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The benefits of simulation to the development of com-
plex systems are well known and frequently exploited.
This article discusses the advantages of simulating an
inherently concurrent system, namely, a collection of
computer systems using the carrier sense multiple
access protocols to access a bus-based local area
network. The rationale for developing an object-ori-
ented simulation is presented and suitably illuminated
source code outlines are provided. Implementation of
the network based on the simulation is described and
additional simulations are discussed. Owing chiefly to
the concurrent object-oriented approach taken, the
work described here can be used as the foundation of
a network simulation toolbox, thus vastly simplifying
the study of proposed networks and protocols.

1. INTRODUCTION

Object orientation, as it originally appeared in SIM-
ULA, was motivated by two overriding concerns: to
provide natural structural components for simula-
tion purposes and construct reusable program com-
ponents. Object orientation has now proven to be a
successful methodology outside of these areas. Its
concepts have been used for conceptual modelling,
analysis, design, and programming. Furthermore, the
methodology has now become widely accepted as an
effective and promising approach to software devel-
opment. Therefore, there is no longer a need to
build a case for its use.

The central concept in object orientation is an
object. Objects provide a useful basis for an organi-
zational paradigm. That is, they allow a large system
to be decomposed into manageable units. Further-
more, they promote reusability, i.e., for composing
systems from “plug-compatible” [1] objects. Thus,
new simulation models or real applications poten-
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tially should be constructed by combining existing
objects. The basic features of objects (which are
extensively emphasized in this article) include the
following:

e Encapsulated local state: that is, the local state of
an object as well as the “services” it provides are
protected from outside access.

o State changes via message passing: messages arc
sent to an object to obtain its services. After
accepting a message, an object may change its
state. Thus, state changes are triggered by accep-
tance of a message. (Message passing is sometimes
referred to as method invocation.) Two other es-
sential characteristics of objects—concurrency and
nondeterminism—have recently been emphasized:

e Objects should be inherently concurrent, i.e., they
should perform their activities concurrently.

e Objects should have a nondeterministic input to
computational steps [2]. This kind of nondetermin-
ism mirrors the real world, in which the sequence
of events in which objects participate cannot be
predicted.

Of course, both of these characteristics imply that
the underlying language of implementation should
support concurrency. Examples of such languages
include Ada and ABCL [3]. Important references to
concurrency and nondeterminism issues in object-
orientation include [2-5].

This article describes an object-oriented approach
to the simulation of medium-access protocols in a
local area network (LAN). LANs are becoming the
most common way of connecting a series of com-
puter systems to allow them to communicate with
each other and share common resources. It is there-
fore very important for network designers to evalu-
ate the ability or expected behavior of LANs that
use different communication protocols. We report
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an object-oriented simulation of the medium-access
control (MAC) sublayer (as defined by IEEE-802).
There are several classes of MAC protocols. We
focus on a class of protocols known as carrier sense
multiple access (CSMA).!

A LAN in our simulation-model abstractions is a
set of user nodes connected to a communication
channel via network interface units in a particular
LAN topology. We begin by describing LAN con-
cepts in object-orientation terms:

» Nodes of the network are represented as objects.

e The communication channel connecting the nodes
is modelled as an object.

e Network interface units between network nodes
and the communication channel are objects; such
objects are instantiated from a uniform and basic
class structure.

¢ Communication between nodes of the network,
interface units, and the communication channel is
modelled as patterns of message passing.

o All objects are self-contained and are by nature
nondeterministic and concurrent processes.

¢ The simulation model is independent of a particu-
lar implementation (although we suggest a lan-
guage that supports concurrency and nondeter-
minism),

2. OBJECT-ORIENTED SIMULATION

In 1969, R. M. Graham [6, p. 17] made the following
comments about the way computer systems were
being built: “We build systems like the Wright
brothers built airplanes—build the whole thing, push
it off a cliff, let it crash, and start over again.”
Unfortunately, this approach is still common in some
areas of systems development. Computer simulation
avoids this approach by allowing a software system
to be analyzed and test driven before an actual
system is designed and constructed. The goal of
analysis is to further our understanding of the design
and operations of an actual product and to examine
its behavior under certain conditions.

In an object-based framework, we speak of ob-
jects, messages, and object responsibility. To quote
Dan Ingalls [7, p. 290], “instead of a bit-grinding
processor... plundering data structures, we have a
universe of well-behaved objects that courteously
ask each other to carry out their various desires.

"There are several versions of CSMA protocols, which will be
discussed later.
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This approach to programming, which deals with a
“universe” of objects and describes their interaction,
is similar to computer discrete-event simulation [8].
In discrete-event simulation, a computer “model” of
various elements of simulation is developed and
their interaction is described. This is the principal of
object-oriented programming, that is, the program-
mer describes the various objects in the universe and
how they interact with one another. Thus, in object-
oriented programming, computation by definition is
simulation [8]. Object orientation can therefore
prove very useful in simulation (for which it was
originally intended). The objects of the real world
and their interaction can be modelled in an object-
oriented simulation. Potential changes in the behav-
ior of the outside universe can easily be mirrored in
the simulation model by modifying (or even replac-
ing) the corresponding object of the model. Further-
more, systems that have not yet been developed and
exist only on drawing boards can be modelled and
simulated, thus avoiding the Wright brothers’ ap-
proach. In addition, the object-oriented approach
facilitates simulation of important concepts; that is,
it emphasizes the objects of the real world and what
they do, rather than a particular object implementa-
tion. This feature of object orientation allows one to
consider experimenting with a simple implementa-
tion consisting of important objects as well as ob-
jects that serve as “stub” or “driver” (or, in general,
“placeholder”), which can aid in the definition, for-
mulation, and testing of object interfaces and inter-
actions; subsequent modifications can be made to
the model to develop a more detailed implementa-
tion of some or all of the objects on a controlled,
gradual basis.?

Simulation consists of modelling objects that have
a state and a set of operations. The objective is to
model a physical entity (or an abstract concept or
process) so that one can observe its behavior or
experiment with it. For example, before an airplane
is built, engineers develop a simulated model to
verify that the approach to airplane construction is
workable. Thus, simulation makes it possible (and
affordable) to try out different approaches to design-
ing an airplane to determine which approach is
more plausible and will lead to design of actual
planes that do not crash.

%As observed in Nelson and Byrnes [9], this approach is similar
to Boehm’s spiral model of software development, in which a
series of prototypes are designed and tested before arriving at an
actual version.
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In an experimental simulation, the simplest ob-
jects are designed and experimented with, then larger
objects are developed until the entire physical entity
(or abstract concept) has been simulated. Object-
orientation concepts best facilitate such an ap-
proach. They can provide a better solution because
different solutions can be examined to identify fun-
damental objects that are common to many parts of
a solution. Not only do simulation components have
a correspondence with real-world entities, but new
simulation models can be developed that are mostly
specializations of earlier models through reuse of
earlier components. This leads to low development
cost. Once the simulation model has proven success-
ful, the designer’s job is merely to implement the
software or hardware version of the solution. This
latter discussion reveals another major advantage of
an object-based approach to simulation, that is, li-
braries of reusable objects can be produced that
allow new simulation or application models to be
developed from preexisting objects. This unique ad-
vantage of object-based simulation decreases the
development time and cost and improves the quality
of future simulations.

3. CSMA PROTOCOLS

A number of standards have been defined for the
MAC sublayer for LANs. These standards address
different approaches used to control access to the
physical transmission medium. CSMA is the most
commonly used access method for LANs that em-
ploy a bus (or tree) topology. In fact, one of the most
popular LAN architectures, Ethernet, uses the
CSMA protocal at the MAC layer.

Each network station in the CSMA protocols lis-
tens to the transmission medium (i.e., the carrier)
and acts accordingly. That is, if the carrier is “quiet”
and a station has data to send, then it can transmit
its data. If the carrier is busy, then the station waits
until the carrier becomes idle. There are a number
of variations in CSMA protocols. They are called
1-persistent, nonpersistent, and p-persistent CSMA
[10]:

e In a 1-persistent CSMA protocol, a station that
has data to send listens to the carrier. If the
carrier is busy, then the station waits until it
becomes idle. When the carrier becomes idle, the
station sends its data. If a collision occurs, the
station waits a random time and starts again. This
protocol is called 1-persistent because the sending
station transmits with a probability of 1.

e In a nonpersistent CSMA, an attempt is made to
be less greedy: if the carrier is idle, the station
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sends its data. If the carrier is being used, the
station does not sense it continually; instead it
waits a random time and then repeats the process.
This protocol leads to better utilization of the
transmission channel.

e P-persistent CSMA applies to slotted channels:
the sending station transmits after sensing an idle
carriecr with a probability p. With a probability
g = 1 — p, it waits until the next slot.

For the purpose of this simulation, we considered
simulating the nonpersistent CSMA, which facili-
tates communication between more conscious user
stations.” All elements of the network are repre-
sented as objects. Communication among user sta-
tions is modeled as patterns of message passing.

4. NOTATION

We will use the simple pictorial notation shown in
Figure 1 to represent objects. When explicitly shown,
an object is conceptually depicted by a circle. An
object’s interface (i.e., the messages it accepts) are
shown in rectangular box(es). Although it is not
distinctly important, we will show via dashed lines
which objects send messages to a given object. Simi-
larly, a solid arrow is used to show the objects to
which a given object sends messages.

5. THE OBJECT-ORIENTED SIMULATION MODEL

The basic model of simulation is fairly simple. There
are n user stations (nodes) that are connected to a

Objects that send messages to X

.~ .~

Message Tag 2

Messages sent by X
Figure 1. Graphical object representation.

*An improvement for persistent and nonpersistent CSMA pro-
tocols allows the stations to abort transmission once they detect a
collision. This improved protocol is called CSMA with collision
detection (CSMA-CD). We are enhancing our simulation model
to include collision detection.
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Shared Communication Bus (Carrier)

Network Interface
Units

shared communication bus through network inter-
face units, as depicted in Figure 2. At this level of
abstraction we see three major classes of objects:

* An object representing the shared communication
bus connecting the user stations. We will refer to
this object as the Carrier object.

» A class of objects representing the network inter-
face units (i.e., the interface between the Carrier
object and the user stations)

e A class of objects representing the user stations
(i.e., nodes of the network)

These object classes are discussed next.

5.1 The Carrier Object

The Carrier object behaves like a bus. Its state
changes from idle to busy and vice versa as de-
scribed below:

e Initially, the state of the Carrier object is idle.
When a message carrying a character is sent to
the Carrier object, it will change its state from idle
to busy. The Carrier object will deliver the charac-
ter, by sending messages, to all user stations con-
nected to it.*

» When a message carrying a postamble character is
received, the Carrier changes its state from busy

*More specifically, the exchange of messages between the Car-
rier object and the user stations takes place through the network
interface objects. Thus, the Carrier object will communicate with
the user interface objects and the user interface objects will in
turn communicate with the user stations.

Figure 2. Basic components of network.

to idle once the postamble character has been
sent to all user station objects.

The Carrier object thus accepts two kinds of mes-
sages, as depicted in Figure 3. Both of the messages
are sent by the (Transmitter object of the) network
interface unit. Message tags are as follows:

ReceiveChar,® to receive a character from the net-
work interface units

Sense. The Carrier object replies by returning a
“busy” or “idle” response.

The Carrier object communicates with the (Re-
ceiver object of the) network interface units by send-
ing ReceivePacket messages to them.

5.2 The Network Interface Object

The network interface unit is modeled by two ob-
jects.

The Transmitter object. Each Transmitter object
receives messages from its local user object. Such
messages contain data to be delivered to another
user object via the Carrier object. The Transmitter
object constructs a packet® from the user object’s
data and sends the packet, one byte at a time, to the
Carrier object using the nonpersistent CSMA algo-
rithm (to be described later). Before sending mes-
sages (which contain a single byte) to the Carrier
object, the Transmitter has to “sense” the Carrier to

>The parameters of the messages sent to this and other objects
will be shown later.
The elements of each packet will be explained later.
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Network Interface Units

ReceiveChar Sense

N

Receiver.ReceivePacket
Figure 3. Carrier object’s interface.

ensure that it is idle. The interface of the Transmit-
ter object includes only one method for receiving
data from the user objects. We use the name Re-
ceiveData for this interface method (Figure 4).

The Receiver object. This object has individual
characters delivered to it by the Carrier object. The
Receiver object

e receives single characters from the Carrier object
and constructs a packet

e recognizes whether or not the packet is free of
error

e buffers the packet if the destination address in a
correct packet indicates the local user object’s
address

o strips out the useful data of a packet and delivers
it to the local user object

The interface of the Receiver object includes only
two methods. One method is called ReceivePacket,
to be called by the Carrier, and the other one is

User Object

ReceiveData

Carrier.ReceiveChar Carrier.Sense

Figure 4. Transmitter object.
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called GiveData, to be used by the local User object
(Figure 5).

5.3 User Objects

The user stations or nodes of the network are also
modeled as objects.” Each User object interacts with
the network interface objects to send and /or receive
data packets. Each node has its own Transmitter
and Receiver objects.

When a User object has data to transmit, it sends
it to the Transmitter object by calling the Receive-
Data method of the Transmitter object. For each
packet sent to the Transmitter, the User object
awaits an acknowledgment. If an acknowledgment is
not received within a reasonable time (to be dis-
cussed later), the User objects use a binary exponen-
tial backoff algorithm to calculate a random time to
wait before retransmitting the packet. The transmis-
sion of a packet is abandoned after four unsuccess-
ful attempts. The interface of the User object is
shown in Figure 6.

The four basic objects described so far, as well as
their interactions (i.e., the patterns of message pass-
ing), are depicted in Figure 7 (other objects will be
described later.) Directed arcs show the patterns of
messages sent. For example, an arrow going from a
User object to a Transmitter object indicates that
the User object sends a message to the Transmitter
object. The pattern Transmitter. ReceiveData states
that the ReceiveData interface of Transmitter has
been invoked.

6. LANGUAGE OF IMPLEMENTATION

Object orientation is a philosophy and should not be
limited to any programming language. However,
some languages are better suited to modelling ob-
jects than others. A language that provides facility
for defining objects is better than another language
that does not. Ideally, a language used for object-
oriented programming should support all the fea-
tures of objects. The facility for data abstraction and
the ability to define many objects of a particular
class are perhaps the most important.

"At each node, there may be a PC, minicomputer, or mainframe
computer with many users. We are not modelling the behavior of
each such individual user. Rather, we consider the communica-
tion patterns of each node (regardless of the kind of machine
used at that node) with other nodes of the network. Thus, we
abstract out low-level details and simply view each node as being
an object that communicates with other nodes through the Car-
rier object.
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User Object
U

/’\ S
1 4

ReceivePacket GiveData

N
A
A

Carrier Object

For implementation of our simulation, we consid-
ered two different languages that support objects,
C** and Ada. Fisher [11] stated that “programming
languages are neither the cause of nor the solution
to software problems, but because of the central role
they play in all software activity, they can either
aggravate existing problems or simplify their solu-
tion.” In the case of both Ada and C**, the effect is
one of simplification. They both provide powerful
mechanisms for the development of software sys-
tems and allow us to deal with problems whose
solutions were previously too complex to manage.

We chose Ada. The primary reason for choosing
Ada was its support for concurrency. We wanted to
simulate a real situation. In a real network environ-
ment, the objects (e.g., the carrier, receiver, trans-
mitter, users, and so forth) proceed in parallel. Be-
cause Ada supports concurrency, our simulation was
a closer representation of a real environment.

Ada is not an object-oriented programming lan-
guage pr se, but it provides a rich set of constructs
for building and enforcing abstraction and encapsu-
lation and for defining many objects of a particular
class. There is considerable interest in object-ori-
ented development using Ada. In fact, Ada has
frequently been used in conjunction with and to
demonstrate object-oriented design methodologies

User Object

Transmitter.ReceiveData Receiver..GiveData

Figure 6. Interface of a user object.

Figure 5. Receiver object.

[12-16].% With the requirement that an Ada com-
piler cannot be distributed as an “Ada compiler”
until it has successfully passed a series of strict
validation tests, and with its inherent features for
modern software engineering principles [12], pro-
gram portability and reliability can be virtually guar-
anteed. In addition, Ada has also been frequently
used for modelling systems that exhibit concurrent
and nondeterministic behavior.

6.1 Concurrent Objects

In sequential object-oriented programming lan-
guages (e.g., C™), objects are implemented as se-
quential procedures. In Ada, there are both sequen-
tial and concurrent objects. Sequential objects are
represented via packages, whereas concurrent ob-
jects are implemented as tasks. As stated earlier, we
would like to exploit Ada’s concurrent facility to
represent objects of the network that operate con-
currently. Thus, we use Ada’s task facility. Ada al-
lows task types to be declared; this acts as class
specification (Figure 8). Concurrent objects as repre-
sented via tasks are independent and execute their
operations (including sending and receiving mes-
sage) concurrently.

In Ada, concurrent objects can be developed to be
of either of the following kinds:

e Passive. Such an object is still realized as indepen-
dent and capable of executing in parallel, but
while no calls are made to it (i.e., no messages are
sent), the object suspends itself and awaits calls.

¥One feature of object orientation not supported by Ada is
inheritance. However, it is common in practice to design as if
inheritance were available and then use implementation tech-
niques to fake if a language such as Ada does not directly support
inheritance [13]. The common approach in Ada, as Booch has
stated, is to use a combination of generic packages (representing
parameterized classes) and discriminated private types (repre-
senting abstract classes) [13].
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Figure 7. Network objects and their inter-
faces (arrows show data flow).
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An example is the Carrier object described be-
fore. While the User objects are not exchanging
messages, the Carrier object sits idle.

s Active. Such an object is conceptually continually
executing its own internal operations, resulting in
changes in its own state. An example is the User
object. The User objects continually execute inter-
nal operations, which may include sending or pro-
cessing messages.

For an overview of active and concurrent objects,
see Agha [4].

task type ConcurrentObiject is
entry Operation,
entry Operation,

entry Operation,,
task body ConcurrentObject is
begin
loop
select
accept Operation,

end Operation,
accept Operation,

end Operation,
accépt Operation,,
end Operation,,
end select
end loop
end ConcurrentObject;

Figure 8. A concurrent object class specification in Ada.

7. OBJECT REPRESENTATION

In this section, we give Ada code for major aspects
of both interface and behavior of important objects
in the simulation. We include sufficient comments in
the code to make them self-descriptive.

7.1 Simulation of the Carrier Object

The Carrier object behaves like a bus. It accepts
messages with single-character parameter and deliv-
ers the character to every (Receiver object of a)
User object connected to the network. It has a state
variable called current_status, which represents its
state (busy or idle). The state of the Carrier object
changes from idle to busy when it accepts the first
character of a packet® from the (Transmitter object
of the) User object. The state is changed back to idle
when the last character of a packet (called postam-
ble) is delivered to all User objects.

The interface of the Carrier object is shown in
Figure 9. It accepts two kinds of messages, Sense
and ReceiveChar. Sense messages are sent by the
Transmitter objects in an effort to sense the state of
the Carrier. ReceiveChar is used to send a character
to the Carrier. The Carrier’s behavior (body) is
shown in Figure 10.

The structure of network packets is given in the next subsec-
tion.
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task Carrier is
entry Sense (s: out CARRIER_STATUS_ TYPE);
entry ReceiveChar (¢: in CHARACTER);

end Carrier

Figure 9. Interface of the carrier object.

7.2 Simulation of the Transmitter Object

The Transmitter object waits for data from its own
User object. Once data has arrived, the Transmitter
object constructs a packet. Important fields of the
packets used in the simulation are shown below:

Destination Source[ Check | Postamble
Addr Addr l Data Sum Char

3 Bytes 3 Bytes 1-32 Bytes 2 Bytes 1 Byte

A simple modulo operation was used to compute the
checksum. The interface of the Transmitter object is
shown in Figure 11. Note that it is an object class. In
other words, one Transmitter object class was de-
fined and an actual object was instantiated for each
User object.

Once a packet is constructed by the Transmitter
object, it is sent to the Carrier object to be delivered
to its destination. The Transmitter object accesses

task body Carrier is
xfer _char: CHARACTER,;
current _status: CARRIER _STATUS__TYPE;
begin
loop
current __status = IDLE;
while current __status = IDLE loop
select
accept Sense (...) do;
—Return the current status.
—First Transmitter to sense
—an idle carrier will gain
—access. Status is changed:
current__status == BUSY;
end Sense
or
terminate;
end select
end loop;
xfer __char == NO__VALUE,;
while xfer__char /= POSTAMBLE loop
select
accept Sense (...) do
—Just return the current status
end Sense;
or
accept ReceiveChar (...) do
xfer_ char = c;
—Save c¢ in xfer __char;
end
—Send xfer__char to all Receiver objects
end select
end loop—Stop when postamble was sent
end loop
end carrier;

Figure 10. Behavior implementation of the carrier object.
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task Transmitter __Class type is
entry ReceiveData (arc, dest: in ADDR__TYPE;
data; in MSG_TYPE)
entry Get__User__Addr (addr: in ADDR__TYPE);
—see object’s body for definition of the above entry
end Transmitter __Class

Figure 11. Interface of the transmitter object.

the Carrier object using a CSMA algorithm. If the
Carrier object is busy delivering another packet, the
Transmitter waits up to one second before trying
again. Once the Transmitter senses an idle Carrier
object, the packet is sent to it one character at a
time. In the object’s interface, there is a message
entry called Get_User_Addr. The User object is
able to send its name (that is, its network address) in
such a message to its Transmitter object. To make
the figures simpler, this aspect of the Transmitter’s
interface was not shown. The behavior (that is, its
body) of the Transmitter is shown in Figure 12.

7.3 Simulation of the Receiver Object

The Receiver object is also defined as a class. Its
primary responsibilities are

task Transmitter __Class type is
—Many local variables, including
packet__out: PACKET_TYPE;
packet__length: INTEGER;
line__status: CARRIER_ STATUS_ TYPE;
char__to__send: CHARACTER;
begin
accept Get__User__Addr (...)
—The purpose of this message is to pass
—the User object name to the Transmitter
—To make diagrams simple, this part of
—the interface was not shown in diagrams
end Get_ User__Addr;
loop
select
accept ReceiveData (...) do
—Save data in local storage
end ReceiveChar;
or
terminate;
end select;
—Checksum is computed; a packet is built;
—Packet is sent over the network:
Carrier.Sense(line _status);
while line __status = BUSY loop
—delay for random time 0-1 second;
—Sense the carrier again:
Carrier.Sense(line __status),
end loop
for i in 1.frame_ length loop
char__to__send = packet__out (2);
Carrier _ ReceiveChar(char __to__send);
end loop
end loop;
end Transmitter _ Class

Figure 12. Behavior implementation of the transmitter
object.
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e To receive packets from the Carrier (one charac-
ter at a time)

e To reconstruct the packet if necessary (i.e., if
packet’s destination address matches the address
of the local User object)

¢ To ensure that the packet has not been corrupted
during transmission (by recalculating the check-
sum and comparing it with the checksum of the
packet)

e To strip out the data from the packet and buffer it
locally

e To make buffered packets available to the User
object when they are requested.

The interface and behavior of the Receiver object
are shown in Figures 13 and 14, respectively. In the
object’s interface, there is a message entry called
Get_User _Addr. The User object is able to send its
name (that is, its network address) in such a message
to its Receiver object.

7.4 Simulation of the User Objects

The User objects send and receive packets over the
carrier. In a sense, the User objects form the appli-
cation layer of our simulation model.

Once a User object has produced some data to be
transmitter over the network, it sends it to the
Transmitter object. This object also exchanges mes-
sages with the Receiver object to obtain the data as
well as acknowledgments sent to it by other User
objects in the network. Every time a User object
sends some data to another User object, it expects
an acknowledgment. If an acknowledgment is not
received within a specified period of time, the object
uses a binary exponential backoff procedure to cal-
culate a random time to wait before retransmitting
the packet. The transmission of a packet is aban-
doned after four unsuccessful attempts.’® Although
User objects conceptually send messages to each
other, a given User object does not receive any

task Receiver__Class type is
entry ReceivePacket (c: in CHARACTER);
entry GiveData (src, dest: out ADDR__ TYPE,;
data: in MSG_TYPE),
entry Get__User__Addr (addr: in ADDR__TYPE);
—see object’s body for definition of the above entry
end Receiver __Class

Figure 13. Interface of the receiver object.

0 For simplicity, we decided to cancel any time which elapsed
while waiting for an acknowledgment if a data packet was re-
ceived (when an acknowledgment was expected) and started the
time for acknowledgment anew.

J. SYSTEMS SOFTWARE 147
1993; 23:139-150

messages. It sends messages to its corresponding
Transmitter and Receiver object. The messages in-
clude:

e Sending its address to both the Transmitter or
Receiver objects

« Sending data (to be transmitted to another User
object) to the Transmitter

¢ Sending messages to the Receiver object asking
for any buffered data.

The important aspects of the behavioral imple-
mentation of the User object are shown in Figure
15.

8. OBSERVATIONS, DISCUSSION,
AND CONCLUSIONS

8.1 Recalcitrant Objects

By simulating flawed network objects, we can ob-
serve their behavior before they fail in a correspond-
ing real system. This facilitates the development of
network software and hardware components that
can continue to operate, perhaps with reduced ca-
pacity, in the presence of faulty components. Several
of these “rebellious” objects that have been mod-
elled are described below.

A recalcitrant Receiver object that receives packets
but does not acknowledge them. Faulty network inter-

task body Receiver __Class type is
—Many local declarations, including
char__input: CHARACTER;
packet__buffered: BOOLEAN;
begin
accept Get_ User__Addr (...)
—The purpose of this message is to pass
—the User object name to the Receiver
end Get__User__Addr;
loop
select
when packet__buffered =
accept GiveData (...)

énd GiveData;
packet__Buffered := FALSE;
or
accept ReceivePacket (...)

end ReceivePacket

—A series of algorithmic statements

—that do the following is put here: determine if the
a packet

—belongs to local User object, recalculate the

—checksum to ensure packet is error free, strip

—out data from packet, and buffer data locally.

end select

end loop
end Receiver__Class

Figure 14. Behavior implementation of the receiver object.
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task body User_Object is
procedure Construct_ Message(dest: out ADDR__Type,...) is
—A destination object is chosen randomly
—A message is constructed. Each message
—has identifying data about sender and receiver
end Construct _ Message;
function Exponential _ Backoff (wait__cycle: in INTEGER)
return FLOAT is
begin
return (Random Float (2# #wait__Cycle))
end Exponential _ Backoff;
procedure Wait_ For__Ack (dest: in ADDR__Type,...)
—Many local declarations; Procedure loops until an
—ack is received or wait cycles have finished
begin
while no__ack and wait__cycle < MAX_ WAIT_CYCLE loop
—Attempt to get something from Receiver object
—If not an ack but a msg, send an ack to sender
—1If an ack, is it the right one?
—If not, time out waiting for a packet
end loop;
end Wait__For__Ack;
begin—task body
loop
select
—If a packet has been buffered, get it
—Receiver (My__ID).GiveData(...)
—Process it appropriately
or
-—No msgs available; construct one and send:
Construct _Message(...);
Transmitter (My__ID).ReceiveData(. . .),
Wait_ For__ Ack (dest, ...);
end select
end loop;
end User__Object;

Figure 15. Behavior implementation of the user object.

face units (NIUs) can result in a variety of anoma-
lous behaviors. Packets might be received correctly
(and then delivered to a User object), but a failing
Transmitter object would eliminate any possibility of
acknowledgments being successfully received by the
originator of the message. Because the model (cor-
rectly) assumes that the only communication chan-
nel between objects is that implemented by the
Carrier object, there is no method for the original
sending object to distinguish this situation from one
in which the packet was never received (perhaps
because of a faulty receiver or channel). A failing
Receiver object can be distinguished from the failing
Transmitter by other nodes, because they will see
transmissions from the failing node, but it never
replies to (or acknowledges) transmissions directed
to it. Of course, this assumes proper operation of
the User objects.

A recalcitrant Transmitter object that includes an
erroneous checksum in a packet. Flawed packets (bad
checksums, incorrect sizes, and so forth) might be
generated as a result of a failing NIU, but might also
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result from errors generated during propagation
through the Carrier. Although such failures are much
less likely given the current technology for LANSs,
they can still result; thus, modelling these failures is
useful. This can also be used to verify the ability of
Receiver objects to distinguish flawed packets from
good ones.

A recalcitrant User object that sends packets to
nonexisting nodes. Other unusual network activity
can be characterized statistically. The transmission
of packets with invalid destination or source ad-
dresses could be monitored by a User object operat-
ing in “promiscuous” mode. While most User ob-
jects respond only to packets addressed explicitly to
them, others might wish to function as network
monitors, receiving and recording information about
every packet that appears on the channel. This is
different from responding to broadcasts, which are
identified as packets containing specially formed
destination addresses. A common User object fail-
ure is the generation of excessive broadcast activity
that saturates the Carrier. Again, a network moni-
toring station can identify such failures statistically.

8.2 Implications for a Real Network Environment

A valuable aspect of the model presented here is its
similarity to actual networks. Although the current
model mirrors only three layers of a typical network
(the physical layer, the data-link layer, and the appli-
cation layer), the relative ease with which the objects
modelling these layers can be modified makes it
possible to examine other network characteristics
(see the description of CSMA-CD below). Addi-
tional objects can be added to model other layers in
a network without disturbing or requiring detailed
knowledge of the existing objects. Eventually, a li-
brary of objects can be assembled from which a
model of an arbitrary network can be constructed.
Modelling can be done at various levels of detail.
Timing is not modelled at all in the current effort,
but will be crucial in more detailed modelling of a
real network. Likewise, physical distance is not mod-
elled; propagation delays through various network
components will become important when a more
detailed simulation is attempted. These features can
be added without departing from the object-oriented
philosophy of the model. Messages could be time-
stamped when generated or processed by an object.
For example, a User object with data to transmit
could timestamp each message it generates and sends
to the Transmitter object, which would then time-
stamp each packet it assembles as it is passed to the
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Carrier object. The Carrier object would further
timestamp messages as they are received and deliv-
ered to each network interface unit. Of course, this
will require that the Carrier coordinate delivery of
messages so that they “arrive” at a time consistent
with the (simulated) physical placement of nodes
and NIUs on the cable.

Objects can obtain the current time from a single
Time-Server object. This object will not model any
component of a real network. Rather, it continues
the object-oriented philosophy of the simulation.
Requests from other objects for the current simula-
tion time and the responses generated by the Time-
Server will require no time on the “simulation clock.”

An important, and possibly difficult, aspect of a
real system to model is the perceived passivity of the
physical layer. The exact point of division between
the physical layer and the data-link layer is often
vague. In some senses, this lack of separation is
unimportant. However, as more network functions
are embedded in (active) hardware components, it is
important to realize (and correctly model) those
components that are, at least conceptually, passive.
We would like to model the physical layer as an
entirely passive object, but to correctly realize such
activities as noise and packet collisions, some active
nature must be imparted to the physical layer.

8.3 An Actual PC Environment

Using a laboratory of dedicated PC systems equipped
with Ethernet interfaces, we can implement the cur-
rent network described by the model. The Carrier
object, without provision for collision detection, is
modelled by distributed active code in each system,
which then uses the actual Ethernet hardware for
communication with the Carrier objects in the other
systems. The actual physical and data-link layers are
therefore not components of the modelled system.
A useful attribute of this implementation of the
model is that it exhibits parallelism not present in a
multiprogrammed implementation, such as that de-
scribed previously. In a sense, this implementation
can aid in the model’s validation, because it should
yield results that are consistent with the multipro-
grammed implementation. In addition, by revising
the Carrier objects to use the Ethernet hardware
directly (instead of assuming it is only a vehicle to
permit communication among the distributed Car-
rier objects), we can implement an actual system
based on the object-oriented model, not just a model
of such a system. The Carrier objects might be more
appropriately labelled Ethernet drivers, or packet
drivers in this case. A tightly coupled system (multi-
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ple processors with shared primary memory) could
also be used for a parallel implementation of the
system.

User objects in this implementation can imple-
ment various “real” applications, including file trans-
fer between systems and file-serving functions for
other, conceptually diskless, systems. The ability to
implement the model beyond a relatively limited
stage depends, however, on the availability of an
operating system that supports concurrency or a
system that implements concurrency on top of an
existing uniprogrammed system (e.g., MS-DOS).

8.4 Variation on Simulation: CSMA-CD

To successfully model CSMA-CD (i.e., CSMA with
collision detection) first requires that the possibility
of collisions exists. In the current CSMA model,
each Transmitter object patiently awaits an idle
channel and then transmits its packet without the
possibility of collision (because the Carrier object
instantly becomes busy when a sense operation re-
turns an idle status, and status sensing is serialized
by the Carrier object). Without the possibility of
characters being sent by several transmitters in such
a way that they coexist in the transmission medium,
collisions are impossible (excluding possibly the gen-
eration of signals as a result of “echoes” from the
modelling of faulty cable termination, another po-
tential enhancement of the model).

Collision generating can be accommodated by the
model in several ways. A simple but imprecise ap-
proach would allow one or more characters to be
accepted by the Carrier object before it reports
BUSY to a sense operation. This would model the
transmitted signal reaching each remote (from the
transmitting) NIU only after transmission of the
specified number of characters. Each of these re-
mote NIUs would then receive BUSY status reports.
Before receiving such a BUSY status report, these
remote NIUs would incorrectly assume that the Car-
rier object was IDLE (although locally, the IDLE
status report might be correct), thus enabling them
to transmit and generate a collision. Removing the
mandatory transition to BUSY after a sense opera-
tion reports IDLE also facilities the addition of
nodes that only monitor the status of the Carrier
object, because they might sense carrier status with-
out the intention of transmitting.

A more precise implementation of collision gener-
ation and detection will require the enhancements
described in section 8.2, specifically, that objects are
aware of the passage of time, the physical distance
between objects, and the speed with which signals
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propagate in the transmission medium. A collision
results from two signals, starting at NIUs physically
separated by some minimum distance, encountering
each other at a common point on the medium (and
in time). The resulting signal, altered in such a way
that it can be distinguished from any valid transmis-
sion, then propagates bidirectionally to each NIU
that receives a collision report. This approach will
also require that the Carrier object implement a
different technique for detecting the IDLE state
because it is unrealistic to expect the Carrier to
interpret packets at all, in particular, to interpret
certain codes as delimiters marking the end of a
packet. The IDLE status can only be reported lo-
cally to an NIU when no signals, regardless of con-
tent, are present on the channel at the point of
physical attachment of the NIU. This implication,
requires actions on the essentially passive Carrier
object to proceed concurrently. As noted in Bézivin
[17], this possibility is precluded by the conception of
an object modelled by a sequential process.

8.5 Conclusions

We have described the benefits of an object-oriented
approach to the simulation of complex systems that
are inherently concurrent. The description included
the simulation of the CSMA network protocols. The
concurrent object-oriented approach (using Ada) can
be used as the foundation of a network simulation
toolbox to simplify the study of proposed networks
and protocols.
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