr must be
minimal and must be a key ofR. h

A corollary of the preceding four lemmas is the following
theorem that characterizes the keys of a relational database
scheme.

THEOREM 1. LetC be a source component of G�R�. Then
all keys of R are the union of a key of restrict�R; C� and a key
of a contract�R; C�. Moreover, all such unions are keys of
R. h

Thus to compute the keys ofR it suffices to: compute
G�R�, find the strongly connected components ofG�R�, find a
source component C, and compute the keys of
contract�R; �

C� andrestrict�R; C�.
The attribute graph ofrestrict�R; C� will always be

strongly connected. Thus another algorithm is needed to
compute the keys of this database scheme. One obvious
candidate is the algorithm given in [4]. Suppose that we use
this algorithm to find the keys for bothrestrict�R; C� and
contract�R; �

C�. The running time will then be
O�F1K1A1�K1�A1��F2K2A2�K2�A2��K1K2A� FA�,
where F1, A1 and K1 are the number of functional
dependencies, attributes and keys ofrestrict�R; C�, andF2,
A2 and K2 are the number of functional dependencies,
attributes and keys ofcontract�R; �

C�. The first two terms
come from the time required by the calls to the Lucchesi and
Osborn algorithm, the third term is just the time required to
write out the answer, and the fourth term is the time required
to compute the strongly connected components ofG�R� and
to compute the restrictionrestrict�R; C� and the contraction
contract�R; �

C�. Note that an attribute is in exactly one ofC
and �

C, soA1� A2 � A. Similarly, a functional dependency
of R leads to a functional dependency ofrestrict�R; C� or a
functional dependency ofcontract�R; �

C�, but not both. Thus
F1� F2 � F. Finally, a consequence of Theorem 1 is that
K1K2 � K. This means that ifG�R� is not strongly
connected, then using Theorem 1 is guaranteed to save time.

It is often the case that the attribute graph of
contract�R; �

C� is not strongly connected. In this case, it is
better to use the algorithm presented here recursively to
calculate the keys ofcontract�R; �

C�.
For some applications (e.g. finding the key with the

fewest attributes) it is not necessary to list all the keys
explicitly. In this case, step 7 can be omitted. Even though
the running time for this step is proportional to the length of

130 H. SAI E DI AN AND T. SPE NCE R

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

the output, it can be the most time- consuming step. If the
algorithm is used recursively to calculate the keys of the
contraction, the result will be a set of sets of keys of disjoint
pieces of the original relational database scheme. A key of
the original relational database scheme consists of the union
of one key from each of these sets. If each of these sets of
keys of parts of the relational database scheme contains only
a polynomial number of keys, then each call to the Lucchesi
and Osborn algorithm will run in polynomial time and the
whole algorithm to find the keys of the original relational
database scheme will run in polynomial time. Note that
there are 2k subsets ofk keys, so a relational database
scheme withk attributes has fewer than 2k keys. Thus a
sufficient condition for the algorithm presented here to run
in polynomial time is for each strongly connected
component of the attribute to have constant size. In this
case, the number strongly connected components will be
linear in the number of attributes of the relational database
scheme. If a constant fraction of the calls to the Lucchesi
and Osborn algorithm produce two or more keys, the whole
relational database scheme will have an exponential number
of keys, but the algorithm can find a representation of them
in polynomial time.

The next section presents an example of how these
theorems can be used. We use the above algorithm to find
the candidate keys of the given relation scheme. For this
example, a universal relation schemeR with a set of FDsÿ
are given. The example is chosen such thatB would contain
all attributes ofR.

EXAMPLE 3

Given schema R�ABCDEFG� and ÿ � fA! B;
AB! C;BC! A;AC! D;ED! F;EF! G; AG!
Eg, find all candidate keys ofR.

Solution

The attribute graph for this scheme is shown in Figure 3.
Note that it has three strongly connected components,ABC,
D and EFG. The only source component isABC. A
restriction of R to ABC has ÿ � fA! B;AB! C;

BC! Ag. Experimenting, we see thatA is a key of
restrict�R;ABC�, but thatB and C are not keys. Further-
more, BC is a key of restrict�R;ABC�. Now we need to
compute a contractioncontract�R;DEFG�. Note that
�ABC�� � ABCD, so the contractioncontract�R;DEFG�
has the dependenciesfE! F; EF! G;G! Eg. Direct
calculation shows that the keys ofcontract�R;DEFG� areE
andG. This means that the whole schema has four keysAE,
AG, BCE andBCG.

5. CONCLUSIONS

We showed that a simple categorization of attributes into the
setsL;R and B allows us to distinguish between those
attributes that will participate in the candidate keys of a
relational database schema and those that do not. This
categorization will provide a simple and efficient solution
for finding the keys when the setsL andR are not empty.

When these two sets are empty, i.e.B contains all attributes,
we face the worst-case situation.

To handle the worst-case situation we introduced a graph
algorithm to show that it is possible to simplify the problem
of finding all possible keys of a database schema, if the
attribute graph of the functional dependencies is not
strongly connected.

We plan to work on a more cost-effective algorithm than
a simple brute force search in the case that the attribute
graph is strongly connected.

ACKNOWLEDGEMENTS

Comments by anonymous reviewers have substantially
improved the quality of this article; we sincerely appreciate
their concerns and assistance. Hossein Saiedian was
partially supported by the UCR under grant #9330-1995,
University of Nebraska at Omaha. Thomas Spencer was
supported by the NSF under grant CCR-9319772 and by the
University Committee on Research, University of Nebraska
at Omaha.

REFERENCES

[1] Armstrong, W. (1974) Dependency structures of database
relationships. InProc. 1974 IFIP Congress, pp. 580–583.

[2] Ullman, J. (1988)Principles of Database and Knowledge-
Based Systems, volume I. Computer Science Press, Rockville,
MD.

[3] Maier, D. (1983) The Theory of Relational Databases.
Computer Science Press, Rockville, MD.

[4] Lucchesi, C. and Osborn, S. (1978) Candidate keys for
relations.Journal of Computer and Systems Sciences, 17(2),
270–279.

[5] Elmasri, R. and Navathe, S. B. (1994)Fundamentals of
Database Systems. Benjamin-Cummings, Menlo Park, CA,
2nd edition.

[6] Kundu, S. (1985) An improved algorithm for finding a key of a
relation. InProceedings of the ACM Symposium on Principles
of Database Systems, pages 189–192. ACM.

[7] Ausiello, G., D’atri, A. and Sacca`, D. (1983) Graph algorithms
for functional dependency manipulation.Journal of the ACM,
30(4), 752–766.

131A N EFF I C IE NT A L GOR I T H M T O COM PU T E T HE CA NDI DA TE K E YS O F A RE L AT IO NAL DAT AB ASE SC HE M A

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

FIGURE 3. The attribute graph ofR.

[8] Biskup, J., Demetrovics, J., Libkin, L. and Muchnik, I. (1991)
On relational database schemes having unique minimal key.
J. Information Processing Cybernetics, 27, 217–225.

[9] Maier, D. (1980) Minimum covers in the relational database
model.Journal of the ACM, 27(4), 664–674.

132 H. SAI E DI AN AND T. SPE NCE R

THE COM P UT E R JO URN AL, V OL. 39, NO. 2, 1996

