
14 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

manager

Safe and Simple Software
Cost Analysis
Barry Boehm

E d i t o r : D o n a l d J . R e i f e r � R e i f e r C o n s u l t a n t s � d . r e i f e r @ i e e e . o r g

“Everything should be as simple as pos-
sible, but no simpler.” – Albert Einstein

S
imple software cost-analysis meth-
ods are readily available, but they
aren’t always safe. The simplest
method is to base your cost estimate
on the typical costs or productivity
rates of your previous projects. That

approach will work well if your
new project doesn’t have any
cost-critical differences from
those previous projects. But it
won’t be safe if some critical
cost driver has degraded.

Simple history-based soft-
ware cost-analysis methods
would be safer if you could
identify which cost driver fac-
tors were likely to cause critical
cost differences and estimate

how much cost difference would result if a
critical cost driver changed by a given de-
gree. In this column, I’ll provide a safe and
simple method for doing both of these by
using some recently published cost estimat-
ing relationships (Software Cost Estima-
tion with COCOMO II, by Barry Boehm
et al., Prentice Hall, 2000). COCOMO II is
an updated and recalibrated version of the
Constructive Cost Model (COCOMO)
originally published in Software Engineer-
ing Economics (by Barry Boehm, Prentice
Hall, 1981). I’ll also show how the CO-
COMO II cost drivers let you perform cost
sensitivity and trade-off analyses, and dis-
cuss how you can use similar methods with
other software cost-estimation models.

COCOMO II Productivity Ranges
Figure 1 shows the relative productivity

ranges (PRs) of the major COCOMO II
cost-driver factors, as compared to those in
the original COCOMO 81 model. A fac-
tor’s productivity range is the ratio of the
project’s productivity for the best possible
factor rating to its worst possible factor rat-
ing, assuming that the ratings for all other
factors remain constant. Here, we define rel-
ative “productivity” in either source lines of
code (SLOCs) or function points per person-
month. The term “part” in Figure 1 reflects
the fact that the COCOMO 81 development
mode involved a combination of develop-
ment flexibility and precedentedness.

For example, suppose your business soft-
ware group has been developing similar ap-
plications for 10 years on mainframe com-
puters and their next application is to run
on a micro-based client-server platform. In
this case, the only cost-driver factor likely to
cause significant cost differences is the
group’s platform experience (assuming that
such factors as platform volatility and use of
software tools do not change much). Figure
1 shows that the productivity range for the
platform experience factor is 1.40. Thus,
changing from the best level of platform ex-
perience (over 6 years) to the worst level
(less than 2 months) will increase the
amount of effort required for the project by
a factor of 1.40, or by 40%.

If we compare the productivity ranges for
platform experience between COCOMO II
and COCOMO 81, we see that they are
fairly close (1.40 versus 1.34). That’s true for
most of the cost-driver factors. In particular,

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 15

MANAGERMANAGER

personnel and team capability
remains the single strongest
influence on a software pro-
ject’s productivity. Its produc-
tivity range in COCOMO II is
somewhat smaller than in
COCOMO 81 (3.53 versus
4.18), but that might be be-
cause COCOMO II has added
two more people-related fac-
tors (team cohesion and per-
sonnel continuity), which
might account for some of the
variance previously associated
with personnel capability.

COCOMO II has some ad-
ditional new cost drivers be-
sides team cohesion and per-
sonnel continuity:

� software developed for reuse;
� architecture and risk reso-

lution;
� software process maturity

(somewhat replacing use
of modern programming
practices);

� documentation match to
life cycle needs; and

� multisite development (somewhat
replacing turnaround time).

Each of these new factors has a sta-
tistically significant greater-than-1.0
productivity range in the multiple re-
gression analysis of the 161 projects
in the COCOMO II database. The
one exception was the “developed
for reuse” factor, which had insuffi-
cient dispersion in its rating levels to
produce a statistically significant re-
sult. We determined its productivity
range of 1.31 (and the productivity
ranges of the other COCOMO II fac-
tors) using a Bayesian weighted aver-
age of data-determined multiple re-
gression results and expert-deter-
mined Delphi results. When the
data-determined values are weakly
determined, the weighted average
will give a higher weight to the ex-
pert-determined values. (See Chapter
4 of the COCOMO II book for a de-
tailed discussion.)

Some factors in Figure 1 have an
asterisk, indicating that their produc-
tivity ranges vary by size, because

they enter the COCOMO II estima-
tion formula as exponential func-
tions of size rather than as effort
multipliers. The productivity ranges
shown in Figure 1 for these size-sen-
sitive variables are for a product
whose size is 100,000 source lines of
code (100 KSLOC). Table 1 shows
how the productivity ranges for these
factors vary by size.

Thus, for example, the effect of
varying a project’s process maturity
from a low Level 1 to a Level 5 on the
SEI Capability Maturity Model scale
will typically improve productivity by
only 20% on a 10-KSLOC project,

but it will improve produc-
tivity by 71% on a 1,000-
KSLOC project, mostly by re-
ducing rework. These ranges
probably under-estimate the
effect of high maturity levels,
as they normalize out the ef-
fects of other productivity fac-
tors such as the use of software
tools and reusable software
components. Details are avail-
able in Bradford Clark’s USC
PhD dissertation, “The Effects
of Software Process Maturity
on Software Development Ef-
fort,” USC-CSE-TR-97-510,
available via the USC-CSE
COCOMO II Web site (see
the “Leading Software Cost-
Estimation Tools” box), under
“Related Research.”

Safe and Simple Software Cost Analysis
To return to our platform experi-

ence example, you might find that
you can do better than a cost increase
of 40% if you can find a few people
with some microprocessor-based
client-server platform experience for
your project. For each cost-driver
factor, COCOMO II provides rating
scales and tables showing how pro-
ductivity will vary for each rating
level. Table 2 shows the resulting ef-
fort multipliers by rating scale for
each of the personnel-experience cost
factors in COCOMO II.

These tables will let you perform

Table 1

Size-Dependent Productivity Ranges
Size (KSLOC)

Factor 10 100 1,000
Development flexibility 1.12 1.26 1.42
Team cohesion 1.13 1.29 1.46
Precedentedness 1.15 1.33 1.53
Architecture and risk resolution 1.18 1.39 1.63
Process maturity 1.20 1.43 1.71

*Development flexibility
*Development mode (part)

*Team cohesion
Developed for reuse

*Precedentedness
Development mode (part)

*Architecture & risk resolution
Platform experience

Data base size

Required development schedule

Language & tools experience
Language experience

*Process maturity
Modern programming practices

Storage constraint

Platform volatility

Use of software tools

Applications experience

Personnel continuity
Documentation match to life cycle needs

Multisite development
Turnaround time

Required software reliability

Time constraint

Product complexity

Personnel/team capability

1.26
1.32
1.29
1.31
1.33
1.32
 1.39
 1.40
1.34
 1.42
1.23
 1.43
1.23
 1.43
1.20
 1.43
 1.51
 1.46
 1.56
 1.49
 1.49
 1.50
 1.49
 1.51
 1.57
 1.51
 1.52
 1.53
1.32
 1.54
 1.87
 1.63
 1.66
 2.38
 2.36
 3.53
 4.18

2.000 4.00

Software productivity range

COCOMO II
COCOMO 81

Figure 1. Comparing CO-
COMO 81 and COCOMO II.
(*Varies by size; see
Table 1. Values for 100
KSLOC products.)

16 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

MANAGERMANAGER

the following safe and simple three-
step cost-estimation method, illus-
trated by the personnel-experience
cost factors I’ve described.

1) Estimate the new project’s pro-
ductivity and effort based on
previous experience. The new
project is sized at 20,000 SLOC.
Productivity for previous main-
frame applications was 500
LOC/person month (PM), yield-
ing an effort estimate of 40 PM.
Multiply by your labor rate/PM
to estimate the cost.

2) Determine which COCOMO II
cost-driver factors will change
for the new project and by how
much. With the current staff,
platform experience will go from
less than 6 years to more than 2
months. By going to an Option
A, with a couple of fairly experi-
enced client-server developers
added to the team, the average

length of platform experience on
the new project would be 6
months.

3) Use the COCOMO II effort mul-
tipliers to revise the original esti-
mate. Going from less than 6 years
of platform experience to more
than 2 months changes the effort
multiplier from 0.85 to 1.19—an
increase of a factor of 1.19/0.85 =
1.40. This leads to a revised effort
estimate of 40 PM (1.40) = 56
PM. Going to a platform experi-
ence of 6 months (Option A)
changes the effort multiplier
from 0.85 to 1.09, an increase
of a factor of 1.09/0.85 =
1.28. The revised effort esti-
mate is then (40 PM) (1.28) =
51 PM.

For easy reference, the COCOMO
II book has the full set of these cost-
driver effort multiplier tables on its
inside cover.

Simple Sensitivity and Trade-off Analysis
You can extend this approach to

cover sensitivity and trade-off analy-
sis among several cost-driver factors.
For example, suppose you also had
an Option B to add a couple of ex-
tremely experienced client-server de-
velopers, increasing your average
platform experience to 1 year. How-
ever, they have very little business ap-
plications experience, decreasing
your average applications experience
from > 6 years to 3 years. In this
case, Table 3 shows the comparison
to the previous Option A.

This tables shows that Option A
and B are roughly equivalent in effort
and cost (unless there are major dif-
ferences in salary levels), in which
case the project can use other criteria
to choose between A and B (such as
the opportunity for client-server
expert-mentoring and risk reduction
with Option B).

As a further example, the compari-
son between Options A and B would
be different if the new project involved
a change in programming languages
and tools (such as from Cobol to
Java), causing the average experience
for this factor also to be 6 months for
Option A and 1 year for Option B.
Table 4 shows the new comparison.

In this case, the added 9% benefit in
Option B makes it look more attractive
from a cost and effort standpoint.

T hus, we can see that the CO-
COMO II rating scales and effort
multipliers provide a rich quanti-

tative framework for exploring soft-
ware project and organizational
tradeoff and sensitivity analysis. The
framework lets the project manager
explore alternative staffing options
involving various mixes of applica-
tion, platform, and language and
tool experience. Or, an organization-
level manager could explore various
options for transitioning a portfolio
of applications from their current ap-
plication/platform/language configu-
ration to a desired new configuration
(for example, by using pilot projects
to build up experience levels).

Table 2

COCOMO II Effort Multipliers Versus Length of Experience
Average length of experience

Type of experience < 2 mo 6 mo 1 year 3 years > 6 years PR
With platform 1.19 1.09 1.00 0.91 0.85 1.40
With languages and tools 1.20 1.09 1.00 0.91 0.84 1.43
With application area 1.22 1.10 1.00 0.88 0.81 1.51

Table 3

The Effect of Adding Experienced Client-Server Developers
Effort multipliers

platform x application = product
Options Platform Application Product Person-months

A 1.09 0.81 0.88 51
B 1.00 0.88 0.88 51

Table 4

The Effect of Changing Programming Languages and Tools
Effort multipliers

Platform x application x language and tools = product
Options Platform Application Lang. & tools Product Person-months

A 1.09 0.81 1.09 0.96 56
B 1.00 0.88 1.00 0.88 51

MANAGER

You can perform these analyses ei-
ther by running the COCOMO II
model or by doing calculator- or
spreadsheet-based analysis using the
published multiplier values in Table 2
or in the COCOMO II book. You
can perform similar tradeoff analyses
by running commercial COCOMO II
tools or alternate proprietary cost
models (see the box for Web sites of
major software cost models).

It is generally a good practice to
compare analysis results between
two or perhaps more software cost
models, as each reflects a somewhat
different experience base. Some par-
ticular advantages of having one of
these models be COCOMO II are
that all of its detailed definitions and
internals are available for examina-
tion; the Bayesian methods by which
it combines expert judgment and
data analysis are well defined and
the evidence of statistical signifi-
cance of each cost driver factor is
provided. From an expectations-
management standpoint, however,
there is no guarantee that CO-
COMO II can fit every organiza-
tion’s style of development, data def-
initions, and set of operating as-
sumptions. For example, it is only
calibrated to organizations and pro-
jects that collect carefully defined
data that maps to COCOMO II’s de-
finitions and assumptions. If your
organization operates in a different
mode, the COCOMO II-based
analyses will likely provide useful
relative guidance, but less precise
cost estimates and payoff factors.
And if your organization does collect
carefully defined data, the analyses
based on COCOMO II or other
models will be stronger if you use the
data to calibrate the models to your
experience.

Barry Boehm is the TRW Professor of Software Engineer-
ing in the Computer Science Department at the University of
Southern California and the director of the USC Center for Soft-
ware Engineering. His research interests include software process
modeling, requirements engineering, architectures, metrics and
cost models, and engineering environments, and knowledge-
based software engineering. He has a BA from Harvard and an
MS and PhD from UCLA, all in mathematics. He is an AIAA Fel-
low, ACM Fellow, and IEEE Fellow, and a member of the National
Academy of Engineering. Contact him at boehm@sunset.usc.edu.

Leading Software Cost-Estimation Tools

These URLs provide descriptions of leading software cost-estimation tools.
Each tool cited has been backed by a lot of effort to relate the tool to a
wide variety of software project experiences. My apologies if the list fails to
include your favorite tool.

� Estimacs (Computer Associates Int’l): www.cai.com/products/
estimacs.htm

� Knowledge PLAN (Software Productivity Research/Artemis):
www. spr.com

� PRICE S (Price Systems): www.pricesystems.com
� SEER (Galorath, Inc.): www.galorath.com
� SLIM (Quantitative Software Management): www.qsm.com

COCOMO II-based tools:
� COSTAR (Softstar Systems): www.softstarsystems.com
� CostXpert (Marotz, Inc.): www.costxpert.com
� Estimate Professional (Software Productivity Center): spc.ca/products/

estimate
� USC COCOMO II.2000 (USC Center for Software Engineering):

http://sunset.usc.edu/research/COCOMOII

