An Efficient Algorithm to Compute the
Candidate Keys of a Relational Database Schema

HossEIN SAIEDIAN AND THOMAS SPENCER

Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182, USA
email: hossein@cs.unomaha.edu

We provide an efficient algorithm for computing the candidate keys of a relational database schema.

The algorithm exploits the ‘arrangement’ of attributes in the functional dependencies to determine

which attributes are essential and useful for determining the keys and which attributes should not be

considered. A more generalized algorithm usingattribute graphsis then provided which allows a

uniform and simplified solution to find all possible keys of a relational database schema when the
attribute graph of Functional Dependencies (FDs) is not strongly connected.

Received August 1993; revised February 1996

1. BACKGROUND

A relational database schefRadenoted bR(Aq, Ay, ..., Ay),
is a set of attributes. An instanceRfdenoted by, is a subset
of the Cartesian product of the domains of attributeR,dfe.
r(R) € domA; x domA, x ... x domA,. The elements of a
relation are referred to as tupleskayof relationr is a subset
of attributes ofR with the following two properties:

e UniguenessNo two distinct tuples of have the same
values for the key attributes. Thusifdenotes a key af,
then for any two distinct tupleg andv of r, u[K] # v[K].

e Minimality. No proper subset df should have the above
property.

K is considered auperkeyif it satisfies the uniqueness but
not the minimality property. Those attributes Bf that
participate in a key are callgatime attributes. If a relation
has more than one key, each key is referred toadidate
key of R.

Functional dependenciegFDs) represent the inter-
relationship among attributes of a relation. A functional
dependency is denoted By— Y whereX C RandY C R,
and is read X functionally determinesY.” Such a

A more formal definition of the key for a relatidR can
now be given. Given a relationR with attributes
AL A, ... A, and a set of FD¥, K C R, is a key ofR if:

e K—AA,.. A, cT"and
e FornoY,YCK,isY —=AA,...A,eT".

In addition to computing the closure of a set of FDs
inference rules can be employed to compute the closure of a
set of attributesX. The closure of a set of attributes,
written asX ™, is the set of attributed that are functionally
determined by, that is,X — A can be deduced froi via
inference rulesX ™ is called the closure ok underT.

2. COMPUTING THE CANDIDATE KEYS OF R

A universal relation is a relation which includes all
attributes of the database. Given a universal relation
scheme,R, and a set of functional dependenci&s,it is
essential to determine correctly all candidate keysRof
Most database authors provide a definition for the key, but
no algorithm for computing it. Others, e.g. Maier [3] and
Uliman [2], provide algorithms for computing the closure of

dependency specifies the following constraint on the currenta set of attributes (or a set of FDs) but the calculation of a

value ofr: if Vu,v € r, u[X] = v[X] thenplY] = v[Y].

Given a set of FD$ for R, I is said tologically imply
X — Y (written asl" E X — Y) if every instance of R that
satisfies the dependenciesIinalso satisfiesx — Y. The
closureof T', denoted byl'*, is a set of all FDs that are
logically implied by T, i.e. Tt ={X - Y| E X — Y}.
The inferencerules [1] (also in Ullman [2, pp. 384—385])
can be used to infer all FDs &f".

The inferences rules are as follows [2, pp. 384—-385]:

If YCX CRthenX =,

X — Y, thenXZ — YZwhereZ C R,
{X=Y,Y—=-Z} EX—2Z,
{X=YX->Z} EX—>YZ

If X - YandzZ CY,thenX — Z, and
{X=>Y,WY—=Z} EWX— Z

key is left to the readers using the closure algorithms.
Determining the candidate keys for a small relation schema
with a small set of FDs may be trivial but, if a relation has a
relatively large number of attributes and/or FDs, then
determining the keys may not be a trivial process. Lucchesi
and Osborn [4] designed an algorithm which finds all the
keys and whose running time is a polynomial of the size of
the input and the size of the output. Specifically, their
algorithm runs inO(FKA(K + A)), whereA is the number
of attributes,F is the number of functional dependencies,
andK is the number of keys returned. We will re-visit this
algorithm in Section 4.

Elmasri and Navathe [5] offer the following algorithm:

set K — R;
for each attribute A€ K

THE COMPUTER JOURNAL,

VoL. 39,

No. 2, 1996

AN EFFICIENT ALGORITHM TO CoMPUTE THE CANDIDATE KEYS OF A RELATIONAL DATABASE SCHEMA 125

compute {K — A}* with respect to I' literature, some database authors, e.g. Maier [9], refer to a
if {K — A}" contains all attributes of R then minimal set of FDs as @anonical set of FDs.) A set of
set K — K — {A} functional dependencidsis minimal (or canonical) if it has

The above algorithm has one major deficiency: it returns the following properties [2, pp. 390-391]:

only one key forR, and the returned key depends on the 1. The right side of every FD contains a single attribute.
order in which attributes were removed. For example, for 2. There is no extraneous attribute on the left side of any

R(ABCDEF) with a set of FDsI, if we start removing FD, i.e. for no X—A in T, and YCX is
attributes from the right side, that i;, followed by E, I'—{X — A} U{Y — A} equivalent tal.

followed by D, we may conclude thaaBC is a key, while 3. There are no redundant FDslini.e. for noX — AinT
not realizing that, for exampl& by itself, orF by itself, or a is the sef’—{X — A} equivalent tal".

combination ofEF, or E or F combined with any of the
attributesA, B or C are also keys oR. An alternative
algorithm for finding a single key is given by Kundu [6].
(We will apply our algorithm to one of the examples in [6]
in Section 3 and invite interested readers to compare the two
solutions.) For some rare applicationsiriaybe enough to Given arelatiorR and a set of FDF, divide the attributes of
find only one candidate key and thus does not matter which R into three distinct set€, R and B. The set{ contains
key is found. The problem of finding a candidate key is those attributes dR that occur only on the left-hand side of
much easier than finding all the candidate keys. In practice, some FDs inI'. Similarly, the setR represents those
it is important to find all the candidate keys. Our algorithm attributes that occur only on the right-hand side of some FDs
will find not one but all the candidate keys. in ', while B is the set representing those attributes that
Using the closure algorithms while not considering the occur on both sides of some FDs in. Observe that
arrangement of attributes in may be time consuming and £NR = @andL N B = @ andR N B = (). Furthermore, we
inefficient. Some attributes may never participate in a key. assume throughout this article thaty R U B = R.
Consideration of other attributes may lead to superkeys
while late consideration of certain other attributes may Step 2: Considering£
simply prolong the process or lead to incorrect answers.
We believe that a certaicategorizationof attributes
(based on their appearance on the left-hand side and righ
hand side of FDs) could expedite the process substantially Lemma 1. For every attribute Ac R, if Ac £, then A
and lead to correct solutions, perhaps early in the process.must be part of every candidate key of R.
This categorization includes determining those attributes
that must be part of a key those attributes that will not be Proof 1. SupposeK is a candidate key of R andiZK.
part of any key and those attributes that may be part of the By definitionK — A € I'". This implies that there must be
key. The algorithm is described in Section 3. Examples are an FDX — A. HoweverX — A contradictsA € £. ThusA
provided to illustrate the algorithm. must be a part oK. U
We will introduce a generalized algorithm in Section 4 . . .
which usesattribute graphs to represent data dependencies. We begin our process b_y computlng the closure of attributes
This algorithm provides a uniform and simplified solution to in L. If atiributes conta|.ned i form a key forR, then.£
find all possible keys of a relational database scheme WhenWIII be the only key ofR:
the attribute graph of FDs is natrongly connectedWe Lemma 2. If £7 = R undel’, then£ forms the only key
note here that graph algorithms have been used in literatureof R. (In other words, iZ — R € T'", then£ would be the
to represent and manipulate functional dependencies inonly key of R.)
relational database schemas. Of interest is an article by
Ausiello, D'atri and Sacc@/] who provide an approach for Proof 2. Let K be a key ofR. By Lemma 1£ C K.
homogeneous treatment of several related aspects ofSince L7 =R, if £ C K, then K would be a superkey.
relational database schemas, namely closure, minimaliza-Therefore = K. O
tion and synthesizing a relational scheme in 3NF. But key
finding issues are not treated there. Yet another related
article by Biskupet al. [8] explores the relational database
schemes having a unique minimal key but the emphasis isStep 3: Considering3
on their relationsh_ip _vvith normal form relation schemes and | the setz does not produce a key f@ in Step 2, then
the lattice theoretic issues.

The following three steps are used to find the candidate keys
of a relation scheme.

Step 1: Determining £, B and R

Consider the set. If £ is not empty, then all attributes
t participating inL are prime attributes:

If a key is found, stop. Otherwise proceed to Step 3.

begin adding attributes, one by one, from the set denoted by
B to attributes ofL and compute their closure. Attributes
should be added td in turn to ensure that all candidate
We assume a relation schefR@nd aminimalset of FDSI". keys of R are found. (If £ is empty, then begin by
(Since the term ‘minimal’ has a different meaning in the computing the closure of attributes in the &}

3. THE KEY FINDING ALGORITHM

THE CoMPUTER JOURNAL, VoL. 39, No.2, 1996

126 H. S\iEDIAN AND T. SPENCER

Please note that since we are only interested in computingExampLE 2

the candidate keys of a universal relation, attributein .
) . . We now consider one of the examples of Kundu [6]. Note
need not be considered as they will never end up in a key as h lqorith i1 findall of th did K
shown in the following lemma: that our algorithm will findall of the candidate keys. A
' relational schem&(ABCDEF) with the following set of
Lemma 3. For every attribute Ac R, if Ac R, then A functional dependencies is assumed= {AD — B,

will not be part of any candidate key of R. AB—E,C—D,B— C,AC— F}.

Proof 3. Suppos is a key ofR. Furthermore, suppose gg|ution
there exists an attributd € R. (Thus, A¢L and A¢B.) i
AssumeA is a part of. LetX = (K — A)". SinceK iskey ~ Step 1: DetermineC, 5, andR: L = {A},B = {BCD},
of R, X C R. LetY = R— X. Also, sinceK is a key ofR, R = {EF}. According to Lemma 1A must be a part of
K — Y. There must exist an FBW — V, whereV C Y and every candidate key dé while, according to Lemma &
W may or may not be empty. BAW — V contradicts @ndF may never participate in any. We begin by computing

A € R. ThereforeA cannot be a part df. O the closure ofL in Step 2.

Step 2: Considef only: £© = A" = A. ThusAis not a key
ExampLE 1 of S.

Consider the relation schem&(CTHRSG introduced by
Ullman [2, pp. 407] to represent a small database in a
university, whereC = course,T = teacherH = hour,R =

Step 3: Considef3: We now consider adding attributes
from B to £ and compute their closure to find all candidate

room, S—= student andG = grade, and the following X&YS:

functional dependencies: {AB}" = ABECDF. ABis a key of S.

1. C — T, i.e. each course has one teacher. {AC}* =ACDB... ACis akey ofS.

2. HR — C, i.e. only one course meets in a room at one {AD}" = ADB. .. ADis a key of S.
time.

3. HT — R, i.e. a teacher is in at most one room at one Thus,AB, AC andAD are the only candidate keys 8f No
time. other single attribute or combination of attributes needs to

4. CS— G, i.e. each students receives one grade in eachexamined. 0
course.

5. HS— R, i.e. astudent can be in only one room ata given Brief Discussion. ~According to our algorithiAB, AC and
time. AD are the only keys of. Note that in order to find the

key(s) of S:
Solution e we did not need to compute the closure of any single

attribute other thaw,

e we did not need to consider any combination such as
BC,BD,DC,BCD, etc. becauséA must be in every
candidate of5,

e we did not need to consider any combinationfofvith
eitherE or F because these two attributes may never be

e we need not compute the closure of any single attribute in any key ofS, and
because contains two attributes (namety andS), e other combinations, e.gABC, will yield a superkey.

e we need not consider attribu@because it appears, If £=0 and R + 0, it would imply that except for

and , , attributes ofR, every other attribute has a fair chance of
e we should consider attributes d@f (namely,H and S) being part of a candidate key.4f= () andR = 0 (that is,3
before considering any other combination of attributes. . iains all attributes), then it implies the worst case

Step 2: Considering: £* = {HS}* = HSRCTG... scenario, i.e. every attr_ibute might be a potential component
Thus {HS} is a key ofU. According to Lemma 2{HS} is ofa key. One solution is to use the eX|s_t|ng app.roaches. We
the only key of U. We need not consider any other provide a better approach in the following section.
combination of attributes.

Note that in Example 1, we considered a schema for
which the setZ was non-empty and formed the only key for Even if B contains all the attributes, it is still often possible

Step 1: Determine, B, andR: L = {HS}, B = {CRT},
andR = {G}. According to Lemma 1l andSmust be part
of any key while, according to Lemma 3 will not
participate in any key. Note that according to the
algorithm,

4. AMORE GENERAL HEURISTIC

the schema. In other words, we only had to considér.e. to generalize these ideas to obtain an algorithm that is
step 2 of the algorithm). For the next example, we will substantially better than the brute force algorithm of trying
consider a schema for which will be non-empty but will all possible sets of attributes to find the keys. To define this
not form a key. algorithm, we need some additional notation.

THE CoMPUTER JOURNAL, VoL. 39, No.2, 1996

AN EFFICIENT ALGORITHM TO CoMPUTE THE CANDIDATE KEYS OF A RELATIONAL DATABASE SCHEMA 127

Derinimion 1. LetR be the relational database scheme we In the graph of Figure 1 there are three strongly connected
want to compute the keys of, and let be the set of = componentsiB, CD andEF. The componenABis a source
attributes ofR. Then, if BC A, defineB = A - B. component; the componenBD and EF are not source

We will have occasion to talk about several different components. .
) . . Now suppose thaC is a source component of the
relational database schemes with attributes that are subsetg ttribute araph oR and that the vertices i6 correspond to
of A. Thus, if we make a statement like — Y, it matters grap b

. . . the attributes in some sé Clearly, any key ofR must
which relational database scheme we are talking about, . .))
. .) functionally determine all the attributesd Thus, it makes
since the different relational database schemes may have a ; o .)
. : . sense to find all minimal sets of attributes that functionally
totally different set of functional dependencies. : . .)
determineC. SinceC is a source component, there is no
DeriniTion 2. We write (X — Y)gr to mean thatX functional dependency with an attribute ¢hon the right
functionally determinesY in the relational database side and an attribute not il on the left side. Thus, any
schemeR'. We only write X — Y if it is clear which minimal set of attributes that functionally determire
relational database scheme we are talking about. Similarly, cannot contain any attribute that is not ¢h Thus the
we write (X")gr = Y to mean that the closure of in the problem of finding minimal sets of keys the functionally
relational database scherRéis Y. determineC is the problem of finding the keys of a smaller
relational database scheme. We call a relational database
scheme that can be used to find the minimal sets of keys that

functionally determine C a restriction of R to C,

Dernimon 3. The attribute grapiG[R] of the relational Testrict(R, C). More formally, we have the following:
database schenteis a directed graph with one vertex for

each attribute oR. There is an edge fror to B if and only attributesA andB C A. thenR' is a restriction oR to B. if
if Ais on the left side of some functional dependency Bnd 5 .. ihe set of attributes o and for all X Yc’B

is on the right side of the same functional dependency. (X — Y)g if and only if (X — Y)g

The final tool that we need is the attribute graph of a
relational database scheme.

DeriniTion 6. If R is a relational database scheme with

If G[R] is not strongly connected, then the problem of
finding the keys foR splits into the problems of finding the
keys of two smaller relational database scheReandR,
containing disjoint subsets of the attributesRfConsider
the relational database scheme with attributes
{A,B,C,D,E,F} and functional dependencie§A— B,
B—~AB—-CC—DD—C BD—EE—FF—E} Lemva 4. If Cis the set of attributes corresponding to a
Its attribute graph is shown in Figure 1. To see lRyandR, source component of the attribute graph of a relational
are defined, we need some concepts from graph theory. database scheme R antiiRa restriction of R te, then K is

a key of Rif and only if K is a minimal set of attributes that

If R is the relational database scheme whose attribute
graph is in Figure 1, thelR" with attributes{A, B} and
functional dependencid®A — B,B — A} is a restriction of
R to B. Restrictions defined this way have the property we
want.

DeriniTion 4. Two verticesu andv in a directed grapl® functionally determin€ in R'.

are in the same strongly connected compoifeantdonly if

there is a path fronu to v and fromv to u. Proof 4. LetK C C be a set of attributes. Note that, by
the definition of restriction,(K — C)gr if and only if

DeriniTion 5. A strongly connected componefit of a (K — C)r. Thus K is a key or superkey d® if and only if

directed grapiG is a source componeitall edges to a K functionally determine€ in R.

vertex in C also come from vertices in That is, there are We also need to show that minimality is preserved.

no edges from outside a source component into such aSuppose thaK is a minimal set of attributes such that

component. (K — C)g, but thatK is a superkey, not a key, &. But,

o=cN0=0
L

FIGURE 1. An attribute graph.

THE CoMPUTER JOURNAL, VoL. 39, No.2, 1996

128 H. S\IEDIAN AND

T. SPENCER

then there exist&’ C K that is a key oR'. Moreover, by the
definition of restriction, (K’ — C)g, contradicting the
minimality of K. Alternatively, suppose thaf is a key of
R, butK’ c K satisfiegK' — C)g. But thenK' is a key or
superkey ofR, contradicting the fact thaf is a key ofR'.
Therefore, the keys d®’ are the minimal sets of attributes
that functionally determin€ in R. O

If C is the set of attributes corresponding to a source
component of the attribute graphRfthen a restriction dR

to C is easy to calculate. Leestrict(R, C) be the relational
database scheme with attributésand whose functional
dependencies are calculated by the following procedure.
Start with the functional dependenciesP®find remove all
functional dependencies that contain an attribut€ an the

left side. Next remove all attributes i@ from any of the
functional dependencies that remain. Finally, all functional
dependencies with an empty right side are trivial, so remove
them. The result is clearly a relational database scheme
whose attributes aré, but more is true.

Lemma 5. The relational database scheme resttietC)
defined above is a restriction of R€pprovided that is the
set of attributes associated with a source component of
G[R].

Proof 5. Abbreviate restrict(R,C) by R. Note that
every functional dependency d® is also a functional
dependency oR. Thus if (X — Y)g, then(X — Y)g.

Proving the converse is more difficult. Suppose that
(X = Y)r. We would like to see that iX,Y C C, then
(X — Y)r. This functional dependency can be derived
from a sequence of functional dependenci¥s— Zy)g,

(X = Zy)r, (X = Zo)R,... (X — Z)r, where Z;=X,

Y C Z, andZ ., = Z UV, whereU; — V,; is a functional
dependency oR andU; C Z,. We would like to see that
(X = (ZoNC)r: (X = (Z1NC))r; (X = (ZNC))R; - -

(X — (ZcN(C))r is a sequence of functional dependencies
in R'. The proof is by induction. Recall thdy = X C C, so
the first functional dependency is jusK — X)r. Now
suppose that(X — (4 NC))r. There are two cases
depending on whethev; NC=0. If V,NnC=0, then
(ZUuV,))NC=2ZnNnC, so (X—(Z,1NC))g, since
Z, ., NC=Z NC. Alternatively, if V, N C+#£ 0, thenU; C C,
since(is the set of attributes from a source component of
G[R]. Moreover, (U; — (V;N()) is a functional depen-
dency of R. This means thatU; CZNC, so

(X = ((ZNC)UU))g, SO (X — ((ZNC)U (Vi NO))g-
Thus, in either cas€X — (Z,; NC)r), and by induction

(X = (ZxNQC))r. SinceY C Z, NC, we have(X — Y)g.
This is what we needed to show tlitis a restriction oR to

C. O

Intuitively, the proof of the preceding Lemma says that
sinceC is the set of attributes corresponding to a source
component ofG[R], any derivation of (X — Y)r with
Y C C can be mimicked ifR’". This assumption is necessary
to the proof of the preceding Lemma. Indeed, the general-
ization of the Lemma to arbitrary sets of attributes is false.

In the example of Figure 1, recall thé#, B} is a source
component. Thusestrict(R, {A, B}) has attribute#\ andB
and the functional dependencids— B andB — A.

Once we have found the keys m@strict(R, C), we would
like to add attributes to them to make them keyRoRecall
that if X is a set of attributes oR then theclosureof X,
written X, is the set of all attributes that functionally
determines. LefC; and/C, be keys ofrestrict(R,C). Then,

K1 CCandk, C C. Moreover,KC; andKC, each function-
ally determineC in R, and, hence, each other. Therefore,
(K1)r = (K3)r. Inthe example of Figure 1, the two keys of
restrict(R, {A,B}) are A and B. It is easy to verify that
A" =B" = ABCDEF, so the keys of this relational
database scheme ateandB.

This suggests that the problem of extending a key of
restrict(R, C) to a key ofR, depends only o@ and not on the
key to be extended. Intuitively, then the problem of
extending a keyX of restrictR,C) to a key of R
corresponds to computation of the keys of another relational
database scheme that has attributes Cin and whose
functional dependencies come from assuming that all
attributes inC are give for free. We call such a relational
database schemecantraction of R taC. It turns out that not
all attributes inC should be in the contraction d&t to C.
Note that ifK is a key ofrestrict(R, C), then there may be an
attribute D € (K™ — C). If such an attribute were in the
contraction oR to C, it would be automatically functionally
determined by any set of attributes, including the empty set.
Since such attributes are not usually in relational database
schemes, we omit them from the contraction. More
formally, we have:

Dernimion 7. Let R be a relational database scheme with
attributes.A and letBC A. A contraction ofR to B, is a
relational database scher®e whose attributes argl—B"
and whose functional dependencies satisfy for
X,Y C A-B*, (X — Y)g ifand only if (X UB) — Y)g.

all

In the first exampleC" = A, so the empty relational
database scheme with no attributes is a contractidR tof
C. Itis instructive to consider an example with a less trivial
contraction. Consider the relational database sctierméth
attributes{A, B,C,D,E,F,G} and functional dependencies
{A—-B B—A B—D, BC—E DG—F, EF— G}.

The attribute graph for this relational database scheme is
shown in Figure 2. The attribute graph has two source
components{A, B} and{C}. Suppose that we choose the
source componen{A B}. Then restrict(R,, {A,B}) has
two keys A and B. In the original relational database
schemeR,, A" =B" = {AB,D}. If we consider a
relational database schemeopntrac{R,,{C,D,E,F,G})

with attributes{C,E,F,G} and functional dependencies
{C—E,G— F,EF — G} it is easy to verify that this
relational database scheme is, in fact, a contractidR, @b
{C,D,E,F,G}.

Contractions can often be easily calculated. Suppose that
we wish to calculate the contraction of a relational database
schemeR to B and B is the set of attributes corresponding to
a source component of the attribute grapfRRo€onsider the

THE COMPUTER JOURNAL, V

oL. 39, No.2, 1996

AN EFFICIENT ALGORITHM TO CoMPUTE THE CANDIDATE KEYS OF A RELATIONAL DATABASE SCHEMA

129

FIGURE 2. Another attribute graph.

relational database schementrac{R, 53) that is calculated
by the following steps:

1. Calculate the setsf3, (B)* and A—(B)". The set
A—(B)" is the set of attributes afontractR, B).

2. Remove all attributes not ind—(B)" from each
functional dependency dR.

3. Any resulting functional dependency with an empty right
side is trivial, so remove it. The resulting set of

functional dependencies is the set of functional depen-

dencies ofcontraciR, B).

The relational database schementraciR,) calculated
this way is a contraction d® to B as we see in the following:

Lemma 6. If R is a relational database scheme afids

the set of attributes corresponding to a source component of

the attribute graph of R, then contrd&, B) as defined
above is a contraction of R tB.

Proof 6. Let us abbreviateR = contrac(R, B). If

X —Y is a functional dependency @& and X C (B)",
thenY C (B)". Thus, if any functional dependency Bf

Ui N (A—(B)") — (Y, (A—(B)*)) in R. Thus it
follows by induction that (X — (ZyN (A—(B)")))r,
(X = (ZN(A=(B) Nr, (X = (ZeN(A=(B)) - -
(X = (N (A=(B)"))r. Since YCZ and YC

(A—(B)"), we have thatX — Y)gr. This completes the
proof thatcontrac{R, 55) is a contraction oR to 5. O

The previous discussion suggests the following algorithm
to compute the keys of a relational database scheme

1. FindG[R] the attribute graph oR.

2. If G[R] is strongly connected, then use some other
algorithm, e.g. the algorithm of [4]; otherwise do
steps 3-7.

3. LetC be the set of attributes of a source component of

G[R].

Calculaterestrict(R, C) andcontrac(R, C).

Calculate S,, the set of keys ofrestrict(R,C). The

attribute graph ofrestrict(R,C) will be strongly con-

nected, so use the same algorithm that would have been

used for step 2.

6. Recursively, calculateS,,
contrac{R,C).

7. LetS consist all sets of attributes that are the union of a
key in S, and a key inS.. More formally,S is the set of
unionsK; U K, for each pairK;,Ks) € S, x S,. That is,
S={K UKK, € §,K. € S.}. Return § as the
answer.

ok

the set of keys of

Clearly,S will be a set of sets of attributes 8f It is less
clear that it contains the correct sets. That is, it contains
exactly the keys oR. This means proving that every setSn
is a key ofR and that every key dRis in S. The second fact
amounts to proving that K is key ofR, thenK, = KN Cis
a key of restrict(R,C) and K,=KnNC is a key of
contrac{R, C). The proof of correctness comes down to
proving that certain sets of attributes are keys of certain
relational database schemes. It turns out to be easier to first
prove that the sets in question are either keys or superkeys
and then to prove that they are minimal and, hence, keys.

We can start the proof of correctness by showing that

attains an empty left side after step 2, it also attains an emptyevery set inS is somewhat interesting in that it is a either a

right after that step, so it is removed completely in step 3.
Therefore, no functional dependency Rf has an empty
right or left side.

SinceR’ was formed by deleting the attributes (i)"
from the functional dependencies Bf if (X — Y)g, then
(XU(B)") — Y)r. Moreover, B — (B)")g, so if
(X = Y)g, then((XU B) — Y)g.

To show thaR' is a contraction oR to 3 we also need to
show the converse. Suppose that U B) — Y)g. Justas in
the proof of Lemma 5, the proof goes by taking a derivation
that (X U B) — Y)g and using it to construct a proof that
(X = Y)r. Recall that a derivation of a functional

key or a superkey.

Lemva 7. Let. A be the set of all attributes of R and let
Cc A be a source component of [[§, the attribute
graph of R. Furthermore, lek’; be a key or superkey of

contrac{R,C) and let K, be a key or superkey of
restrict(R, C). Then/C. U K, is a key or superkey of R.

Proof 7. Since K. is a key or superkey of the
contraction contractR, C), the setK UC is a key or
superkey ofR. Since K, is a key or superkey of the
restriction restrict(R, C), we have (K,)g O C. Therefore,
K. UK, is a key or superkey dRr. O

dependency, consists of a series of functional dependencies

(XU B) = Zy)g, (XU B) = Zi)r, (XU B) = Z)r,-

. (XUB)— Z)r, WhereZy = (XU B), Y C Z, and
Zi,1 = Z UV, whereU; — V,; is a functional dependency
of R and U; C Z. Since U; — V, in R, we have that

The previous lemma showed that one can make a key or
superkey oR from a key or superkey agstrict(R,C) and a
key or superkey ofontractR,C). It is possible to go in the
other direction.

THE COMPUTER JOURNAL,

VoL. 39,

No. 2, 1996

130 H. S\IEDIAN AND

T. SPENCER

Lemma 8. Let A be the set of all attributes of R, let
Cc A be a source component of /g and letXC be a key or
superkey of R. Theltn(A—C") is a key or superkey of
contrac{R,C) and KNC is a key or superkey of

restrict(R, C).

Proof 8. First, we would like to see thatnC is a key
or superkey ofestrict(R,C). To save writing complicated
subscripts, leR, = restrict(R, C). Consider a derivation of
the fact that(K")g = .A. It consists of a sequence of
functional dependencid¥. — Zy)r, (K — Z1)g, (K — Z,)
Ry---(K—2Z)r, Where Zz=K, Z=A, and
Zi,, =27 UV, whereU; — V, is a functional dependency
of R and U; CZ. Now we would like to see that
((KNC) — (ZNC))g,. Fori =0 this is trivially true. For
i >0, we use induction. By induction,
(KNC) = (ZNnC)g- If VinC=10, then (Z,,NC) =
(Z,NnC), so ((KNC) — (Z41NC))g,, in this case. Alter-
natively, if V; contains an attribute i@, then, since is the
set of attributes corresponding to a source component,
U; C C. By the definition of restriction(U; — (Vi NC))g .
Thus, in this casg(KNC) — (.1 NC))g too. Therefore,
((KNC)— (ZcNC))g,- But, sincezun C =C, KNCis a key
of R,.

Now we would like to see thakN(A—C") is a key or
superkey of contrac(R, C). Note that ((KXN(A-C*))uU
C— (C"U(KN(A—C"))))r. Moreover, KC (C" U (KN
(A—C"))). Sincek is a key or superkey oR, (K— A)g.
Therefore,((KN(A-C")) UC— A)g, SOKN(A-CT) is a
key of contractR, C). O

The correspondence between keys or superkeyR, of
restrict(R,C) and contrac{R,C) is close enough that it
extends to a correspondence between keys Ryf
restrict(R,C) and contrac{R, C). Basically, if we delete
an attribute fronK and the same attribute from eithi€r or
K., we still get keys in both or neither cases. We make this
argument precise in the next two lemmas.

Lemma 9. Let. A be the set of all attributes of R, I6C A

be a source component of[g, and letK be a key of R.
ThenKN(A—-C") is a key of contradR, C) and KNC is a

key of restrictR, C).

Proof 9. Because of Lemma 8, we know thiahC and
KNn(A-C*) are keys or superkeys oEstrict(R,C) and
contrac(R, C), respectively. Now we would like to see that
they are minimal.

To see thaflNC is a key ofrestrict(R, C), consider the set
K’ consisting of all but one of the attributesinC. If X' is
a key of restrict(R,C), then by Lemma 7,
K' =K' U (Kn(A-C")) is a key or superkey oR. Since
K' is a proper subset df, this contradicts the assumption
thatK is a key ofR. Therefore/Cn C is minimal and a key of
restrict(R, C).

Similarly, if we can delete an attribute frofén(A—C")
and stillof

K that is a key oR. Again,
this means thatCnN(A—C") is a key. O

Lemma 10. Let.A be the set of all attributes of R and let
CC A be a source component of . Furthermore, letC;

be a key of contra¢R,C) and let K, be a key of
restrict(R, C). ThenK. U K, is a key of R.

Proof 10. This time Lemma 7 shows tha&t. U K, is a
key or superkey oR, and again we need to see that it is
minimal. If we delete an attribute froid, to form C;, and
K¢ U K, is still a key ofR, then by Lemma 8K is a key or
superkey of contrac(R, C). Similarly, if we delete an
attribute from/C, to form KC; and/C; U K; is still a key ofR,
then by Lemma 8K, is a key or superkey akstrict(R, C).
In either case we have a contradiction,/SgU K, must be

minimal and must be a key &. O

A corollary of the preceding four lemmas is the following
theorem that characterizes the keys of a relational database
scheme.

THeOREM 1. LetC be a source component of §. Then
all keys of R are the union of a key of rest(RtC) and a key
of a contractR,C). Moreover, all such unions are keys of
R. O

Thus to compute the keys & it suffices to: compute
G[R], find the strongly connected component&R], find a
source componentC, and compute the keys of
contrac{R, C) andrestrict(R, C).

The attribute graph ofrestrict(R,C) will always be
strongly connected. Thus another algorithm is needed to
compute the keys of this database scheme. One obvious
candidate is the algorithm given in [4]. Suppose that we use
this algorithm to find the keys for bottestrict(R, C) and
contrac{R,C). The running time will then be
O(F1K1AL (K1 +Ar) + FoKoAx (Ko + Ay) + K KoA + FA),
where F;, A; and K; are the number of functional
dependencies, attributes and keysestrict(R,C), andF,,

A, and K, are the number of functional dependencies,
attributes and keys afontract(R, C). The first two terms
come from the time required by the calls to the Lucchesi and
Osborn algorithm, the third term is just the time required to
write out the answer, and the fourth term is the time required
to compute the strongly connected componentS[&] and

to compute the restrictiorestrict(R, C) and the contraction
contract(R, C). Note that an attribute is in exactly one ®f
andC, soA; + A, < A. Similarly, a functional dependency
of R leads to a functional dependencyrestrict(R, C) or a
functional dependency @bntractR, C), but not both. Thus

F. + F, < F. Finally, a consequence of Theorem 1 is that
KiK, = K. This means that ifG[R] is not strongly
connected, then using Theorem 1 is guaranteed to save time.

It is often the case that the attribute graph of
contracR, C) is not strongly connected. In this case, it is
better to use the algorithm presented here recursively to
calculate the keys afontractR, C).

For some applications (e.g. finding the key with the
fewest attributes) it is not necessary to list all the keys
explicitly. In this case, step 7 can be omitted. Even though

the running time for this step is proportional to the length of

THE COMPUTER JOURNAL,

VoL. 39,

No. 2, 1996

AN EFFICIENT ALGORITHM TO CoMPUTE THE CANDIDATE KEYS OF A RELATIONAL DATABASE SCHEMA 131

the output, it can be the most time- consuming step. If the
algorithm is used recursively to calculate the keys of the
contraction, the result will be a set of sets of keys of disjoint
pieces of the original relational database scheme. A key of
the original relational database scheme consists of the union
of one key from each of these sets. If each of these sets of
keys of parts of the relational database scheme contains only
a polynomial number of keys, then each call to the Lucchesi
and Osborn algorithm will run in polynomial time and the
whole algorithm to find the keys of the original relational
database scheme will run in polynomial time. Note that
there are % subsets ofk keys, so a relational database
scheme withk attributes has fewer tharf Xeys. Thus a
sufficient condition for the algorithm presented here to run

in polynomial time is for each strongly connected E . e
component of the attribute to have constant size. In this
case, the number strongly connected components will be FIGURE 3. The attribute graph oR.

linear in the number of attributes of the relational database

scheme. If a constant fraction of the calls to the Lucchesi When th . I i
and Osborn algorithm produce two or more keys, the whole YWNeN these two sets are empty, Becontains all attributes,
we face the worst-case situation.

relational database scheme will have an exponential number o ,
To handle the worst-case situation we introduced a graph

of keys, but the algorithm can find a representation of them i € i oo
y g P algorithm to show that it is possible to simplify the problem

in polynomial time. - . .
The next section presents an example of how these ©f finding all possible keys of a database schema, if the

theorems can be used. We use the above algorithm to fing®{fiPute graph of the functional dependencies is not
the candidate keys of the given relation scheme. For this strongly connected.))
example, a universal relation scheRevith a set of FDS" We plan to work on a more cost-effective algorithm than

are given. The example is chosen such thatould contain a simple brute force search in the case that the attribute
all attribuies ofR graph is strongly connected.

ExampLE 3 ACKNOWLEDGEMENTS
Given schema R(ABCDEFG and T ={A— B, Comments by anonymous reviewers have substantially
AB— C,BC— A/AC — D,ED — F,EF — G, AG — improved the quality of this article; we sincerely appreciate
E}, find all candidate keys dRr. their concerns and assistance. Hossein Saiedian was
. partially supported by the UCR under grant #9330-1995,
Solution University of Nebraska at Omaha. Thomas Spencer was
The attribute graph for this scheme is shown in Figure 3. supported by the NSF under grant CCR-9319772 and by the
Note that it has three strongly connected compon&Bs, University Committee on Research, University of Nebraska

D and EFG. The only source component i8BC. A at Omaha.
restriction of R to ABC has I' = {A — B,AB— C,
BC — A}. Experimenting, we see thaA is a key of REFERENCES

restrict(R, ABC), but thatB and C are not keys. Further- [1] Armstrong, W. (1974) Dependency structures of database

more, BC is a key ofrestrict(R, ABC). Now we need to relationships. IrProc. 1974 IFIP Congressgp. 580-583.
compute a contractioncontrac{R, DEFG). Note that [2] Ullman, J. (1988)Principles of Database and Knowledge-
(ABC)" = ABCD, so the contractiorcontract{R, DEFG) Based Systemsolume |. Computer Science Press, Rockuville,
has the dependencid€ — F, EF — G,G — E}. Direct MD.

. [3] Maier, D. (1983) The Theory of Relational Databases
calculation shows that the keysadntract{ R, DEFG) areE Computer Science Press, Rockville, MD.

andG. This means that the whole schema has four Keyis [4] Lucchesi, C. and Osborn, S. (1978) Candidate keys for

AG, BCEandBCG relations.Journal of Computer and Systems Sciend&$2),
270-279.
5. CONCLUSIONS [5] Elmasri, R. and Navathe, S. B. (1994undamentals of

Database System$enjamin-Cummings, Menlo Park, CA,
We showed that a simple categorization of attributes intothe 2nd edition. _ _ o
sets£,R and B allows us to distinguish between those [6] Kundu, S. (1985) Animproved algorithm for finding a key of a

attributes that will participate in the candidate keys of a Ef?'%t;cig5Lnszrgf,iffrwgasg?stgig\ffgzsﬂﬁﬁSium on Principles
relational database schema and those that do not. ThIS[7] Ausiello, G.. D’atri,A. and SaccdD. (1983) Graph algorithms

categorization will provide a simple and efficient solution for functional dependency manipulatiofournal of the ACM
for finding the keys when the setsandR are not empty. 30(4), 752—766.

THE CoMPUTER JOURNAL, VoL. 39, No.2, 1996

132 H. S\iEDIAN AND T. SPENCER

[8] Biskup, J., Demetrovics, J., Libkin, L. and Muchnik, I. (1991) [9] Maier, D. (1980) Minimum covers in the relational database
On relational database schemes having unique minimal key. model.Journal of the ACM27(4), 664—674.
J. Information Processing Cybernetj&y7, 217-225.

THE CoMPUTER JOURNAL, VoL. 39, No.2, 1996

