CONGRESSUS

NUMERANTIUM

VOLUME 85

DECEMBER, 1991

WINNIPEG, CANADA

A Specification Methodology to Support
Automation of Office Procedures

Hossein Saiedian, Hassan Farhat and Mansour Zand
Dept. of Mathematics and Computer Science
University of Qmalia, Omaha, NE 68182

It is often difficult and costly to develop systems that would automate office pro-
cedures. One reason for this difficulty is the unavailability of an appropriate office
spucification language that an office analyst could employ when specilying the ex-
pected functionality (or behavior) of the system. In this paper, we introdonee an
ohjeet-based language to formally specify the externally observable hehavior of ol-
lice objects as well as their computations. Object-based approach, as embaodied in
several languages, has proven to be a useful principle of software organization. Onr
proposed language is called asst and is based on Carl Tlewitt’s actor theory, The
actor theory is chosen because not only it captures the abstract power of of ohject-
oricntation paradigm, but provides as well a mathematically precise abstract machine
for analysis of asynchronous and concurrent computations. The central concepls in
anst are objects and message passing. Every entity, whether abstract or conerete,
that is relevant to some office computation is conceplually viewed and modeled as
an object. Computations among the objects are uniformly modeled as patterns of
message passing. An example is provided to show the expressiveness ol specifications
in aBsL.

General Terms: OFFICE AUTOMATION, SOFTWARE SPECIFICATION
Additional Key Words/Phrases: OBiect-Based TECINIQUE, AcTonr Monki

1 Introduction

Office automation is the body of knowledge that is concerncd with the analysis, de-
sign, implementation and efficiency of the systems that transform information within
an office. Office-specific systems for use in an office are often costly and diffienlt to
implement and/or prototype. One reason for such dilficulty is the unavailability of
an appropriate specification methodology that an office analyst can use Lo formally
deseribe the externally observable behavior of such systems at a high-level ol abstrace-
tion. As a resull, a great deal of effort, time and money is spent on “re-inventing”
the wheel whenever a new office system coneepl is to he developed.

Computations in an oltice are very dillicull to specify using the traditional tech-
niques technique because office computations are diverse [3], inherently conenrrent

CONGRESSUS NUMERANTIUM 85(1991), pp.15-32

[6], asynchronous [6, 19], distributed [10], uondcterministic [6), and event-driven [19].
Thus, to be effective, a specification methodology should be powerful and expressive
cnough to precisely and clearly express all aspects and relevant behavior of a system
to be used in an office environment. We believe that if the support of an adequate
specification methodology is provided, then the development of an office system can
greatly be accelerated, many of the design difficulties can signilicantly he simplified
and the design cost substantially rednced.

To address the above problems, we have developed a specification langnage for
the formal specification of oflice procedures. This language is called ansi (for Actor-
Based Specification Language). As its namne implies, asst is principally Lased on
the formal theory of the actor model [5] with certain extensions. Our approach to
designing a formal oflice specification language has cmerged from rescarch on models
of concurrency and distributed computations. In addition to the actor model, we
considered several other well-definéd models as a semantic basis for an office specifi-
calion language, including the Petri nets model [16], CSP [7] and CCS [13]. But we
decided to take advantage of the fact that the actor model not only provides a math-
ematically precise abstract machine [1] for the analysis of concurrent, asynchronons
and non-deterministic computations but captures as well the abstraction power of
object-oricnted modeling techniques.,

2 Software Specification

The development of any large system has to be preceded by a specification of what
is required. Without such a specification, the systen’s developers will have no lirm
statement of the neceds of the would-be users of the system. The need for precise
specification is accepted in most engineering disciplines. Computer systems are in no
less need of precision than other engincering tasks.

Many aspects of a software system must be specified including its functionality,
performance and cost. In this paper attention is focused on externally ohservable be-
havior of a system. In the traditional softwarc development process, Lhe specilication
phase, i.e., when the functions of sofltware product are specificd, plays a critical role.
Its role is so critical that failure to properly carry out this phase is historically known
to cause great financial losses. Hence software specification has been the subject of
great deal of attention in recent years. The existence of workshops and conferences
devoted to this subject, e.g., the International Workshop on Software Speeificalion
and Design scries, bears witness to the importance of this field [12).

The term specification refers to both product and process. As a process, the
specification is the phase where the functionality of a system is defined. This process
includes both specification generation and specification validation.! As a product,
a specification is the document in which expected behavior and fctionality of a
systems is recorded. As a product, a specification play two key roles: fivst, it is

"Ihe purpase of specilicalion validation is to check whether a specification which lias been derived
is consistent with, and complete with respect to users’ intent.

16

a contract between the users and the programmers; second it is a primary design
document for the programmer.

To summarize, a specification is a picce of Lext that deseribes the behavior a
software system. Such a specification should be much shorter than a corresponding
implementation? and may serve for the following purposes [8]:

o Specifications describe the abstractions made aud thus serve as system doeu-
mentation.

¢ Specifications may serve as a mechanism for gencrating questions about fune-
tionality of the system and its intrinsic properties.

¢ A specification document can serve as a contract between the designers of a
program and its customers and in essence binds the customers and designers by
expressing the conditions under which the services of a program are legitimate
and defining the results when these services are called.

o With respect to program validation, specifications may be very helpful to collect
test cases.

There is a general agreement that in large software projects, appropriate specifica-
tions are a must in order to obtain quality software. Informal specifications alone
are certainly not appropriate because they are incomplete, inconsistent, inacenrate,
ambiguous and they rapidly become bulky. {For an excellent, discussion of drawbacks
of informal specifications, the readers are invited to read [11].) Inadequate specifica-
tions of software systems-has long been quoted as a root cause of soltware lailure and
very high software maintenance cost. With a software being used in more and more
critical office applications, it becomes increasingly vital to find ways of reducing the
ambiguity and inconsistency in the specifications.

A formal specification methodology is comprised of a relatively small vocalu-
lary of keywords and operators with a well-defined syutax and semantics. A formal
specification methodology is a valuable tool in sysiems development since it permits
a systems analyst to describe the external behavior of a proposed system procisely
without specifying issues related to implementation. ‘Another potential nses of a spec-
ification methodology is that it scrves as a communication tool between the systems
analyst and the users and iimplementors since it enables the analyst to deseribe the
proposed system more precisely and unambiguously to them. Although specification
methodologies have been applied to a wide area of software systems [4], there has
heen little work in developing a methodology to address the problem of specifications
of office entities and computations.

The goal of this paper is to introduce a particular approach to specifications of
office procedures. This approach is called aBsL and is based on the formal theory
of the actor model. The rest of this paper is as follows: Section 3 briefly reviews
the actor model and provides reason why this model was sclected. In Section 4, an

*The key brevity is abstraction: the specification of a system should abstract away issues which
relate to implementation.

17

informal description of objects in aBst is given. Scction 5 provides a more lormal
description of assiL’ objects. Section 6 includes the description of certain propertices
of the arst methodology. Section 7 includes an example to show expressiveness of
aust specifications. In Section §, we conclude this paper and discuss arcas for further
rescarch, :

3 Selection of Actor Model

The actor model [5, 2, 1] is a model of distributed computing in which every com-
putational entity is represented as an autonomous object or an actor. In this model,
no distinction is made bhetween between procedure and data; both are represented
as actors. The only means by which an actor may allect the hehavior of another
actor is by sending a message to it. All computations in a system ol actors are thus
represented by means of message transmission. A message Lransmission is velerred 1o
as an event. Thus the only things that happen in an actor system are cvenmts. An
cvent marks the arrival of a message at the message target. The basic concepts of
the actor model are simple, yet very general and powerlul to express esseutially any
kind of computations. The molivations for using the actor theory was to explore ils
uscfulness and to use its simple concepts as a basis for methodology.

The actor maodel has traditionally been used as a model of computation ju the
arca of artificial intelligence. This model, however, has a number of characteristics
that relate well Lo the computations in an office environment:

1. Computations of the actor model arc event-driven where an event is delined
as the arrival of a message. Events in the actor model are the only source
of energy for computations [1]. This concept (i.e., evenl-driven computations)
also resembles the activities of an office environment. The activities in an oflice
environment are event-driven. An event in this context may be viewaed as the
arrival of a message (e.g., an admission form) into an office. The arvival of
cach such message may lead to creation of additional messages (e.g., copies of
admission form sent to the graduate committce members) and Lthus creating
and continuing additional activities.

2. The computations of the actor model imply an overwhelming amount ol paral-
lelism (1]. Simiilarly, office computations are highly concurrent. [6].

3. The communications in the actor model are asynchronous. Likewise, Lhe com-
munications in an office are asynchronous. Furthermore, the communications in
the actor model take place by means of message passing. The message passing
paradigm of the actor model also resemble the commmuuication patterns in an
office.

-~

The laws of the actor model ensure the liveness property in a distributed come-
puting environment. The basic idea of the liveness property is Lo show that
those events that are expected to occur eventually will oceur. As observed in

18

17], an important property in office systems is the liveness properly or the
) 1 proj Y
guarantee of service.

5. The actor madel supports an object-oriented style of computation. The concepts
of an object and of abject-oriented computations emerged in 1960 and are
applied in diverse areas of computer science for the purpose of managing the
complexily of software systems. The object-orientation is one of the most active
area of rescarch [18, 9], Object-oriented techniques are partienlarly apt. to deal
with office applications [15, 14].

6. The actor model has a well defined mathematical basis [1] and provides a sonnd
foundation for a partial ordering theory of distributed compntations. As men-
tioned earlier, oflice computations are distributed.

In the actor model, the only means by which an actor may affect the hehavior of
another actor is by sending a message to it. All computations in the actor model are
thus represented as message transmission. A message Lransmission is refereed to as
an event. Thus the only things that happen in an aclor system are events, An evenl,
marks the arrival of a message. Events are ordered in two ways: messages arriving
al a given actor have a unique linear order called the arrival order while an event,
causing other events precedes those events in the aclivation order. I'he transitive
closure of these two ordering provides a partial order of events called Uie cambined
order [5]. The laws associated with the combined ordering include:

o No cvent precedes itsell in the combined ordering. (‘Phis law is referred o as
Strict Causality Law.)
e A chain of events in the activation ordering from an cvent Fy to event 2 is

finite. (This law is referred to as Finite Activation Law.)

¢ The sct of immediate predecessor of an event £ is finite. (This law is called
Finite Immediate Activation Successor Law.)

o If cvent £ precedes event £y, then there are only finitely many events hotween
[y and 2. (This is referred to as Finite Intermediate Chain in the Combined
Ordering Law.)

¢ Lach event has finitely many immediate successors and finitely many immediate
predecessor.

o If two events, By and Ej, occur at the same target (i.c., il two messages arrive
at the same actor), then cither E; occurs before 12, or £y veenrs helore £2,. In
other words, two messages cannot be accepted al the same time. (This law is
called Total Arrival Ordering Law.)

¢ No event can cause infinitcly many events.

o The sct of actors (objects) created by an event is finite. (This is called (he
Finite Creation Law.)

19

e Fach event is generated by the sending of at most a single inessage.

The purpose of the actor laws is to restricl a system of actors Lo Lhose computations
that are physically realizable and to ensure that an actor system can physically be
implemented. For a complete description, analysis and implication of actor laws sce

[5).

4 Object Representation in ABSL

anstL is intended to serve as a tool to conceptually describe an oflice systeny in the
framework of object-based approach. assi supports an objecl-based approach to the
specification of oflice computations. In this approach, virtually every entity, whether
abstract or concrete, that appears in an office is uniformly viewed as an object that
can send or receive messages.

Each object consists of a local memory (or environment) containing tightly conpled
data that are used to define the slale of that object as well as all the operations that
act on the local data. These operations are referred to as behavior rules. Thus an
object consists of

e a local memory definition called environment definition defining features and
important propertics of an object, and

e i bchavior definition that defines the aclions or functions performed hy the
object when it receives a message.

In particular, the behavior definition (analogous to actor’s seripl) specifies the type ol
messages accepted, operations performed on the local data, the new objeets created.
and/or the messages sent in response to the incoming messages. The behavior defi-
nition consists of a set mutually independent behavior rules. The overall structure of
objects in anst is shown in Figure 1 while the general format of a hehavior rule is
shown in Figure 2. (aBsL keywords are typed.)

The requires and effects clauses in IFigure 2 are uscd Lo capture the state of
an objcct before and immediately after processing a message. awsi supporls a first
order predicate calculus sublanguage to express the state-before and state-alter of
an object. This sublangaueg expresses the states of an object in terms of pre- and
post-condition expressions where

o Pre-condilions are assertions about the state ol an object before it can aceept
a certain message, and

o Post-conditions are assertions aboul state of an object that will be obtained or
will prevail after the processing completion of an accepted message.

anst has several distinelive characteristics. First, it allows one to specify the
behavior of office entities independent of their physical representation inan abstract
and non-procedural fashion. Since all computations are represented as patterns of

20

object object-name - -Object header
with clause --List of parameters this objecl may be initialized with
copy clause --Dala types Lo be imporicd to Lhis objecl;

state-def --Objecl environment definition
- state variables are declared here
end-state

behavior-def --Bchavior definition of an object
behavior-rule 1
behavior-rule 2

behavior-rule n
end-behavior
end object-name

Figure 1: The Overall Structure of an Ohject in aunsy,

accept [message-lag(message paramelers) delegate-to: d-patl, sender: sender-name]
requires: sct of pre-condilions lhal wust be trie
send-to stalement for asynchronous communication
send-wait slalement for synchronous communicalion
reply statement lo reply to the message sendcr
new statement to creale new objects
effects: set of post-conditions that are true afler processing a message
end-accept

Figure 2: The General Format of a Behavior-Rule

message passing among the objects, the only things that arc important to the users
(and the implementors) about an object is what kind of messages that object may
receive and what it does in response to the accepted messages.
to describe how an object perform its actions; only the kind of messages it accepts.
Such descriptions are abstract and independent of any implementation hias.
Second, since oflice applications constantly evolve, one of onr main goals in devel-
oping anst has been to facilitate one with a notation to conveniently develop partial
description of behavior of an object which describes the known propertics of that
object and to further specify additional features (i.e., behavior rues) of that ohject
in an incremental fashion. This goal becomes specially important if one considers the
facts that

No attempl is made

o it is usually difficult and often impossible to arrive at a complete specilication

21

for complex systems and

¢ propertics of objects in an office are not available all at once; Lhey often evolve
with time.

Third, since assw specifications are structured as a collection of objects with well-
defined interfaces, they can directly be mapped into an object-oriented implementa-
tion via an object-oriented language. Object-oriented programming is one of mosl
active arcas of rescarch in computer science {18] and interest in this arca continnes to
increase.

5 Formal Definition of an ABSL Object

The definition of an aBst object is given as follows:
Definition 1 Object — An object 0 is a 2-tuple (&,) where

o £ is the local environment of object 0 (£ in particular is the wnion of ¥ and X,
object 0’s stales before and after processing a message), and

e [is object 0's hehavior.
[m]

The local environment of object @ defines the stale of 0 atl various Lime references.
Object 0's behavior, on the other hand, defines the set of messages the ¢ acceepts
and its response to the accepted messages. Formally, the behavior of an object, 0
is a function that maps the incoming messages to a set of created objects, a set of
communications sent to other objects, and the new stale of object 0 which results
from processing the accepted message:

Definition 2 Bchavior — An objccl 0's behavior, f3, is a Junclion
BT o (@xy)xT
where
o £° represents the slale of objecl 0 before the arrival of message y € 1
o I' is a universal sel of messages that ebject 0 can accepl;
o O represcnts the finile scl of objects created as a vesull of processing message 5;

o 4/ represents the communicalions senl to oller objeels in respond lo wmessage v
and,

o ¥ represents the state of objects 0 afler processing .

22

[m]

“The above definition implics that an object 0 may exhibit a new stale alter pro-
cessing a message v, which may not be the same as its state belore it accepting 7.
An object which may change state is said to be serialized. The state of unscrialized
objects remains the same regardless of the number of messages processcel:

Definition 3 Unserialized Object — An object 0 with behavior f# and stale S is an
unscerialized object if

VYel, 20 xy = (@Oxy)x T = 50 =Y,

0

Unserialized objects are those objects that have no state. In other words, they are
memory less and thus they can be used to represent mathematical netions.

The relationship between state-before (Z) and state-after (¥) can be viewed as
an ohject’s slale {ransition. Suppose an object has only one hehavior rule (i, it
accepts only one message). The relationship between the state-hefore and state-after
of an object is defined as:

Definition 4 Object Stale Transition — Lel ¢ and ¢ denole the sil of assertions in
requires and effects clauscs of an object vespectively, Then

<Hp>o0 =< ¢ >

is regarded as if an object is activated in a stale for which ¢ holds, the objeet will
perform operations in O and will be in a stale for which & will hold.

D

In other words, ¢ is intended to describe exactly those states from which processing
of a message is guaranteed to establish ¢. The above definition can be extended
for objects with more than one behavior rule by simply considering the nnion (or
conjunction) of both pre- and post-conditions of cach hehavior rule.

6 History of Computations

Acceptance of a message by an object is called an event. The behavior involving only
a single object is a totally (linearly) ordered sequence of events. Thus the history
of computations of an object can be viewed as a scquence of events. Events in this
history are distinguished by their place in the total mdcnng of events. The state of
an object can be captured by recording the events in which il participates. Given
a history of computations for an object, one can determine whether the objeet has
participated in a particnlar event or not. Suppose § represents a sequence of events
that an object has participated in:

23

Definition 5 Scquence — S is a sequence of events occurring al an object 0 if
S=<ep,epuney>ande; = ez - ... ¢y
where = means “arvived before”.

a

Using this definition, one can determine whether a given event ¢ belongs to the
computation history of an objectl 0:

Theorem 1 Suppose sequence S represenis the compulalional history of objeel 0.
Function (e, S), defined below, evaluates to truc if a given cvenl ¢ belongs to the
history of object 0, false otherwise:

true if e = car(S) V (e, cdr(S)) = Lrue
Jalse otherwise :

#es)={
where
o e, <>) = false,
[] cm'(< €1, €2y .0y Cy >) = ey, and
o cdr(< e, ez, >) =< €2,y 8y >
Proof: Acconding to the Total Arrival Ordering law,
Vei eiltargelof(e;) = targelof(e;) = e; > eV ¢; = ¢

where larget.of(e;) means “the target object where event ¢ occurred al” and = means

“implies”. (The above law says that all evenls occurring al an objeet are lincarly
ordered.)

The Finitely Many Predecessor in Arrival Ordering law stales thal

Ve;, ¢;|target_of(e;) = target of(e;) = {ewle; = i > ¢;) is finile

Technically speaking, the above luw implies that the avrival ovdeving formns « finile
descending chain such that the process of vepealedly taking the predecessor of an coend
in the chaim will eventually terminate. These two laws imply thal the theoren can be
proved induclively on size of S, shown as |5|:

Suppose |S| = 0. Thus S =<> and by definition, P(e, S) =fulsc sinee ¢ g S.

Induction Hypolhesis: Asswme for some n > 0 that if |S| = n, then af{e, S) = true if
ceS.

Suppose |S| =n+ 1. There are lwo cascs lo consider:

24

o Case 1: S =< ¢, #S5 > for some sub-sequence #S5. Thus ¢ = car(S) and by
hypothesis, (e, S) =true since e € §.

o Case 2: § =< ¢, #S5> and e #€'. Then by definition, (e,) = (e, edr().
Since ledr(S)| = |#S| and by induction hypothesis, h(¢', cdr(8)) = brue, and
e € cdr(S). Therefore, (e, S) = true if ¢ € cdr(S) which is truc if ¢ € 8.

a]

The behavior of an object can be described by specilying the seb of operations
that it performs once it receives a message. Furthermore, given the past history of
cvents an object has participated in, one can determine the reaction (response) of thal,
object to the next event. This implies that the set of past messages that an object 0
has accepted must be recorded to predict its future behavior. For practical PUTPOSes,
however, it may not be desirable to keep such a record. Alternatively, one can apply
the concept of stafe from the scquential systems to défine an object’s response Lo
incoming messages. In the context of sequential systems, the coneept of state allows
the future behavior of the system to be completely predicted by abstract state of the
system at the time of an event instead of the wlole past history of the system [2].
(Baker [2] more formally referred to the abstract state of the system as an cquivalence
class of the past histories of the system.) The above concept of alistract state can be
usidd to define the state of individual objects: the state of an object will be defined
by the abstract state of that object at the time of a message arrival. terns of (he
equivalence class of its past histories (i.c., the past messages aceepted). Thus if an
object 0 is in state X, then 0 can accepl a message 5 and exhibit anew state shown
as ¥. assL supports a first order predicate logic sub-language to express ¥ and I,
(the state of object 0 before and alter processing a message). The predicates of this
language express the state of an object in terms of pre- and post-conditions (or 1/0
predicates) where pre-conditions are assertions about state (£) of an ubject hefore
accepting a message and post-conditions are assertions about state (¥).of an ohject
that will be obtained or will prevail after the processing completion of 4,

As discussed previously, cach object has a well-defined local time which Jinearly
orders the events as they occur at that object. These local orderings can be refated
to cach other by the activation ordering. The activation ordering specifies the cansal
relationship between cvents happenings at different objects. The cansal relationship
is a partial ordering relationship in which events occurring at dillerent objects are
unordered unless they are connected by direct or indircct causal links. Thus, the
computational history of a system of objects is a partially ordered sct of cvents ol-
tained by the transitive closure of activate and arrival ordering relations. The partial
ordering relation approach to semantics of computations is well suited to specily the
behavior of objects in a distributed system: Instead of recording the current state of
system, changes in state are reflected in change over time in behavior of individual
ohjects. In other words, since the cansal relation ordering among the events in a
distributed environment does not specify a unique total orderings of events [i], the
notion of computalions are gencralized from a total ordering of events to a partial
orderings of events. As a result, two events arc ordered only if they are related. In

25

other words, as long as the changes made to an object at a given time do not affect
othicr objects, the state of those objects need not be considered when an ohject re-
ceives a message. That is, one needs only to consider the effects of an event. e on the
local state of object @ and those events that will be generated once participates in
event e. The semantics of computations is defined as the effeets of a message on the
local state of its recipient.

1L is also important to show that all the expected computations in system of ansi,
will take place. Since computations are expressed as patterns of message passing,
we must show that all the messages sent by various asst objects will.eventually be
reccived by the expected recipients. This is shown by the following theorem.

Theorem 2 All pending messages will evenlually be processed. Staled oltherwisc, all
cepecled cvents will cventually occur. This theorom cssenlially crpresses the liveness
properly of message passing in aBsL: each message sent by an objeel will “eventnally”
be received by its expected recipient

Proof. Letn € N. (N is the set of nalural numbers). Let {0}, be a scl of objects
such that i # j = 0; # 0;. Thus the sct of objecls in an envivonment is finile. This
is implicd by the Finite Creation law.

According to the Finite Inmediate Activation Successor law, cach objecl may send a
finite number of messages to olher objecls afler receiving a message. Supposc cach
object 0; sends v; messages where {3}, are lhe messages and m € N. Lel Ml be
the tolal number of messages sent by object 0. Thus

M=TL T8 1 <00
In other words, the lotal number of pending messages ab any given lime is finitc.
Choose an arbitrary k,1 < k < n. Let m’' be the sum of messages sent lo O, Thus
m! < M. The number of messages arriving at object 0; is thercfore finile. As a resull,
object 0; unll reccive and process cach message senl to it afler some lime,

Other properties of aBst objects and their computations (c.g., possibility ol deadlock
occurrence, configuration transition, synchronization, etc.) can be found in [17].

7 An Example: A Doctor’s Office

In this section, we provide a simplec example to show the expressiveness ol speci-
fications in aBsv. In the example, the entities of a simple health clinic oflice are
represented as objects. (Due to lack of space, this example is greatly simplified.)
There are two doctors and one receptionist, each modcled as objects. There is also
a patient-queuc object that queues the patients in a FIFO discipline. The patient
objects walk to the clinic and send a Patient-In message synchronously to the re-
coptionist. Alter recciving this message, the receplionist may do one of the following:

YNote: One important assumptions is made here: the underlying comnnumication network is
reliable. This assunption is an implementation-dependent cousideration.

26

o Ask the patient object to see doctor #1, il doctor #1 is not busy,
o Ask the patient object to see doctor #2, if doctor #2 is not busy,

o Ask the paticnt to wait; the paticnt’s name is sent to the patient-gquene object
to be queued.

(The messages from the patient objeets are sent synchronously because eacly patient
needs to know immediately what to do afler entering into the clinie). Thus the
receptionist object needs to reply Lo them as soon as possible and as & result, the task
of queuing/dequeuing paticnt objects is given to the patient-quenc object. Doctor
objects interact with the patient-queue object. Onee a doctor object is ready Lo see a
patient, it sends a message (Doc1-Ready or Doc2-Ready) to Lhe paticnt-guene ohject.
If the patient-queue object has some patient objects quencd, it sends a nmessage
(See-Docl or See-Doc2) to the object that has been waiting for a longer time and
asks it to sce the doctor. If there are no patient objects quencd, then the patient-
queue object sends an appropriate message (Doc1i-Available or Doc2-Available)
to the receptionist object. The receptionist object thus receives messages of the form
Doci-Available or Doc2-Available if one of the doctors has offects available. Alter
receiving such a message, the receptionist object changes its state appropriately. It
is assumed that the patient objects have the conrlesy to let the receptionist. know
il they decide to lcave the clinic before secing a doctor. Thus, if the receplionist
object receives a message Patient-Out from a patient, it sends a Remove s

e Lo
Lthe patient-quene instructing it to remove the corresponding patient ohject rom the
quene. A pictorial representation of the doctors’ clinic is given in Figure 3.

The specification of the receptionist object is given in Figure 1.1 The receplionist
object only knows the patient-queue object but not the names of the patient object
since there may be many patients coming to the clinic and thus the receptionist is
not required to know their names.

The specification of the patient-queue object is straightforward. It accepls mes-
sages of the form Enqueue, Docl-Ready, Doc2-Ready or Remove. (See Fignre 5)
Patient objects are queucd in a first-in first-out basis. The specification of the patient-
object is not given duc to Jack of space.

8 Conclusions and Further Research
In this paper, we proposed a methodology called assL as a tool for speciflying applica-

tions for office automation. assw is a non-procedural specification language. Tts key
distinguishing aspects are its theoretical foundation (i.c., the actor theory) and its

4Comments about the notation: The unpack operator (shown as #) denotes a (possibly cnipty)
subscquence. Thus, the sequence < e #S> consists of an clement e and a subsequence #5. An
identifier inside the effects clause is adorned with a prime symbol (*) to denote its new value alter
a imessage has been processed. Input parameters to a behavior-rule are decorated with a “° 3
{e.g., mamel) while output parameters are decorated with a 7" (e.g., response?). As shown in
the first example, a message package may lack any parameter. In such a CONLEXL, & HIessage serves
merely as a signal.

27

Doctor #2

Receptionist

Doctor #1

Figure 3: Pictorial Representation of Objects in Doctors” Oflice

uniform representation (office entities are represented as objects while compntations
are presented as patterns of message passing).

The long-term purpose of a specification methodology is not the static descrip-
tion of a system, but also its dynamic derivation. The design of ansi is thus not
pragmatically complete without a methodology for its systematic use. A specifica-
tion language, in effect, defines a nondeterministic solution space, i.e., a nondeter-
ministic algorithm for deriving a solution to a problem within a given domain. A
solution is computationally infeasible unless the dimensionality of a solution space
is reduced. Methodological heuristics are the way this dimensionality is handled in
practice. Should a methodology ever reduce the dimensionality of a solution space to
its minimum, that is one, so that the solution space becomes deterministic, then the
entire derivation process can be autoinated. An interesting arca of rescarch would be
to perform major methodological research using aust as a base, develop antomated
tools for this analysis and determine whether the methodology is deterministic.

Most object-oriented programming languages support code re-use in the construc-
tion of families of related components using the concept of inherilance Inheritance
allows a component to be defined in terms of one or more other components, in-
heriting attributes from those components and overriding them when necessary. In
essence, the concept of inheritance provides a mechanism for information sharing.

In this work, the concept of inheritance has been ignored since it is not integral to
the actor model and thus no specific scheme for inheritance is inhierent to the aclor
model {1]. This is primarily because the actor model does not support the concepts of
objeet elass hierarchy of classes and meta classes. It wonld be interesting to investigate

28

object receptionist
state-def
docl-free, doc2-free: boolean initially true
patient-queue: object
end-state
behavior-def
event [Patient-In(patient!: object, responsc?: str))
case requires: docl-frec = true
response? = “Doctor | Available” then reply-to: patient!
effects: docl-free’ = false A doc2-free’ = doe2-free
case requires: doc2-free = true
response? = “Doclor 2 Available” then reply-to: paticnl!
effects: doc2-free’ = false A docl-free’ = docl-lree
case requires: docl-frec = false A doc2-free = false
response? = “Please Wait” then reply-to: palicnt!
send-to: patient-queuc [Enquene(paticnt!: object))
effects: docl-free’ = false A doc2-[ree’ = false
end-case
end-event
event [Docl-Available()] |
requires: docl-free = false
effects: docl-free’ = true
end-event
event {Doc2- Available()]
requires: doc2-[ree = false
effects: doc2-fre¢’ = true
end-event
event [Patient-Out(paticnt!: object)]
send-to: patient-quenc[Remove{paticnt!: object)]
end-event
end-behavior
end receptionist

Figure 4: Specification of Receptionist Object

29

object patient-queue
state-def
wait-list: sequence of object initially < >
receptionist: object
end-state
behavior-def
event [Enqueue(paticnt!: object)]
requires: wail-list = <#waiting>
effects: wait-list’ = <#waiting patient!>
end-event
event [Docl-Ready()]
case requires: wait-list = <p F#wailing>
send-to: p [Sce-Doctorl()]
effects: wait-list’ = <#waiting>
case requires: wail-list = < >
send-to: rcceplionist [Docl-Available()]
effects: wail-list’ = < >
end-case
end-event
event [Doc2-Ready()]
case requires: wait-list = <p #waiting>
send-to: p [See-Doctor2())]
effects: wait-list’ = <#waiting>
case requires: wait-list = < >
send-to: receptionist [Doc2-Availahle())]
effects: wait-list’ = < >
end-case
end-event
event [Remove(patient!: object)]
requires: wait-list = <#wailingl patient! #waiting2>
effects: wail-list’ = <#waitingl Fwailing2>
end-event
end-behavior
end patient-quecue

Iigure 5: Specification of Patient-queue Object,

30

and see what role inheritance can play in assn methodology and whether the notion
of inheritance would provide a substantial leverage for the analysis and specifications
ol office systems.®

References

[1] Agha, G.: Actors: A Modcl of Concurrent Compulation in Distribuled Systens,
MIT Press, 1986.

[2] Baker,11.: Actor Systems for Real- Time Compulations, Phl) Disscrtation, M{T,
Cambridge, Mass., 1978,

[3] Bracchi, G. and Pernici, B.: “The Design Requirements of Oflice Systems,”
ACM Trans. on Office Informalion Systems, Vol, 2, No. 2, April 1934,

[4] Gehani, N. and McGettrick, A.D. (Editors): Softwarc Specification Techniques,
Addison-Wesley, 1986.

1

[5] Hewitt, C. and Baker, H.: “Actors and Continuous Functionals,” in Formal Di-

seription of Prograwnning Concepts, 15 Nenhold (editor), Novth-Holland, 1977,

[6] Hewitt, C.: “Offices Are Open Systems,” ACM Trans. ou Office Informalion
Systems, Vol 4(3) (July 1986), pp. 271-287.
L4

[7

—

Hoare, C.A.R.: “Communicating Sequential Processes,” Communications of
ACM, Vol. 21, No. 8, 1978.

[8] Horebeek, I.: Algebraic Specification’in Soflware Enginecring, Springer-Verlag,

1989.

—_

[9] Kim, W., and Lochovsky, F.IL. (editors): Object-Oricnted Coneepts, Dutabases,
and Applications, Addison-Wesley, 1989.

[10] McBride, R.A. and Unger E.A.: “Modeling Jobs in a Distributed System,” in
Proc. of ACM Symp. on Small and Pcrsonal Compulers, 1983,

[11] Meyer, B.: “On Formalism in Specifications,” 1117 Software, Jan. 1985, pp.
6-26.

(12] Mili, A, Boudriga, N., and Mili, F.: Towards Structurcd Specifying, Halsted
Press, 1989,

[13] Milner, R A Calewlus of Communicaling Systems, LNCS 92, Springer-Verlag,
N.Y., 1980.

14] Nierstrasz, O.: “Integrated Office Systems,” in [9].
g y

Slucorporated into ABSL is a limiled version of information sharing through the use of copy clause
in an object header. The use of copy clause is restricted to the sharing of data types,

31

(15] Pernici, B.: “Objects with Roles,” in Proc. of 1990 ACM Conf. on Office [n-
Jormation systems, pp. 205-215, 1990.

[16] Peterson, J.L.: “Petri nets,” Computing Surveys, Vol. 9, No. 3, Sept. 1977.

{L7] Saiedian, H.: An Object-Oriented Approach lo the Specificalion of Applicalions
Jor Office Automation, PhD Dissertation, Kansas State Univ., 1989.

(18] Shriver, B. and Wegner, P. (cditors): Rescarch Dircetions in Objeet-Oriented
Programming, MIT Press, 1987.

[19] Zisman, M.D.: Represcntation, Specification and Awlowmation of Qffice Proce-
dures, PhD Disscrtation, Univ. of Pennsylvania, 1977.

32

