
ELSEVIER Information and Software Technqlogy 38 (1996) 313-322

Challenges in the successful transfer of formal methods technology into
industrial applications

Hossein Saiediana, Michael G. Hincheyb
a&partment of Compttter Science, Universiry of Nebraska, Omaha, NE 48182, USA

bDepartment of Computer and Injkmation Science, New Jersey btsh’mte of Technology, Newark, NJ 07102, USA

Received 10 February 1995; revised 5 May 1995

Abstract

The primary objective of this article is to discuss a number of challenges @resented in terms of ‘guidelines’) that must be addressed
in a pragmatic manner in order to transfer formal methods technology into the actual workplace and to ensure that formal methods are
actually used on an industrial scale.

Keywords: Formal methods; Marketing; Simulation; Training; Education; Reusable framework

1. Introduction

Computer-based systems are built in areas such as air traffic
control, on-line hospital patient record management, stock
transaction control systems, and so forth. These systems
play important roles in our daily lives. As such systems turn
from being merely ‘information systems’, and are used
more and more in increasingly sensitive and sometimes
life-critical environments, operating over distributed plat-
forms and with strict requirements on response times,
inadvertent errors in their specification, design, and
implementarion could have major impact on our safety and
well-being. Some of these systems will consist of millions
of lines of code and their complexity may eventually super-
sede the complexity of any artefact ever built by mankind.

It is important that the developers of such systems employ
those methods that can o.ffer a high assurance that a system
will operate as desired. Thus, it is essential that such
developers seek assurance that the system requirements
accurately capture the users’ critical requirements, that the
system design correctly reflects the system requirements,
and that an implementation in software (or hardware) is an
accurate realization of the system design. By integrating
formal methodr into the development process of a system,
such added assurance can be achieved to a high degree.

Formal methods provide a notation for a fond speci-
fication of a system. A formal specification is needed for
effectively describing the desired behaviour of a proposed
system at an abstract level that can be reasoned about,
either formally in mathematics, or informally but rigorously.
A specification is formal if it has a precise and unambiguous
semantics. Precision and unambiguity are important
because during the development of a large system, many

095~5849/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
SSDI 0950-5849(95)01057-t

individuals have to agree on the interpretation of the
specification in order to produce a correct implementation.
A precise and unambiguous semantics is normally given in
the form of an abstract mathematical model with a set of
definitions.

Despite the clear and uncontentious advantages of formal
methods over non-formal traditional (structured) development
methods, the developers of computer-based systems are
often unmotivated to consider using them. Furthermore,
since some very basic definitions and applications of formal
methods are confused with certain ‘myths’, the uninitiated
practitioner may even find it easier to disregard these
methods altogether than investigating their potentials. In
fact, practitioners often perceive formal methods as an
academic exercise, difficult to use, and insufficiently sup-
ported by automated tools. However, these and many other
similar ‘myths’ of formal methods are unfounded and many
of them have been addressed in detail [1,2].

The primary objective of this article is to discuss a
number of challenges that must be addressed in a pragmatic
manner in order to secure the transfer of formal methods
technology into the workplace and to ensure that formal
methods are actually used on an industrial scale. These
challenges, expressed in terms of guidelines, include
initiation of joint industrial-strength case studies by both the
academia and industry, clarifying when formal methods
should be used in the software process, the importance of
developing automated tools, introducing a framework for
reusing formal specifications, developing executable speci-
fication languages for simulation and rapid prototyping,
running industrial courses to train software practitioners,
and educating the future generation of software engineers.
Bach of these guidelines is discussed in more detail below.

314 H. Saiedian, M.G. Hincheyilnformation and SoJiware Technology 38 (19%) 313-322

2. Guideline 1: Initiating further industrial-strength
case studies

Although widely cited as techniques that can result in
systems of the highest integrity, and to an extent mandated
in certain classes of applications [31 , formal methods
remain one of the most controversial areas of modern
software engineering practice.

They are the subject of extreme hyperbole by self-styled
‘experts’ who fail to understand what formal methods
actually are, and of deep criticism by proponents of other
techniques who see formal methods as merely an oppor-
tunity for academics to exercise their intellects over which-
ever notation is the current ‘flavour-of-the-month’.

After a quarter of a century’s application, one would
have hoped that the half-truths and unwarranted prejudices
that abound in the software engineering industry would
have died out. Unfortunately this is not the case, and many
practising software engineers seem happy to take to heart
both criticisms and extreme exaggerations regarding what
formal methods can and cannot do [41.

Most practitioners perceive formal methods as academic
tools which are difficult to use. They are reluctant to use
them despite their considerable advantage over traditional
methods. It is difficult to say what really needs to be done
to convince industrialists to take formal methods to their
hearts; this is a research topic in itself. However, a certain
degree of appropriate ‘marketing’, highlighting the applic-
ability of formal methods in certain classes of system and
in particular environments, should help to save formal
methods from this unfair perception, and to widen their
range of acceptability within the system development
community at large.

To demonstrate that formal methods pay off, more
realistic large-scale examples performed in conjunction
with industry (e.g. IBM’s CICS) are necessary. These
industrial case studies are not only necessary to advance the
technology and demonstrate the potential benefits, they also
help identify the needs of companies that adopt formal
methods and serve to enhance the integration of formal
methods with current software engineering practices. In
fact, the proponents of formal methods should continuously
look for further cooperative opportunities with industry to
plan for newer industrial-strength case studies to avoid
repeatedly reciting old case studies (such as CICS,
Darlington project, etc.). To convince the ‘uninitiated’
practitioners, large case studies are quite essential. Of
course, if formal methods are to be ‘marketed’, then the
results of these applications (whether. successful or other-
wise) need to be disseminated to potential users of formal
methods.

A survey of industrial usage on both sides of the Atlantic
has become widely quoted, and should play a major role in
highlighting the benefits of formal methods [5] , Hinchey
and Bowen [6] attempt to consolidate much of this infor-
mation in an industrially useful manner. It includes a

summary of the findings of the aforementioned survey, and
contains contributions relating to a number of the systems
addressed in that survey, the contributions being written by
the actual developers.

The case studies relate to a wide range of formal methods
(B, CCS, VDM, Z, etc.) and to a wide range of applications
(such as high-integrity systems in the avionics, nuclear
projects, atomic energy control, railway industries, security-
critical systems, etc.). The use of Z and B in CICS, often
cited as a prime example of the successful industrialization
of formal methods, is also discussed as well as more
unusual applications such as a voting system.

Large case studies and industrial-usage reports can also
assist in identifying the limits of formal methods. Formal
methods have proven very useful for the specification of
functional properties of a system. Non-functional pro-
perties of a software system such as reliability, cost con-
straints, performance, portability, man-machine interfaces,
and resource consumption of executing programs are
difficult, or perhaps even impossible to specify by means of
formal methods. Some research has been carried out into
formalizing resource consumption and resource allocation
as well as in fault-tolerance/reliability and user-interface
design [71 . However, it is only with practical applications
that the limits or constraints of formal methods will be
revealed.

In general, formal methods tend to address semantic
issues rather than pragmatic issues of software development.
Management and practitioners are, however, more con-
cerned with pragmatic issues.

Weber-Wulff [81 addresses a number of ways in which
management is more likely to be convinced of the appro-
priateness of forma1 methods for their own environments.
The more relevant of these propositions, from our point-of-
view are:

(1) An industrial formal method should be con&able.
That is, a formal method should be applicable to
particular aspects of system development and should
not have adverse effects on other areas. Most of the
more successful applications of formal methods have
focused on a relatively small proportion of the system,
although that is not to say that such applications have
been trivial. The key is to focus on critical portions,
where the cost of failure would be excessive. To
suggest that forma1 methods should be applied to all
aspects of the development is ludicrous [4] , and it is
likely that the benefits of using formal methods would
be lost if one were to attempt to introduce such a policy.

(2) l’he use of formal methods shouM be reversible.
Management may be loath to commit to formal dev-
elopment if they believe that such a step is cast in
stone. If it is found that the cost of forma1 methods is
just not justified for the system in question, or that the
expertise required is just not available within the
organization (and that consultancy is not feasible) then

H. Soiedian, M. G. Hincheylinformation and Software Technology 38 (19%) 313-322 315

it is important that the organization can revert to its
previous development processes.

A practical means of ensuring this at the outset might
involve method integration. Success has been reported in
the use of structured and formal methods in parallel [91 1
There is a certain point, however, beyond which this
becomes unnecessary and costly. Much interaction
between the parallel development is required if the
benefits of using formal methods are to be highlighted,
and if the structured method’s support for the software
process is to be exploited.

(3) A formal method should be open to allow interchange-
ability of sofrware components or to allow use of
different tools.
In many respects this is related to the previous pro-
positions. If a formal method cannot interact with other
development methods and confines the developers to
using only software components developed with that
method, then it will be very difficult to convince man-
agement to adopt that method. The re-use of legacy
code has been highlighted as a means of increasing
productivity, increasing confidence in system integrity
by reusing components that have been formally proven
to be correct, and reducing lead-time to market.
Prohibiting such reuse, or parallel development (using
other development processes) would be a major
inhibition to the integration of formal methods into
industrial development.

(4) There must be adequate documentation for an industrial
formal method.
The industrialization of a formal method requires
adequate support in terms of documentation, teaching
materials and tool support. The industrial take-up of a
formal method takes at least a decade [lo], and is
reliant on the development of appropriate tools, the
publication of textbooks and other materials, and the
teaching of the method in academic environments so
that graduates may help in the technology transfer to
industry-. Just as a number of excellent programming
languages have died sudden-deaths due to lack of docu-
mentary support, the same can be said of a number of
formal methods. Hewlett-Packard’s proprietary speci-
fication language, HP-SL, despite having many useful
features, completely failed the technology transfer test;
the executable specification language Paisley seems to
have suffered a similar fate. One cannot but wonder
whether the COLD family of languages is endangered
also. Despite best efforts at publication in book format, the
languages seem to be used almost exclusively at Philips.

Lastly, it may now be imperative to name a few important
organizations that suggest and/or mandate the use of formal
methods for (safety-critical) software development: the
International Electrotechnical Commission, the European
Space Agency, the UK Ministry of Defence, Canada’s
Atomic Energy Control Board and Ontario Hydro [41.

3. Guideline 2: Clarifying when to use formal methods

An important responsibility of the proponents of formal
methods is to clarify when in the development process formal
methods should be applied. As full formal development is
rarely employed, thus far the greatest benefits of formal
methods have been demonstrated at the early stages of
development for the purposes of modelling and specification.

What normally discourages practitioners is the mathematics
involved in proving programs correct (program verific-
ation). Program verification, however, is carried out at the
later phases of development when actual programs have
been coded. Program coding is not necessarily the most
error-prone part of the development, especially if the overall
structure of the system under development has been pro-
perly designed and well-conceived. The need for complicated
programs and, by extension, program verification, is in fact
a sign of poor design.

The greatest benefit of formal methods emerges when
they are employed during the specification and modelling
stages, early in the development process. During these
stages, formal methods can be applied profitably to develop
clear and concise specifications. The simple act of precise
specification and modelling often provides the greatest
benefit, although reasoning about specifications can also
provide considerable additional advantages. Consider, for
example, one of the better known real-life applications of
formal methods-the application of SCR (Software Cost
Reduction) techniques to the Darlington Nuclear Facility in
Canada.

That application is often cited as a major argument in
favour of formal methods. Indeed, the work involved
highlighted several errors in the existing code that would
have gone undetected by testing. Specifications and models
derived from the implementation were amenable to formal
examination and analysis. The application is also often
cited, however, as a means of highlighting the extreme cost
of formal methods. It is true that the project cost several
million dollars, although the software consisted of just 2000
lines of code.

Nevertheless, the project stands as one of the great success
stories of formal methods, and it is our contention (and that
of David Pamas, who acted as a consultant in establishing
the Ontario Hydro standards [111) that the costs would
have been significantly less had formal methods been used
in the initial stages of development (rather than used to
‘backlit’ the existing code).

Although Darlington was expensive, and many might
dispute such a high investment, we believe that (in this
case) the investment was warranted, due to the catastrophic
destruction and loss of human life that would have ensued
as a result of a system failure. However, that is not to say
that formal methods are justified in all system development,
and one must clarify when formal methods should be
applied.

Applying formal methods blindly to ail aspects of a

316 H. Saiedian, M. C. Hincheyl Information and Sofrware Technology 38 (19%) 313-322

system will certainly not be cost-effective. Most successful
applications of formal methods have concentrated on
critical components, and indeed the use of formal methods
is justified in all high-integrity systems, or components
of systems which are required to meet the highest in-
tegrity standards [31, that is, where ‘correctness’ is of the
essence.

4. Guideline 3: Investing in automated tools

example, to animate the mathematical expressions in a
specification document so that a customer may understand
them more easily. It should be noted that a number of very
useful tools have already been developed for Z, including
ZTC, fuzz, and CADiZ. Similarly, automated toolboxes
for VDM-SL support formal development as well as type
and semantic checkers as well as a pretty-printer that pro-
duces I&TEX code. Certain formal models incorporate
tool support directly. For example, OBJ includes an ex-
ecutable subset while Larch supports a theorem prover.
More tools have recently been reported [4].

One factor limiting the use of formal methods is the lack
of investment in automated tools and support structures to
reduce the efforts of applying these methods. In fact, lack
of support tools is often seen as a major barrier to using
formal methods.

5. Guideline 4: Constructing a reusable framework
for formal specifications

A key factor in the acceptance of high-level languages
has been the presence of a comprehensive set of tools to
support the user. If formal languages are to achieve the
same level of acceptance, they too require extensive
automated support. Support tools may reduce the learning
time, thereby aiding their widespread use. Automated tools
may include:

Traditionally, formal methods have been used for func-
tional specification of software (and hardware) systems,
focusing largely on abstraction techniques (and refining
abstractions into some implementation).

. special editing environment;

. syntax checkers;

. animation tool;

. refinement and proof tools.

A special editing environment for Z would, for example,
provide a specifier with a number of pop-up menus from
which the specifier could view global schemas, local
schemas, state schemas, operation schemas, defined sets,
etc. The editor would also make schema creation, modi-
fication, deletion, etc. more flexible.

In addition to the above, good interfaces to specification
languages, transformation tools for taking popular methods
and converting them into formal methods, and tools for
inferencing from specifications to assist software validation
are needed. Craigen [121 classifies the potential advantages
arising from the use of formal methods tools as follows:

(1) Soundness. A formal methods tool can guarantee that
sound reasoning is performed because it would have
the capability in taking care of the minutiae involved in
formal reasoning in comparison to a system developer.

(2) Tracking. A formal methods tool can accurately main-
tain a database of dependencies, incomplete definitions,
proven and unproven properties, etc.

(3) Magnijkution. Formal methods tools have the potential
for increasing our capabilities in ‘developing formally
specified and verified systems.

To ensure that formal methods become an integral part of
industrial software engineering, the use of these methods
has to be made as cost-effective as possible. One way of
achieving such cost-effectiveness is through the development
of a framework for the reuse of existing formal specific-
ations. In Europe, the ESPRIT project ‘REDO’ focused on
the reverse engineering and redocumentation of existing
software (mainly COBOL). The project resulted in the
development of a useful compendium of techniques for the
retrieval of specifications from existing software. Clearly
specifications could be manipulated and reasoned about far
more easily than badly structured COBOL (or even well-
structured COBOL), and later the modified specifications
could be used to regenerate well-structured systems that
were well documented.

The idea of maintaining libraries of formally specified
software components that can form the basic design repertoire
of soft&are developers is not an entirely new one [lo,13] ,
and such libraries will slowly be propagated. An interesting
result is that libraries of specifications are easier to maintain
than libraries of program fragments. In addition, specific-
ations are abstract descriptions with little implementation
bias, and can more easily be reused in different systems and
different environments [lo], with the cost of development
amortized over multiple products, and with an increasing
uniformity across a range of products [13] .

The fact that formal specifications may be reused is also
likely to encourage greater rigour in their derivation and
documentation, as developers consciously consider that
greater effort at this stage may in future result in faster and
cheaper development with less effort.

Furthermore, a specification is and should be considered Such factors are likely to increase the acceptability of
a major reference document for the customer as well as the formal methods in industrial development. In fact, while
developer. It is impractical, however, to expect a customer potential reuse might be a justification for the adoption of
to read mathematical expressions. A large amount of work formal methods, it has been argued that reuse cannot exist
needs to be done in this area for developing tools, for without formal methods, as without a formal specification

H. Saiedian, M. G. Hinchey / Information and Sojiware Technology 38 (19%) 313-322 317

a program is neither adaptable nor portable, and thus not
even potentially reusable [141.

6. Guideline 5: Exploiting simulation and rapid
prototyping

Although they have proven to be very successful when
applied at early stages in the development process, the
advantages of formal methods are not always so apparent
at the outset. This is because the cost structure of the
development changes dramatically; initial phases of dev-
elopment are now more costly, which conspires to convince
many developers that formal methods are expensive.

Formal methods are expensive, but in many cases this
expense can be justified [lo]. However, increased costs at
the outset are generally more than outweighed by the
reduced costs at later stages (i.e. at the implementation
stage and during post-implementation testing).

The use of formal methods in rapid prototyping and
simulation is one area where the usefulness and applic-
ability of formal methods can be demonstrated to ‘non-
believers’. Rapid system prototyping and simulation have
much in common in the sense that both involve the
derivation and execution of an incomplete and inefficient
version of the system under consideration. They do, how-
ever, have different aims (although these are certainly not
incompatible), and are applied at different stages in the
system life-cycle.

Prototyping is applied at the earlier stages of system
development as a means of validating system requirements.
It gives the user an opportunity to become au fait with the
‘look-and-feel’ of the final system, although much of the
logic will still not have been implemented. The aim is to
help in determining that the developer’s view of the pro-
posed system is coincident with that of the users. It can also
help to identify some inconsistencies and incompatibilities
in the stated requirements. It cannot, for example, be used
to determine whether the requirements of efficiency of
operation and requirements of ease of maintenance are
mutually satisfiable. The prototype will in general be very
inefficient, and will not necessarily conform to the stated
design objectives.

Best practice holds that the code for a prototype should
be discarded before implementation of the system. The
prototype was merely to aid in eliciting and determining
requirements and for validation of those requirements; that
is, determining that we are building the ‘right’ system. It
may have a strong bias towards particular implementations,
and using it in future development is likely to breach design
goals, resulting in an inefficient implementation that is
difficult to maintain. Retaining a prototype in future dev-
elopment is effectively equivalent to the transformational or
evolutionary approach to system development, with a certain
degree of circumvention of the specification and design
phases.

Simulation fits in at a different stage of the life-cycle. It
is employed after the system has been specified, to ver@
that an implementation may be derived that is consistent
both with the explicitly stated requirements, and with the
system specification; in other words, that we are building
the system ‘right’. While prototyping had the aim of high-
lighting inconsistencies in the requirements, simulation has
the aim of highlighting requirements that are left unsatisfied,
or only partly satisfied.

Both rapid prototyping and simulation suffer from one
major drawback. Like testing, which can only highlight the
presence of software bugs, but not their absence, proto-
typing and simulation can only demonstrate the existence of
contradictory requirements or the failure to fully satisfy
particular requirements. They cannot demonstrate that no
contradictory requirements exist, nor that all specified
requirements are satisfied, respectively [151 . That is why
attention has begun to be focused on the use of formal
methods in both rapid system prototyping and simulation,
as formal methods can actually augment both of these areas
withproof [16].

The use of executable specification languages and the
animation of formal specifications are clearly two means of
facilitating prototyping and simulation, while retaining the
ability to prove properties.

6.1. Executable specijcations

We differentiate here between executable specifications
and specification animation, although many authors consider
them to be identical.

We consider specifications to be ‘executable’ when the
specification language inherently supports explicit execution
of specifications. While the means by which executions of
such specifications are performed are varied and interesting
in themselves, they are not of concern to us here.

An executable specification language offers a distinct
advantage-it augments the conceptual model of the pro-
posed system, derived as part of the system specification
phase, with a behavioural model of that same system. This
permits validation and verification (as appropriate) at earlier
stages in the system development than when using traditional
development methods [1] .

There is a fine line between executable specifications and
actual implementations-that of resource management.
While a good specification only deals with the functionality
and performance properties of the system under considera-
tion, implementations must meet performance goals in the
execution environment through the optimal use of resources.

The use of executable specifications has been criticized
for unnecessarily constraining the range of possible im-
plementations [171. While specifications are expressed
in terms of the problem domain in a highly abstract
manner, the associated implementation is usually much less
‘elegant’. It has been claimed that implementors may be
tempted to follow the algorithmic structure of the executable

318 H. Saiedian, M. G. Hincheyllnformation and Software Technology 38 (19%) 313-322

specification, although this may still be far from the ideal,
producing particular results in cases where a more implicit
specification would have allowed a greater range of results.

Hayes and Jones [171 also claim that while executable
specifications can indeed help in early validation and veri-
fication, it is easier to prove the correctness of an imple-
mentation with respect to a highly abstract equivalent
specification rather than against an implementation with
different data and program structures. This is crucial; it
indicates that executable specifications, while permitting
prototyping and simulation, in the long run may hinder
proof of correctness.

6.2. Animating formal specijkations

While executable specifications incorporate inherent
support in the specification language, animation applies to
specification languages which are not normally executable.

In this category we include the animation of Z in Prolog
[181 and the direct translation of VDM to SML [191, as
well as the interpretation and compilation of Z as a set-
oriented programming language [201.

Such specification languages were not intended to be
executable, but by appropriately restating them directly in
the notation of a declarative programming language, become
so. In fact, with appropriate manipulations, such animations
can be made reasonably efficient [l] .

Such an approach seems preferable to executable speci-
fication languages. It too provides a behavioural model of
the system, but without sacrificing abstraction levels. It
supports rapid prototyping and even more powerful
simulation, but prototypes and simulations are not used in
future development. The refinement of the specification to
a lower-level implementation, augmented with the discharge
of various proof obligations ensures that the eventual im-
plementation in a conventional (procedural) programming
language satisfies the specification.

Work on executable specifications and specification
animation needs to be expanded further. It is one way (and
perhaps one of the more effective ways) to increase the
acceptance of formal methods by demonstrating that such
methods can aid in prototyping and simulation, giving
tangible evidence of the satisfaction (or otherwise) of
system requirements, and increasing productivity and
reducing development costs.

7. Guideline 6: Running industrial courses to train
professionals

Since the job of software developers is product oriented,
they require a different kind of education than that typically
taught by research institutions and computer science depart-
ments. The ideal approach for educating the practitioners is
to develop a curriculum for a graduate professional degree
(analogous to an MBA degree but perhaps with less course

work). Such a curriculum would cover the necessary back-
ground for using formal methods (e.g. discrete mathematics
courses covering sets and logic) and would present a variety
of principles, tools, and skills in applying formal methods
during software development. Such a professional curriculum
is, unfortunately, not very practical now but it should be
considered for near future.

The professional degree is not the only approach. A
good deal of knowledge of formal methods for software
engineering can be found in professional workshops in
industry and can be attained through apprenticeship. Typical
workshops on formal methods present concepts arid com-
parisons of various types of specifications for different
software components (e.g. data structures, files, single
procedures, composite objects, programs, etc.). Examples
are developed and the relationships between formal
specifications and other topics such as logic programming,
program verification and ‘clean-room development’ are
illustrated. We suggest the following hints for the information
systems professionals:

. Training in discrete mathematics covering elementary set
theory and logic should be the first step. For those who
have a mathematical background but are unfamiliar with
the basic concepts of set theory and propositional logic
one or at most two days suffices to introduce the ideas.
For others one week of training is required.

. Training in a particular formal method such as Z or
VDM should be the next step. Such training typically
takes three to five weeks, once the participant has the
necessary mathematical background. After such a short
training, an individual will be able to read and write
formal specifications but not necessarily for complex
systems. In order to handle complex systems confidently,
gradual training and continuous practice is required.

. Tutoring and consultation in a real project is helpful, so
is participation in workshops where one can study a
problem and describe it formally with the help of a tutor.

8. Guideline 7: Educating the future generation of
software engineers

Educating students, who are our future software engineers,
in formal methods is important because we will be pre-
paring them for career growth and through them, we will
infuse the formal methods technology into industry. In this
section, we emphasize curriculum materials which are in
the direction of increased formalism in software develop-
ment. This includes discussion of necessary course work
and tools that would help students appreciate the need for
formal methods. For additional details, please see Saiedian’s
pedagogical work [21,22] . Note that our goal here is not
to propose a new curriculum; nor is it to single out any
particular department’s curriculum (although we do believe
that many current undergraduate curriculums are focused

H. Saiedian, M. G. Hincheylinfonnation and Sojware Technology 38 (19%) 313-322 319

on the very narrow areas of computer science and pro-
gramming and that treatment of mathematics and logic in
these curriculums is often quite shallow). At the end of this
section, we discuss the importance of tools to accommodate
students’ understanding of formal concepts.

8. I. Formal courses

In this subsection we would like to emphasize the courses
that we believe should be emphasized more strongly in the
computer science curriculums for exposing the students to
the concepts related to formal methods.

Discrete mathematics. Discrete mathematics is a study of
calculations involving a finite number of steps and is the
foundation for much of computer science. It focuses on the
understanding of concepts and provides invaluable tools for
thinking and problem solving. Discrete mathematics is
especially important when a computer science student is not
required to study much of ancillary mathematics.

Computer science students should take at least a one-
semester course in discrete mathematics covering funda-
mental topics such as set theory, functions, relations,
graphs, and combinatorics. There have been few attempts
to teach these topics to freshmen/sophomores in a thorough
fashion that would relate discrete mathematical concepts to
computer science and software development.

Mathematical logic. L6gic is fundamental to many of the
notations and concepts in computing science. Mathematical
logic allows students to formulate and solve a wide class of
problems mathematically, is fundamental in understanding
the meaning of algorithms, and represents the foundation of
logic programming. Students thus must have a deep under-
standing of concepts such as decision procedures and
higher order logic, and the relationship between set theory
and lambda calculus. A one-semester course which focuses
on these concepts is essential.

The mathematical logic course, together with the discrete
mathematics course, should enhance a student’s ability of
abstract specification and the mathematical skills for
specifying, manipulating, and analysing programs.

Formal specijkation. In addition to the above courses,
students should take a formal specification project course.
Such a course should tie together the abstract concepts
learned in the discrete mathematics and logic courses and
provides an opportunity to make. practical use of these
concepts.

Students must have sufficient experience to be able to
appreciate the need for proper specification. This experi-
ence may be developed in such a class and could come from
the ad hoc development of a software of some complexity
or, better still, from attempts to modify a poorly documented
and poorly modularized system. Such a course should not
simply survey several different approaches but rather give

an in-depth practice with one or two approaches that have
proven useful (e.g. Larch, VDM, and Z).

One misconception about formal methods is that they are
too mathematical and too complicated, requiring a PhD to
understand them. Formal methods are based on mathematics.
However, the mathematics of formal methods are not
difficult to learn. Using them requires some practice, but
our observation is that such practice is not difficult and that
people with only high school math can develop the skills to
write good formal specifications. Most popular formal
specification languages (e.g. Z and VDM) employ only a
limited branch of mathematics consisting of set theory and
logic. The elements of both set theory and logic are easily
understood and are taught early in high school these days.
Certainly, anyone who can learn a programming language
can learn a specification language like Z. In fact learning
a specification language such as like Z should be easier
than a programming language like COBOL. Z is smaller;
it is abstract and is implementation-independent. For
example, Z uses data types like sets instead of a pro-
gramming language’s types like arrays. This kind of rep-
resentation captures the essence of what is required better
than the corresponding implementation structures. The
specification of a problem in Z is shorter and much easier
to understand than its expression in a programming language
like COBOL.

The need for a broader use of mathematical techniques
and concerns for lack of rigour and accountability in
software engineering is not felt just by the computer
scientists. Consider, for example, the 1990 report released
by the Subcommittee and Oversight of the US House of
Representatives Committee on Science, Space and Tech-
nology. This report addresses the problem of software
reliability and quality and criticizes universities for not
providing adequate education for software engineers. In an
article summarizing this congressional report, Cherniavsky
[231 writes:

I.. . there is] a fundamental difference between software
engineers and other engineers. Engineers are well trained
in the mathematics necessary for good engineering. Software
engineers are not trained in the disciplines necessary to
assure high-quality software

8.2. Tools for students

A glance at the structure of most popular formal methods
(e.g. Z and VDM) will show that elementary set theory and
mathematical logic are of prime importance in these systems
and are heavily used in the context of software engineering.
Students need to be familiar with these concepts and how
they provide a basis for precise definition of the entities we
perceive in an information system. Both of these concepts
are covered in a discrete mathematics course. (It is called
discrete mathematics to distinguish it from the continuous
mathematics of real numbers that include differential and
integral calculus.) Discrete mathematics is a study of

320 H. Saiedian, M. G. Hincheyllnformarion and Software Technology 38 (19%) 313-322

calculations involving a finite number of steps and is the
foundation for much of computing science. It focuses on the
understanding of concepts and provides invaluable tools for
thinking and problem solving. Discrete mathematics is
especially important when a student is not required to study
much of ancillary mathematics. Students should be taught
the skills for formalizing problems and behaviours and
adjusting the level of rigour to fit software development
processes.

It has been our experience that students learn more by
active participation than by just observing. Theoretical
concepts (such as discrete mathematics and graph theory
concepts) should be reinforced with hands-on experience in
labs. Since such courses should be taught early in college
(to provide the necessary background for high-level courses),
educators must ensure that students learn the concepts well.
As is often the case, students have difficulty with theoretical
concepts that are described in books using definitions,
theorems, and proofs. A tool which visualizes theoretical
concepts and allows a student to experiment with these
concepts creates an attractive environment. Such a tool is
helpful, for example, in solving various graph theory
problems which would be tedious to work by hand, and
would allow easy construction, easily manipulation and
flexible composition of graphs. Freed from the mechanical
aspects of these tasks, students can focus their attention on
the concepts which form the basis of the material being
studied.

Several discrete mathematics tools, such as SetPlayer,
have been developed at Rensselaer that could be used to
enrich the undergraduate computer science classes. All of
these tools include a help facility or user manual. SetPlayer
is an interactive command-driven software system for set
manipulation. It can be used as a research and educational
tool in discrete mathematics. A novel feature of the system
is its ability to manipulate sets represented symbolically.

For formal specification purposes, a tool, with similar
functions as the above tools can help students in many
ways. For example, an integrated environment may provide
specialized editors, a static analyser (parser and type
checker), and refinement tools. A specialized user-friendly
editor is of significant importance since most formal
methods use mathematical notations not available in tradi-
tional editors. Visualization is important and can help
students learn the concepts more effectively. A specialized
environment for popular formal notations such as 2 or
VDM can assist students in the creation of specification
schemas through the use of a visual notation and present the
essential structures in diagrammatical form that could
enhance learning. Furthermore, a tool that would extract
from specifications in Z or irDM a definition for another
diagrammatical tool, e.g. a structure chart, and generate
the corresponding charts, would be even more interesting
as it would teach students how a formal methodology relates
to traditional approaches. Since students may already be
familiar with traditional approaches, they can relate to and

learn the formal methods approach when they can relate it
to concepts with which they are already familiar.

A number of formal methods incorporate tool support as
part of the method itself, although we have not directly used
them in the classroom to see their effectiveness. Examples
include OBJ which offers executable subsets, Larch which
offers theorem prover, and ZTC andfuzz which offer type-
checking for Z. ZTC is a PC-based public domain software
while fuzz is a relatively inexpensive commercialized
system that runs under UNIX. CADiZ also offers a suite of
tools for Z and supports refinement to Ada code.

Two tools that we quite often use for pretty-pririting of
Z specifications include the LATEX ‘style’ macros zed.sty
and oz.&y. Both of these macros are freely available
electronically via anonymous FTP. When using these
macros, students no longer need to hassle with their editors
to typeset special symbols and/or schema boxes. Every Z
construct or symbol can be typed in through an ASCII
terminal and either one of the above LATEX macros can be
used to generate beautiful Z output. For example, one can
type in the ASCII text given below:

\beginCschema3CBlockRequest3
\Delta Storage \\
user? : USERS \\
block! : BLOCKS

\uhere
free \neq \emptyset \\
block! \in free \\
free’ = free \zhide \iblock?\) \\
dir) = dir \union

\{block? \mapsto user?\3
\endCschema3

to obtain the following typeset Z output:

~ BlockRequest
AStorage
user? : USERS
block! : BLOCKS

free # 0
block! E free
free’ = free \ {block?}
dir’ = dir U {block? I+ user?}

L

As it can be observed, these LATEX macros can save
students’ time that would otherwise be spent on the mech-
anical and time-intensive aspects of preparing specifications
in Z notation. Both of these two macros can quickly be
learned by LATEX users. Similar macros have been dev-
eloped for VDM.

Yet another aspect of a tool that frees students from the
mechanical aspects of developing formal schemas and
allows them to concentrate on the conceptual modelling
aspects of software development, is to provide pop-up and

H. Saiedian, M. G. Hincheyllnfommtion and Sojiware Technology 38 (1%) 313-322 321

pull-down menus for selecting specification schemas, veri-
fying the well-foundedness of specification schemas, and
mapping them into more concrete definitions and programs
to make a prototype implementation. When these mechanical
aspects of conceptual modelling and mapping into an
operational model are handled by a tool, students can con-
centrate on how to improve the quality of representations
and reason about the correctness of models. Student pro-
ductivity and knowledge in formal methods will be sub-
stantially increased when using an easy-to-use environment,
with context-sensitive help and debugging, analogous to the
program development productivity improvement ‘Turbo
Pascal’ brought to beginning programming students during
the 1980s.

9. Conclusions

We, like so many other proponents of formal methods,
believe that system specification via rigorous mathematical
notations can help to eliminate (or at least ameliorate) many
of the problems associated with software engineering, such
as ambiguity, imprecision, incompleteness and inconsis-
tency . Errors may be discovered and corrected more easily,
not through an ad hoc review, but by the application of
mathematical reasoning. We believe that formal methods
can be particularly useful during the early stages of soft-
ware engineering, and enable the software developer to
discover and correct errors that otherwise might go un-
detected, increasing the quality of the software and its
maintainability, while decreasing its failure rate as well
as its maintenance costs. Although such ideas are the
objectives of all software development methods, the use
of formal methods results in much higher likelihood of
achieving them.

Unfortunately, industrialists have been slow to accept
these ideas, and the uptake of formal methods has been
much slower than one would expect, and desire. We have
highlighted some areas whereby we feel the proponents of
formal methods fail to ‘sell’ them adequately.

While it may be relatively easy to educate students in
formal methods within an academic setting, it is less easy
to convince industry to accept such methods. Regardless of
how many case studies are presented, information systems
managers, who rarely have a technical degree, are still
fearful of what the consequence may be in terms of re-
education and/or training of present practitioners, the long-
term influence of formal methods on the software engineering
process, and the change-over from ad hoc approaches to
formal methods. (Managers often equate formal methods
with the theoretical underpinning of programming or
engineering practices.)

We believe, however, that with greater marketing, greater
emphasis on when formal methods are required, with appro-
priate reuse of formal methods and the use of formal
methods in prototyping and simulation, greater emphasis on

tool support and educations, we may succeed in transferring
formal methods technology into the actual workplace. We
also believe in a pragmatic approach to the education
of future system developers (thorough grounding in discrete
mathematics, mathematical logic, and formal methods) so
as to prepare our new graduates for the future application
of such techniques, while slowly achieving the transfer of
the technology itself into industry.

Acknowledgements

We would like to thank anonymous reviewers for their
fine suggestions that improved the presentation of our
article. Hossein Saiedian’s research was partially funded by
a UCR grant from the University Committee on Research,
University of Nebraska at Omaha.

References

111

I21

[31

I41

I51

[61

[71

[f31

[91

[101

[Ill

[121

[131

[141

[151

1161

[171

[I81

Fuchs, N E ‘Specifications are (preferably) executable’, IEE/BCS
S&are Engineering J. Vol7 No 5 (September 1992) pp 323-334
Hall, A ‘Seven myths of formal methods’, IEEE So&are Vol 7
No 5 (September 1990) pp 11-19
Bowen J P and Hinchey, M G ‘Formal methods and safety-critical
standards’, IEEE Computer Vol 27 No 8 (August 1994) pp 68-71
Bowen, J P and Hinchey, M G ‘Seven more myths of formal
methods’, IEEE Sojiware Vol 12 No 4 (July 1995) pp 34-41
Craigen, D, Gerhart, S and Ralston, T ‘An international survey
of industrial applications of formal methods’, (March 1993)
NISTGCR 93/626, US Department of Commerce
Hinchey, M G and Bowen, J P, (eds) AppIic&ions of formal
methods Prentice-Hall (1995)
Dix, A J Formal methods for interactive systems Academic Press
(1991)
Weber-Wulff, D ‘Selling formal methods to industry’, in Formal
Methods 93, LNCS 670, Springer-Verlag (1993) pp 671479
Leveson, N ‘Software safety in embedded computer systems’
Commun. ACM Vol 34 No 2 (February 1991) pp 34-46
Bowen, J P and Hinchey, M G ‘Ten commandments of formal
methods’ IEEE Computer Vol 28 No 4 (April 1995) pp 56-63
Pamas, D L ‘Using mathematical descriptions in the inspection of
safety-critical software’ in Hinchey and Bowen (eds) Applicabons
of Formal Methods Prentice-Hall (1995)
Craigen, D ‘Tool support for formal methods in 13th Inr. Con& on
Soj. Eng. IEEE-CS (1991) pp 184-185
Garlan, D and Delisle, N ‘Formal specifications as reusable frame-
works’ in VDM ‘90 LNCS 428, Springer-Verlag (1990) pp 150-163
Boyle, J M ‘Abstract programming and program transformation: an
approach to reusing programs’ in Biggerstaff, T J and Perlis, A J
(eds) Sofhyare reusability: concepts and models ACM Press (1989)
Hinchey, M G and Jarvis, S A Concurrent systems: formal develop-
ment in CSP McGraw-Hill (1995)
Hekmatpour, S and Ince, D C System prolotyping, formal methods
and VDM Addison-Wesley (1989)
Hayes, I J and Jones, C B ‘Specifications are not (necessarily)
executable’ IEE/BCS Sojiwre Engineering J. Vol4 No 6 (November
1989) pp 330-338
West, M M and Eaglestone, B M ‘Software development: two
approaches to animation of Z specifications using Prolog’ IEE/BCS
Soft. Eng. J. Vol 7 No 4 (July 1992) pp 264-276

322 H. Saiedian, M. G. Hinchey llnfomarion and Sofiware Technology 38 (19%) 313-322

[191 O’Neill, G ‘Automatic translation of VDM specifications into Vol 3 No 3 (1992) pp 203-221
standard ML programs’ 77~ Computer J. Vol 35 No 6 (December [22] Saiedian, H ‘Towards increased formalism in software engineering
1992) pp 623-624 education’ ACM SIGCSE Quarterly Bulletin Vol 25 NO 1 (March

[20] Valentine, S H ‘The programming language Z--‘. 1. ojlf: and 1993) pp 193-197
Soft. Technol. Vol 37 No 5/6 (May/June 1995) pp 293-302 [23] Cherniavsky, J C ‘Software failures attract congressional attention’

[2 1] Saiedian, H ‘Mathematics of computing Computer Science Educarion Computer Research Review Vol 2 No 1 (January 1990) pp 4-5

