JOURNAL OF COMPUTER
INFORMATION SYSTEMS

official journal of

INTERNATIONAL ASSOCIATION FOR COMPUTER INFORMATION SYSTEMS.




JOURNAL OF COMPUTER INFORMATION SYSTEMS

Volume XXXIII, Number 4 Summer 1993

CONTENTS

President's Column

Articles: GENETICS-BASED MACHINE LEARNING: A PROMISING TOOL FOR DEVELOPING
BUSINESS COMPUTING SYSTEMS?
RAMAKRISHNAN PAKATH

AN OVERVIEW OF INTELLIGENT DATABASE
BINSHAN LIN

EXPERT SYSTEMS IN ACCOUNTING: APPLICATIONS AND AN
INTEGRATING FRAMEWORK
AKHILESH CHANDRA and PRASHANT C. PALVIA

COMPUTER ETHICS AND YEARS OF COMPUTER USE
WALLACE A. WOOD

AN EXPERT SYSTEMS APPROACH TO TEACHING SAMPLE SIZE DETERMINATION
RONALD S. RUBIN and JAMES M. RAGUSA

FACILITATING COMMUNICATION IN CLASSROOM
MINOO §. AMINI

KEY FINDING THROUGH EXAMINATION OF ATTRIBUTES IN THE
FUNCTIONAL DEPENDENCIES
H. SAIEDIAN

INFORMATION DISPLAY MODES AND USER COGNITIVE PROFILES:
INTERACTION EFFECTS ON THE DECISION MAKING PROCESS
HULYA YAZICI and RAYMOND KLUCZNY

DECISION SUPPQRT SYSTEMS FOR BUSINESS EDUCATION
G. PREMKUMAR, K. RAMAMURTHY, WILLIAM R. KING, and ROBERT NACHTMAN

THE APPLICABILITY OF NOLAN'S STATE THEORY IN SMALL
BUSINESS ENVIRONMENT
JACK TEH

1S CASE LIVING UP TO ITS PROMISES? LABORATORY EXPERIMENTS
COMPARING MANUAL AND AUTOMATED DESIGN APPROACHES
MARK N. FROLICK, RONALD B. WILKES, and R. KELLY RAINER

PROGRAMMING LM\G’{]AGES’ TODAY AND T U‘fi()RROW
KIRK P. ARNETT and M&KY C. JONES

© ENSURING END USER PRODUCTIVITY: w M;Aﬁxmc Mﬂe@km =
INFORMATION TECHNOLOGY

13
23
28

34
39

41

55

65

72

o




KEY FINDING THROUGH EXAMINATION OF
ATTRIBUTES IN THE FUNCTIONAL
DEPENDENCIES

H. SAIEDIAN
University of Nebraska
Omaha, Nebraska 68182

INTRODUCTION

An important activity during the design of a relational
database is to find the candidate keys of the individual
relation schemes. Traditionally (as described in most
database textbooks), a key of relation scheme R is
determined by computing the closure of attributes in R
(unless the key was trivial to find). Computing the closure
of various combination of attributes to find all keys found
could be a difficult and time consuming process. We
provide an algorithm that attempts to simplify the key
finding process by analyzing the position of attributes in
the given functional dependencies and attempting to first
identify those attributes that must be part of the key, as
well as those attributes that may never be part of the key
before computing the closures. A number of examples are
provided to illustrate the effectiveness of the algorithm.

BACKGROUND

Given a relation R with attributes Ay, A,, ...,Ay, and a
set of FDs F, K ¢ R, is a key of R if:1

» K—> AA,..ApeF* and

e Forno K, K ¢ K, isK' —> A{A;...A e F*.

Given a universal relation scheme R and a set of
attributes F, it is essential to correctly determine all
candidate keys of R. Most database textbooks (e.g., 3,2),
however, suffice to provide a definition for the key but no
algorithm for computing it. Others (e.g., 4) provide
algorithm for computing the closure of a set of attributes
(or a set of FDs) but calculation of a key is left to the
students using the closure algorithms. Determining the
candidate keys for a small relation with a small set of FDs
may be trivial but if a relation has a relatively large
number of attributes and/or FDs then determining the keys
may not be a trivial process.

Using the closure algorithms while not considering the
"arrangement" of attributes in F may be time consuming
and inefficient. Some attributes may never participate in a
key. Consideration of other attributes may lead to

superkeys while late consideration of certain other:

attributes may simply prolong the process or lead to
incorrect answers. We believe that certain "categorization”
of attributes (based on their appearance on the left-hand
side and right-hand side of FDs) could expedite the process
substantially and lead to correct solutions perhaps early in
the process. This categorization includes identifying

lwe assume readers familiarity with basic database concepts such as
functional dependencies, candidate and superkeys, closures of a set of FDs (shown

as F*), Armstrong inference rules (1), logical implication of FDs (shown as |=), etc.
All these concepts are explained in detail in (3).

Summer 1993

1. those attributes that must be part of a key,

2. those attributes that may or may not be part of a
key, and

3. those attributes that will not be part of any key.
The last set of attributes can be ignored since they cannot
be part of any key. The second set should be considered
only if the first set does not produce all the candidate keys.

The process is described below. We have successfully
applied it to many "academic" problems. In addition, the
algorithm has been implemented (in both Pascal and C) and
applied to several large relational database schemas. The
results have been satisfactory.

KEY FINDING ALGORITHM

The following four steps lead to calculation of the
candidate keys of a relation scheme. We assume a relation
scheme R and a set of FDs F. Furthermore, we assume that

the set of FDs is minimal.2
Step 1: Determining LHS, LRS and RHS

Given a relation R and a set of FDs F, divide the
attributes of R into three distinct sets LHS, RHS, and LRS.
The set LHS contains those attributes of R that occur only
on the left-hand side of some FDs in F. Similarly, the set
RHS represents those attributes that occur only on the
right-hand side of some FDs in F, while LRS is the set
representing those attributes that occur on both sides of

some FDs in F. Observe that LHS n RHS = # and LHS

LRS = @ and RHS N LRS = #. Furthermore, LHS U RHS U
LRS =R.

Step 2: Considering LHS

Consider the set LHS. If LHS is not empty, then all
attributes participating in LHS are prime attributes. (It can
be proved that for every attribute A € R, if A € LHS, then
A must be part of a candidate key of R.)3

Thus, we begin our process of computing the closure
of attributes in LHS. (It can also be proved that if LHS* |=
R then LHS is the only key of R.) If a key is found, stop.
Otherwise proceed to Step 3.

2Generally speaking, a set of FDs is minimal if it contains no redundant FDs
and there are no extraneous attributes on the left-hand side of FDs. Algorithm for
computing a minimal cover is given in (3, 4).

3The proof of this and other similar statements in this paper as well as
theorems about a more general heuristic approach to key finding using attribute
graphs has been submitted for publication to the Information Processing Letters.

Journal of Computer Information Systems 39

—



Step 3: Considering LRS

If the set LHS does not produce a key for R in Step 2,
then begin adding attributes, one by one, from the set
denoted by LRS to attributes of LHS and compute their
closure. Attributes should be added to LHS in turn to ensure
that all candidate keys of R are found. (If LHS is empty,
then begin by computing the closure of attributes in the set
LRS.)

It is most likely that all candidate keys of R are found
in this step. Proceed to Step 4 if no key is found.

Step 4: Considering RHS

If no key is found in Steps 2 and 3, then consider
adding all attributes of the remaining set, i.e., RHS, to
attributes of LHS and LRS and compute their closure. This
step rarely occurs. It needs to be followed only when
computing the key of a relation that has resulted from the
decomposition of the universal relation. If we are only
interested in calculating the candidate keys of a universal
relation, the attributes of RHS need not be even considered.

(It can be proved that for every attribute A € R, if A e
RHS, then A may not be a part of any candidate key of R.)

EXAMPLES

In this section, we use the above algorithm to find the
candidate keys of the given relation schemes. For each
example, a universal relation scheme R with a set of FDs F
are given.4

Example 1. Given schema (R(CSZ) and F = {CS — Z,
Z —> C}, find all candidate keys of R.

Solution. Based on the above, LHS = {S}, LRS =
{ZC}, RHS = {}. Thus S must be in every key of R.
Compute closure of S:

LHS*=S*=8.
LHS does not contain a key. Add attributes from LRS:
{SC}* = SCZ. SC is a key.
{SZ}* = SZC. SZis a key.
Thus {SC} and {SZ} are the candidate keys of R. We need
not consider combination of ZC because S must be part of
every key. Furthermore, we need not consider SCZ because
that would imply a superkey. °

Example 2. Given schema R(ABCDE) and F = {AB ->
CDE,AC — BDE,B —> C,C —> D,B —>E}, find all candidate
keys of R.

Solution. LHS = {A}, LRS = {BC},RHS = {DE}. Thus
A must be part of every key of R while D and E may not
participate in any key. We begin by computing of LHS*:

LHS* = A* = A. A is not a key.
A is not a key. Next we consider combining attributes
from LRS with A and compute their closure:

{AB}* = ABCDE. AB is akeyof R.

{AC}* = ACD. AC is not a key of R.
According to the algorithm, AB is the only key of R. Note
that we need not consider BC because A must be part of any
key. We need not consider any combination of D or E
because these two attributes may not be part of any. Other
combinations would yield a superkey. °

Example 3. Given schema R(ABCDEFG) and F = {A
—-> B, B —> C, AG —> D, BG —E, CD —> AF}, find all
candidate keys of R.

“Note that our objective is to find the keys not the superkeys of R.
SThis example is from (4), page 384. Attributes C, S, and Z stand for City,
State and Zip Code, respectively.

Summer 1993

Solution. LHS = {G}, LRS = {ABCD}, RHS = {EF}.
Thus G must be part of any key while E and F may not
participate in any key:

LHS* =G *=G. G is not a key by itself.
Therefore we add attributes from LRS to G and compute
their closure:

{GA}* = GABCDEF ... GA is a key.

{GB}* = GBEC. GB is not a key.

{GC}* = GC. GC is not a key.

{GD}* = GD. GC is not a key.

We now consider potential three-attribute keys (note that
we need not consider GBC because it cannot be a key as
shown above):

{GBD}* = GBDCDA {GBD} is another key.

{GCD}* = GCDAF ... {GCD} is also another key.
The candidate keys of R are {GA}, {GBD} and {GCD}. Any
other combination is either a superkey or not a key. °

Example 4. Given schema R(ABCDEFG) and F = {A
-> B, CD -> A, CB —> E, AF — G, CF —> D}, find all
candidate keys of R.

Solution. LHS = {CF}, LRS = {ABD}, RHS = {EG}.
Thus CF must be part of any key while E and G may not
participate in any key. Note that according to the
algorithm, (a) we need not consider computing the closure
of any single attribute because LHS contains two attributes,
(b) nor need we to consider attributes E and G because they
appear in RHS, and (¢) we should consider attributes of LHS
before considering attributes A, B, or D. We begin by
computing the closure of LHS:

LHS* = {CF}* = CFDABG ...

Thus {CF} is a key.

According to the algorithm, {CF} is the only key of R.
We need not consider any other combination of atiributes.

Note how the key finding process has been simplified
by the above algorithm. Computing the closures of every
potential collection of attributes to find all keys of even a
small relation like the above example would have been too
time consuming.

CONCLUSIONS

In the above examples, we considered a situation where
the set LHS (and/or RHS) had at least one element and we
showed how the key finding process was simplified once
these two sets were identified. If LHS = # and RHS = &
then it implies that except attributes of RHS, every other
attribute has a fair chance of being part of a candidate key.
If LHS = @ and RHS = @ (that is, LRS contains all
attributes), then it implies that every attribute might be a
potential component of a key. This is the case when the
general solution of computing the closure of different
combination of attributes would be the only alternative.

REFERENCES

1. Armstrong, W. "Dependency Structures of Database
Relationships,” IFIP Congress, Geneva, 1974, pp.
580-583.

2. Date, C.J. An Introduction to Database Systems,
Volume I, Fifth Edition, Addison-Wesley, 1990.

3. Elmasri, R. and S. Navathe. Fundamentals of Database
Systems, Addison-Wesley, 1989.

4. Ullman, J. Principles of Database and Knowledge-
based Systems, Volume I, Computer Science Press,
1988.

Journal of Computer Information Systems 40



