JOURNAL OF COMPUTER
INFORMATION SYSTEMS

official journal of

INTERNATIONAL ASSOCIATION FOR COMPUTER INFORMATION SYSTEMS

JOURNAL OF COMPUTER INFORMATION SYSTEMS

Volume XXXIII, Number 1 Fall 1992

CONTENTS

Articles:

MANAGEMENT INFORMATION AND CONTROL SYSTEMS: AN

ORGANIZATIONAL SYSTEMS FRAMEWORK LINKING PRODUCTIVITY

WITH STRATEGIC CHANGE 1
JAGANNATHAN V. IYENGAR

ARE WE TEACHING DATABASE DESIGN PROPERLY? 9
DONALD A. CARPENTER

APPLICABILITY OF MIS CURRICULUMS TO THE BUSINESS ENVIRONMENT: AN)
EXAMINATION OF BUSINESS CRITICISM AND AN ACADEMIC RESPONSE 13
STAN GAMBILL and WADE JACKSON

THE VISITING PROFESSORSHIP IN MIS 18
DANIEL M. NORRIS

USING VISUALIZATION TECHNIQUES TO REPORT BUSINESS INFORMATION 23
WILLIAM R. FEENEY and RICHARD A, HATCH

APPLYING EXCHANGE THEORY TO THE MANAGEMENT INFORMATION
SYSTEMS DEPARTMENT 31
DANIEL PARKER, JOHN L. BEISEL, and JOHN B. ENGLISH

ON CHALLENGES OF REVERSE ENGINEERING FOR LARGE SOP‘TWARE SY STEMS 37
HOSSEIN SAIEDIAN, MANSOUR ZAND aad JAMES WELBORN B S

MAMAINE\:G (:OMPUTER—MSED s&mﬁ@ts— A CAsE m anmml\ Fon
COMPUTER INFORMATION SYSTEMS (A
srwan M mmmn mmmg umm‘mn

KN@JWLEDGE AND ATT
mwuﬁ: P&A@Y

ON CHALLENGES OF REVERSE ENGINEERING FOR
LARGE SOFTWARE SYSTEMS

HOSSEIN SAIEDIAN and MANSOUR ZAND
University of Nebraska
Omaha, Nebraska

INTRODUCTION

When faced with new system requirements, information
systems managers have three general options.

1. modify the existing system to include the new

requirements;

2. develop a new system, to satisfy the new
requirements, and merge the new system with the
existing system; or

3. develop a new system to completely replace the
existing system.

Due to the vast amount of existing systems already in
production, it is a rare case in today's software industry that
new systems are built from scratch. Instead, they are built
by enhancements of systems already in production.
Unfortunately, current software design methodologies are
focused on new systems development and few discuss the
prospect of merging existing systems, or portions of an
existing system, into a new system design. This process
becomes even more difficult, if not impossible, when the
original requirements of the existing system are unknown
due to a lack of system level documentation. If this is the
case, system level requirements need to be reverse
engineered from the existing system before a decision can
be made as to the extent an existing system can be re-used.

REVERSE ENGINEERING - DEFINITION

The traditional software development process is most
commonly represented by a software development life
cycle. There is a fair amount of agreement that the early
stages of the software development life cycle consist of
requirements analysis, functional specification, design,
followed by implementation (Berzins & Gray 1985). This
traditional approach is sometimes referred to as forward
engineering (Biggerstaff 1989) and essentially involves
moving from high-level abstractions and implementation-
independent representations to low-level and
implementation-dependent constructs.

Reverse engineering, on the other hand, is defined as
the process of analyzing a subject system to identify its
components and their interrelationships, and to create
representations of the system in another form or at a
higher level of abstraction (Chikofsky & Cross 1990). In
a rare technical paper on reverse engineering, Rekoff
(1985) more specifically defines reverse engineering as
"the process of developing a set of specifications for a
complex hardware system by an orderly examination of

specimens of that system . . . without the benefit of any of
the original drawings . . . for the purpose of making_ a
clone of the original hardware system. . ." When applied

to the software systems, the concept of reverse engineeripg
would help in gaining a basic knowledge of system and its

JAMES WELBORN
General Dynamics
Bellevue, Nebraska

structure. Furthermore, as Chikofsky & Cross (1990)
observe, while the hardware objective is to duplicate the
system, the software objective would be to gain a sufficient
understanding of the system to aid maintenance or support
replacement and/or enhancement. The distinction between
reverse engineering and re-engineering should be made clear
here. Although re-engineering may involve some aspects
of reverse engineering, it is defined as the examination and
alteration of a subject system to reconstitute it in a new
form (Chikofsky & Cross 1990),

Chikofsky and Cross divide reverse engineering into
to major sub-areas, namely, redocumentation and design
recovery. They define redocumentation as the creation or
revision of a semantically equivalent representation within
the same relative abstraction level. The resulting forms of
representation are usually considered alternate views
intended for a human audience. During design recovery, the
designers develop abstractions from a combination of code,
existing design documentation (if available), personal
experience, and general knowledge about problem and
application domains. According to Biggerstaff (1989),
design recovery must reproduce all of the information
required for a person to fully understand what a program
does, how it does it, why it does it, and so forth. Thus it
deals with a far wider range of information than found in
conventional software engineering representations or code.

ISSUES IN REVERSE ENGINEERING

While these definitions are clear and concise and
widely accepted, they fail to define the level of abstraction
that needs to be achieved when performing reverse
engineering. What information needs to be captured from
the existing design, and how much detail is necessary to
fully describe the requirements of the existing system? The
answers to these questions are causing some controversy in
the computer industry.

The ever-growing computer aided software engineering
(CASE) market is becoming an integral part of the software
design process. CASE vendors are rushing to automate the
reverse engineering process. Many boast that their
products are performing automated reverse engineering
today. It is true that there are many tools on the market
that adequately provide automated redocumentation and
restructuring features. In the area of design recovery,
however, no products fully meet Chikofsky and Cross'
definition. Several approaches can abstract the structure
and design of a system, but they fall short in continuously
refining and adding the human dimension of fuzzy
knowledge to the computer-generated model (Hanna 1990).
Some vendors are using expert-system technology which
utilize user-defined knowledge-based systems, but these may
not adequately abstract the information either.

Fall 1992 Journal of Computer Information Systems 37

The problem in discussing automated reverse
engineering tools is the lack of definition of an approach
one would follow when performing reverse engineering. A
thorough understanding of how a process is performed
manually is fundamental in understanding how the same
process can be performed automatically. = A detailed
description follows of a manual reverse engineering effort
currently being performed for the United States Air Force.

A Case Study: Reverse Engineering at a
U.S. Air Force Base

One of the authors has experience in working on a
manual reverse engineering effort that has spanned the last
two years. A software system that plays a critical role in
mission planning for the United States Air Force was
deemed to be in need of major repairs and enhancements. It
consists of over a million lines of COBOL, PL/,
FORTRAN, and Assembler source code, some of which are
fifteen years old. The system is coupled very tightly with
one of the largest network databases in the world. A
majority of the nearly 1,200 modules comprising the
system have been modified dozens of times and the original
designers have been long since replaced. Very little
system level documentation exists, with no system level
requirement specifications. The system is continuously
subjected to a tremendous amount of change, is very
difficult to maintain, and provides only a rudimentary
mission planning capability, but at the same time is very
accurate and highly regarded by the mission planners who
use it daily.

An effort was initiated to develop a replacement
system using state of the art algorithms that could greatly
enhance the mission planning capabilities using operations
research technology. The new system would utilize a
relational database, and follow strict top-down design
principles according to DoD-MIL-STD-2167A. (Department
of Defense Military Standard 2167 is the Air Force standard
on software design and development.) Since the new
system was to be a total replacement, the old system would
continue to be maintained, but no effort would be expended
to further document it at the system level.

The new system took several years to develop. During
this time period, the old system underwent major changes
to keep in line with national policy, modernization of the
force, etc. When the new system was delivered, it was
unable to replace the old system. It provided some
enhanced phases of mission planning, but was unable to
plan an end-to-end mission.

A decision was now necessary regarding how to
incorporate the new system. The following options were
considered.

« incorporate the missing requirements into the new

system;

e add the enhanced planning feature to the old system;

or :

« build a third system. which included the best

characteristics of both systems.

It was soon clear that none of the options could be
accurately assessed, because no one knew the actual
requirements' of the old system. It was decided to reverse
engineer the old system to construct a system requirements
specification. Once this was accomplished, then a rational
decision as to- which option to consider could be made
objectively.

Fall 1992

Approach: Determination of Module Interfaces

Many factors went into deciding how to reverse
engineer a system this large, including time and manpower
constraints. It was obvious that there would not. be enough
time to start at the lowest level of abstraction. According
to Chikofsky and Cross, reverse engineering can be
performed starting from any level of abstraction or at any
stage of the life cycle, but sheer volume of code dictated
that the effort would begin at least one level of abstraction
above the actual code.

It was determined to begin by describing how the
individual modules interact with each other, with the
database, and with the end-user. This approach allows a
description of what the system is performing, without
going into detail on how it is performing it. The "how"
can be ignored for the time being since the system is
currently in production and assumed to work correctly.
This approach allows the individual modules to be treated
as black-boxes. The actual requirements of each module can
be directly related to the output that it is producing. In
other words, the purpose each module serves is to produce
an output. The input to the module then becomes a derived
requirement, or, the data the module requires to produce the
required output. (The input and output would become easier
to identify if module contained I/0 predicates or pre- and
post assertions, but unfortunately there are no such
specifications or other forms of documentations in of the
existing codes.) Describing where an output is going, in
the case it is going to other modules, forces a definition of
the calling structure of each module. As it was mentioned
earlier, these tasks are currently done manually. As it can
be observed, this process is tedious and time consuming
due to the lack of any formal approach or automated tools.
Based on our experience, two things need to be done:

e A formal method needs to be developed to link
systems requirements and. reverse engineering
requirements. In particular, interconnection or
interface languages/models need to be examined to
study their applicability in determining the interface
between modules in a large system. We elaborate on
this issue in next section.

o Automated tools that can extract information from
multiple source languages need to be developed. A
CASE environment that could collect information
about module interactions and display it graphically
would be of particular interest.

RESEARCH DIRECTIONS

There are several important research questions that
need to be answered with respect to reverse engineering for
large systems. The foremost question concerns level of
abstraction that needs to be: captured during the process.
Another issue is the definition and formalization of an
interconnection model or language that can be used to
determine and specify the interface between the components
of a software system. Yet another issue is the development
of automated tools for reverse engineering. We elaborate
on these issues in the following sections.

Determining the Level of Abstraction
According to Pressman (1987), when a modular‘z

solution to a problem is considered during forward
engineering, many levels of abstraction are posed. At the

Journal of Computer Information Systems 38

highest level of abstraction, a solution is stated in broad
terms using the-language of the problem environment. At
lower ends of abstraction, a more procedural orientation is
taken. Problem-oriented terminology is then coupled with
implementation-oriented terminology in an effort to state a
solution. Finally, at the lowest level of abstraction, the
solution is stated in a manner that can be directly
implemented. Moving from one level of abstraction to a
lower level of abstraction has been the classic, the oldest
and the most widely used approach for software engineering
and hence its generic phases, e.g., analysis, specification,
design, "coding and so forth, are well-known and widely
accepted (although there is a lack of agreement as to where
the exact boundaries between these phases are).

We believe that a similar generic approach to reverse
engineering has to be established. Based on our
experience, the main issue in reverse engineering is the
unavailability of an established paradigm to determine the
functionality of an existing system that has no
documentation. In other words, a paradigm is needed to
determine how the system and its subsets work and how
they interact. We know that the goal of reverse
engineering is to identify the building blocks of a software
system and their interrelationship and to create a
representation of that system at a higher level of
abstraction. However, we are faced with quite a few
questions that need precise answers:

o Where do the reverse engineers start from?

« What information needs to be captured from the

system?

+ How much detail is necessary?

o What "stages" should the reverse engineers go

through?

+ What level of abstraction needs to be achieved?

« Who are the final audiences of the captured

information?
We provide some short answers for the above questions
below.

It is obvious that it would not be efficient to start
reverse engineering at the lowest level of abstraction, i.e.,
the code level. Theoretically speaking, reverse engineering
can be performed starting from any level of abstraction,
however sheer volume of code dictate that the effort should
begin at least one level of abstraction above the actual
code. We believe the process should begin by describing
why the individual modules interact with each other, with
the databases and with the end-users. This would allow a
description of what the system is performing without going
into details of how it does it. The actual requirements of
each module can be directly related to the output that it
produces. The input to the module then becomes a derived
requirement.

The above approach would also eliminate the need to
describe why the system performs what it is performing.
Trying to guess why a module outputs a data item is not
necessary. Someone during the life time of this module
decided it needed to produce this output. It is also not
necessary at this time to improve the software, or to
change the software as a result of reverse engineering.
Reverse engineering is a process of examination, not
change or replication, and thus in and of itself does not
involve changing the system.

Once the above has been accomplished for each
module, coupled modules (e.g., those belonging to similar
tasks) are grouped into components. This will move up
one level of abstraction, allowing the component to be

Fall 1992

treated as a black box and focusing on the inputs and
outputs of the component. Components can be grouped
into higher-level components, and so on until the system’
level is achieved. Once the highest level of abstraction is
obtained, the system requirements should be described in
enough detail that a decision can be made as to which of
the options described earlier should be chosen. The
advantage of this method is that only the modules that are
identified as potential constituent parts of the new system
will bécome candidates for redocumentation.

Application of Interconnection Models

The purpose of interconnection models and languages
is to provide a means for defining the interface between
components of a large software system. The interface
definition is most commonly given as structured graphs
where the components of the system and their relationship
are represented. The exact ‘definition of relationships
depends on the context. Most often, however, the
relationships depict a call graph — that is, they indicate
which component calls which other component(s) and what
is exchanged between them. The interconnection models
provide a good starting tool for reverse engineering where
one can use them to formally identify and define the
relationship among the modules.

Perry (Perry 1987b) defines an interconnection model
(IM) as a two-tuple structure consisting of a set of objects
and a set of relations which represent the interconnections
that exist among the objects:

IM = ({objects},{relations})

An IM may be employed to construct a graphical
representation of a system where objects are depicted as
nodes of the graph while the relations are shown as edges
(Perry 1987a, Yau & Tsai 1987). Interconnection
languages are based on four different models:

« Unit Interconnection Model (Perry 1987a),

o Syntactic Interconnection Model (Perry 1987a),

« Semantic Interconnection Model (Perry 1987a), and

« Module/Template Interconnection Model (M/TIM)

(Zand 1990).

We are currently studying and examining the above
models to evaluate their potential applications in reverse
engineering.

Need for Automated Tools

For the reverse engineering process to contribute most
effectively in capturing and recording information about an
existing software system, automated support is desirable.
However, our experience in reverse engineering has taught
us that every old system that is to be reverse engineered
will have a set of unique problems associated with it which
makes that system distinguished from others. This implies
that the paradigm of using off-the-shelf generic products is
no longer appropriate when attempting to reverse engineer
a system that is unique. Instead, specialized tools are
needed via which the operations of the system in question
are analyzed and its functionality assessed. Currently, the
solutions continue to fall back on a system in which the
user is allowed to enter his/her own rules for the system
regarding what information is to be extracted. Specialized
expert systems may play a central role in this regard.
There are a number of CASE tools (e.g., Excellerator,
KnowledgeWare, and IBM's new product AdiCycle),
however, none are able to exiract information from

Journal of Computer Information Systems 39

multiple source languages, nor are they able to capture 3. Chikofsky, E. and J. Cross. "Reverse Engineering and
information and display it in terms of dataflow diagrams or Design Recovery: A Taxonomy," IEEE Software, 23:1,
structure charts. 1990, pp. 13-17.
4. Hanna, M. "Defining the 'R' Words for Automated
SUMMARY Maintenance: Reverse Engineering Restructuring,
Reusability Packages Help MIS bring Code Under
The work reported here is only a start on a large set of Control," Software Magazine, 1990, pp. 41-46.
issues. We discussed many of the problems that one may 5. Perry, D. "Software Interconnection Models,"” Proc.
face while reverse engineering a large software system. 9th International Conf. on Software Engineering,
One adage that can be applied is that while simple systems IEEE, 1987a, pp. 61-69. :
are easier to understand, complex systems are much harder 6. Perry, D. "Version Control in the Inscape
to understand and thus imply a greater cost. However, one Environment," Proc. 9th International Conf. on
has to consider the benefit of reverse engineering. In Software Engineering, IEEE, 1987b, pp. 142-149.
addition to increasing the overall comprehensibility of a 7. Pressman, R. Software Engineering: A Practitioner's
system for maintenance and new development, it can assist Approach, 2nd ed., McGraw-Hill, 1987.
in detecting and removing side effects, it will facilitate 8. Rekoff, M. "On Reverse Engineering," IEEE
reuse, and it will synthesize higher abstractions. Transactions on Systems, Man, and Cybernetics,
March-April 1985, pp. 244-252.
REFERENCES 9. Yau, S. and J. Tsai. "Knowledge Representation of
Software Component Interconnection for Large-Scale
1. Berzins, V. and M. Gray. "Analysis and Design in Software Modifications,” TIEEE Transactions on
MSG.84: Formalizing Functional Specifications,” Software Engineering SE-13, 3, 1987, pp. 355-361.
IEEE Transactions on Software Engineering SE-11, 8, 10. Zand, M. "ROPCO: An Environment for Micro-
1985, pp. 657-670. incremental Reuse," PhD thesis, Oklahoma State
2. Biggerstaff, T. "Design Recovery for Maintenance and University, Stillwater, Oklahoma, 1990.
Reuse,” IEEE Computer, 22:7, 1989, pp. 34-49.
Fall 1992 Journal of Computer Information Systems 40

JOURNAL OF COMPUTER
INFORMATION SYSTEMS

official journal of

INTERNATIONAL ASSOCIATION FOR COMPUTER INFORMATION SYSTEMS

