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One of the most challenging aspects of the surface—surface in-
tersection problem is the proper disposition of degenerate configu-
rations. Even in the domain of quadric surfaces, this problem has
proven to be quite difficult. The topology of the intersection as
well as the basic geometric representation of the curve itself is
often at stake. By Bezout’s Theorem, two quadric surfaces always
intersect in a degree four curve in complex projective space. This
degree four curve is degenerate if it splits into two (possibly degen-
erate) conic sections. In theory the presence of such degeneracies
can be detected using classical algebraic geometry. Unfortunately
in practice it has proven to be extremely difficult to make com-
puter implementations of such methods reliable numerically.
Here, we present geometric algorithms that detect the presence of
these degeneracies and compute the resulting planar intersections.
The theoretical basis of these algorithms—in particular, proofs of
correctness and completeness—are extremely long and tedious.
We briefly outline the approach, but present only the results of the
analysis as embodied in the geometric algorithms. Interested read-
ers are referred to R. N. Goldman and J. R. Miller (Detecting and
calculating conic sections in the intersection of two natural quad-
ric surfaces, part I: Theoretical analysis; and Detecting and calcu-
lating conic sections in the intersection of two natural quadric
surfaces, part II: Geometric constructions for detection and calcu-
lation, Technical Reports TR-93-1 and TR-93-2, Department of
Computer Science, University of Kansas, January 1993) for
details. © 1995 Academic Press, Inc.

1.0. INTRODUCTION

The surface—surface intersection problem in geometric
modeling continues to be a challenging one for system
developers. Especially problematic are those situations
where the curve of intersection between two surfaces is
in some fashion degenerate. This may occur when the
two surfaces are tangent—either along a curve or at a
finite number of points—or, as we will see, in a variety of

other situations, not all of which are entirely intuitive.
Such problems are challenging even when the domain of
surfaces is restricted to the quadrics; witness the consid-
erable attention this subject continues to draw [2, 11, 17,
20, 21], even though most of the basic results have been
known in computer-based implementations for quite
some time [3, 10, 19].

The importance of detecting the presence of conic sec-
tions in quadric surface intersections is well established
[2, 11, 15, 19, 20, 21]. Often cited advantages include
more efficient and precise data base representations,
more reliable tests for common curves in the boundary
evaluation algorithm of solid modeling, and more accu-
rate analytical computations of geometric properties such
as intersections, arc length, and tangent direction. An-
other benefit has recently been discovered in the con-
struction of blending surfaces. In general, an algebraic
blend surface between two arbitrary quadric surfaces will
have degree four. Warren [22, 23] has shown that quadric
surfaces that intersect in planar curves can be blended
with surfaces of degree three or less. In addition, two
cones can be blended by a Dupin cyclide if and only if
they have a planar intersection [18].

The majority of the published results dealing with
quadric surface intersections are based either on the
methods of classical algebraic geometry 2, 10, 19] or on
case-by-case geometric analysis [11, 17]. Algebraic meth-
ods are valuable for ensuring completeness and general-
ity. That is, one can prove rigorously that all possible
geometric configurations have been properly taken into
account. It has, unfortunately, proven to be quite difficult
to make algorithms based solely on algebraic geometry
sufficiently reliable numerically for production use in
solid modeling systems. Geometric methods, on the
other hand, have proven to be faster and more reliable
numerically, but they are based on a case-by-case analy-
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sis in which it is much more difficult, if not impossible, to
prove that all the cases are enumerated and handled
properly.

Our approach is to tap the best of both worlds by limit-
ing the scope of surfaces covered to those most com-
monly used (namely the natural quadrics [7]), applying
algebraic geometry to characterize with certainty all situ-
ations under which a pair of natural quadrics have planar
intersections, and finally reinterpreting the algebraic con-
ditions in geometrically invariant terms so that robust
geometric algorithms can be implemented to detect and
calculate the resulting planar intersections. The complete
analysis is extremely long and tedious. Here we only
sketch the approach, summarize the results in tables, and
illustrate some of the more interesting cases by describ-
ing the algorithms derived from the analysis. Interested
readers can study the complete details in [6] and [14].

Many of the results summarized here are not new. For
example, it is well known that axial quadrics have a
planar intersection if they have a common inscribed
sphere. Moreover, there are certainly alternative strate-
gies one could employ to derive some of these results.
For example, simple geometric proofs can be used to
establish some of the cases for which our derivations are
more complex. What is unique and important about our
approach is that we have a single method that is guaran-
teed to identify all possible situations where degenerate
intersections arise. By comparison, the common in-
scribed sphere condition is a sufficient but not a neces-
sary condition. Similarly, other geometric arguments can
establish additional sets of sufficient conditions in which
planar intersections appear. With the possible exception
of Shene and Johnstone [20, 21}, none of these other
schemes guarantee the identification of conditions that
are both sufficient and necessary. Therefore the point is
not that our methods reproduce some well-known
results, but rather than they are guaranteed to reveal all
possible configurations where degenerate intersections
appear. This analysis is of value to system developers
since they can use this list of conditions and be confident
that degeneracies will arise in these and only these situa-
tions.

It is also important to note that the complicated portion
of our analysis [6] is not implemented in code. It is purely
a ‘‘paper analysis’’ that generates a short but exhaustive
list of all possible relative geometric configurations where
a pair of natural quadrics have a planar intersection.

We proceed in the following fashion. In Section 2 we
survey previous work in the field and we provide most of
the theory necessary for understanding our own ap-
proach. In Section 3 we give a brief overview of the
theoretical approach used in [6] to characterize all degen-
erate intersections, and then we review the basic geomet-
ric descriptions of conic curves and natural quadric sur-

faces. We also introduce the notation and fundamental
geometric tools that we will use throughout the paper. In
Section 4 we begin the calculation of degenerate intersec-
tions by discussing how to find isolated tangent points.
Section 5 is the bulk of this paper. Here we present the
list of configurations yielding planar intersection curves
and discuss some of the more interesting cases. In Sec-
tion 6 we describe the conditions under which the inter-
section consists of a line and a space cubic. Finally, in
Section 7 we summarize our results and make some con-
cluding observations.

2.0. BACKGROUND THEORY AND DISCUSSION

A general quadric in arbitrary position is represented
algebraically as

Ax? + By* + Cz* + 2Dxy + 2Eyz + 2Fxz
+2Gx + 2Hy + 27z + K =0.

0y

This equation can be written in matrix form:

pQpT =0,
where

A D F G

D B EF H
Q:

F E C J

G H J K
p=~y2z 1)

The 4 X 4 symmetric matrix Q completely characterizes
a given quadric; therefore we will refer to particular
quadrics in terms of their corresponding matrices. For
simplicity of expression, however, we will say ‘‘given a

quadric Q . . ." rather than the precise but more awk-
ward ‘‘given a quadric whose 4 X 4 symmetric matrix is
Q. . . .” Note that the equation of a quadric surface,

and therefore the matrix Q, is unique only up to constant
multiples.

The natural quadrics are the sphere, the right circular
cylinder, and the right circular cone. The general quadric
surface is either a cylinder or cone lying over a conic
section, or it is an ellipsoid, paraboloid, or hyperboloid.
However a quadric may be degenerate and/or consist of
one or two lower degree or lower dimensional shapes in
real affine space. The possibilities are:

* a single plane: if G, H, J, and K are the only nonzero
terms in (1),
> a pair of identical, parallel, or intersecting planes: if
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(1) can be factored into two terms, each of which is linear
inx,y, and z,

* a single line: if, for example, the only nonzero ele-
ments of Qare A = B =1,

*» a single point: if, for example, the only nonzero ele-
mentsof Qare A =B =C = 1.

In this paper, when we speak of ‘‘planar surfaces’ we
mean any of these possibilities except the single point [6].

Given two quadrics Q; and Q,, we can describe para-
metrically a family of quadrics (called the pencil of Q,
and Q») as

QN = Q; — AQ-.

In order to establish the conditions under which the inter-
section of a pair of quadric surfaces is degenerate, we
need the following two theorems. Similar statements of
and proofs for these theorems are given in [6, 19]. We
include the statements here for completeness.

THEOREM 1. The intersection of two quadric surfaces
is a planar curve (or a pair of planar curves) if and only if
there is a planar surface in the pencil of the two quadric
surfaces.

THEOREM 2. A quadric surface represents a planar
surface if and only if the rank of the 4 X 4 symmetric
matrix that represents the surface is less than or equal
to 2.

Degenerate intersections of quadric surfaces are gener-
ally represented by conic sections, but tangencies at one
or two points can also occur. The proof of Theorem 1 can
easily be extended to the case where the conic section is
just two points and the planar surface is a straight line.
This observation will be used in Section 4. The proof
fails, however, when the quadrics are tangent at a single
point, because in this case it is not generally possible to
conclude that there is a single point surface in the pencil.

The upshot is that the analysis presented in [6] pro-
duces a characterization of all two-point tangencies, but
does not provide a characterization for all one-point tan-
gencies. This limitation on the theoretical analysis driven
by Theorem 1 has not resulted in any limitations in the
implementation, however. As will be described in Sec-
tion 4, we use a different approach for detecting isolated
tangent points that not only detects all the two-point tan-
gencies predicted in [6], but also detects all the configura-
tions involving single point tangencies.

Whether it is ultimately of value to detect all the situa-
tions where two quadrics intersect in one or two isolated
tangent points depends on the application. In solid mod-
eling, such tangent points may indicate the presence of
nonmanifold topologies on the boundary of the solid and
may therefore be of some interest.

2.1. Previous Work

The first reported technique for detecting conic sec-
tions in a computer-based implementation of quadric sur-
face intersections was described by Levin [10]. This
method was later extended by Sarraga [19]. As we do in
the analysis described here, Sarraga searches the pencil
looking for a planar surface. There are, however, funda-
mental differences in the two approaches. Most notably,
Sarraga applies purely computer-based numerical meth-
ods to each pair of quadrics in the data base using sensi-
tive numerical tests to detect planar intersections. On the
other hand, our method is based on a symbolic analysis of
the six possible combinations of natural quadric surfaces,
done once and for all and by hand. The results of this
symbolic analysis are a simple set of robust geometric
tests which are implemented on a computer to detect
planar intersections between a given pair of natural quad-
rics [14].

Piegl [17] presents an approach based on a geometric
construction for computing quadric surface intersection
curves. Given a pair of natural quadrics, each repre-
sented as a trimmed tensor product rational B-spline sur-
face, he first numerically extracts from the B-spline de-
scription the geometric data describing the quadric (e.g.,
the center and radius if it is a sphere) and then analyzes
this data geometrically to determine the type of intersec-
tion. No claim is made that all planar intersections in-
volving natural quadrics are detected.

Farouki ez al. [2] address the problem of automatically
determining all degenerate intersections involving quad-
ric surfaces of all types. The presence of degenerate in-
tersection branches (lines, conics, cubics, or nodal or
cuspidal quartics) is signaled by the vanishing of various
polynomial expressions involving the quadric coeffi-
cients. When such a configuration is detected, a multi-
variate polynomial factorization algorithm is invoked to
isolate the various reducible components of the intersec-
tion.

Ocken et al. [15] use algebraic representations to para-
meterize intersections between general pairs of quadric
surfaces. Their analysis is numerical and must be per-
formed at execution time for each pair of surfaces in the
model. Furthermore, while some mention is made of con-
figurations in which the intersection is planar, there is no
comprehensive treatment of these situations.

O’Connor [16] determines parameterizations for the
curve of intersection between an arbitrary pair of natural
quadric surfaces using various geometric constructions
and projections. As with Ocken et al. [15], there is no
systematic attempt to detect degeneracies in order to rep-
resent the result explicitly as one or two (possibly degen-
erate) conic sections.

Finally, Shene and Johnstone [20, 21] describe a geo-
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metric approach for detecting planar intersections be-
tween pairs of natural quadric surfaces, and they justify
their work with purely geometric reasoning. They begin
by demonstrating that the intersection of two axial natu-
ral quadrics can have a conic component only if their
axes are coplanar. In such situations, they develop nec-
essary and sufficient geometric conditions for the inter-
section to contain a planar component. Their method is
markedly different from ours. Theirs is a procedural ap-
proach for the detection of conic components, while ours
is driven from an exhaustive (but surprisingly short) list
of specific relative geometric configurations. The primary
advantage of their procedural method is that it leads to a
common geometric algorithm for axial quadrics. On the
other hand, testing our conditions seems to be more com-
putationally efficient, and our approach is not tailored to
axial quadrics.

3.0. OVERVIEW OF THE METHOD, GEOMETRIC
NOTATION, AND PRIMITIVE UTILITIES

We treat only the natural quadrics (i.e., sphere, right
circular cylinder, and right circular cone) in our work.
For simplicity of expression, we shall use the term “‘cyl-
inder”” for ‘‘right circular cylinder’” and ‘‘cone’’ for
“‘right circular cone’’. A complete but extremely tedious
analysis leading to a characterization of all possible con-
figurations in which a pair of natural quadrics has a planar
intersection is presented in [6]. The cylinder—cone case is
analyzed in [5]. In this section we merely sketch the ap-
proach employed there to give the reader some assurance
that our results are correct. While the analysis is cer-
tainly applicable to the other quadrics as well, the details
get increasingly complex. Fully half of [6] is devoted to
analyzing the intersection between two cones. It is signifi-
cant to note that characterizing the degenerate intersec-
tions is relatively easy. The majority of the analysis is
devoted to showing that there are no other cases; i.e.,
that these conditions are necessary as well as sufficient.

For each of the six possible combinations of pairs of
natural quadric surface types, we establish all possible
sets of necessary and sufficient conditions so that their
pencil contains a planar surface. The approach to this
analysis is derived from Theorem 2. That is, we charac-
terize all those conditions that force all 3 X 3 subdetermi-
nants of the pencil matrix to be zero. These conditions
can then be interpreted as sets of constraints on the rela-
tive position and orientation of the two types of surfaces
which, if satisfied, indicate the presence of a planar inter-
section. Then, because of Theorem 1, we will know that
conic sections will arise only when one of these con-
straints is satisfied.

Geometric representations of conics and quadrics are
generally characterized by a local coordinate system with

TABLE 1
Geometric Descriptions of Lines and Conics
Curve Description of geometric parameters Notation

Line (Base point, direction vector) (B, w)
Circle (Center, normal to the plane containing (C, w, r)

the circle, radius)
Ellipse (Center, major axis, minor axis, major (C,w, v, r,, r,)

radius, minor radius)
Parabola (Vertex, directrix vector, focus vector, (V, w, v, f)

focal length)
Hyperbola (Center, major axis, minor axis, major
radius, minor radius)

(C,u,v,r,, 1)

associated scalar parameters. The local coordinate sys-
tem is defined by (i) three mutually perpendicular unit
vectors (u, v, w) which describe the orientation of the
conic or quadric and (ii} a base point O which fixes the
position of the curve or surface in space. The scalar pa-
rameters determine the size of the conic or quadric. Ob-
viously there is redundant information in the complete
coordinate system, and only portions of it need be speci-
fied to determine uniquely the position and orientation of
a particular conic or quadric. A set of geometric parame-
ters which uniquely define lines and conics are summa-
rized in Table 1 and illustrated in Fig. 1. Similarly, a set
defining planes and natural quadrics are listed in Table 2
and illustrated in Fig. 2. Throughout this paper, we shall
assume that the vectors associated with the geometric
representations are unit vectors.

Using vector techniques it is easy to derive both para-
metric and implicit representations of these second-de-
gree curves and surfaces from their geometric represen-
tations [13]. Certain primitive functions creating and
manipulating scalars, points, vectors, curves, and sur-
faces are assumed in the sequel. Some of the main ones
are briefly summarized below.

r,
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FIG. 1.

Geometric definitions of conic sections.
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TABLE 2
Geometric Descriptions of Planes and Natural Quadric Surfaces
Surface Description of geometric parameters Notation
Plane (Base point, normal vector) (B, w)
Sphere (Center, radius) C,n
Cylinder (Base point, axis vector, radius) B, w, r)
Cone (Vertex, axis vector, half-angle) V,w, a)

The function line (Q, v) returns a line whose base point
and unit direction vector are as specified. Similarly, the
function plane (Q, n) returns a plane whose base point
and unit normal vector are given by the parameters. The
function normalize (v) returns a unit vector whose direc-
tion is the same as that of v.

The function ‘‘distance’’ returns the distance between
its two parameters which may be any combination of
points, lines, and planes. The function signed_distance_
along_line (Q, L) assumes that the point Q is on the line L
and calculates the signed distance from the base point of
Lto Qas

(Q-L.B)-L.w,

Based on these functions, we assume that we can test
reliably (i.e., to within some reasonable tolerance)
whether a point is on a plane or line, or whether two
points are identical.

When intersecting cylinders and cones, we will some-
times need to intersect their axis lines. General algo-
rithms for intersecting two 3D lines can be found in a
variety of sources (e.g., [4, 12]). It is also necessary to
test whether the axis lines are skew. The method de-
scribed in [4] actually generates the parameter values on

—_

AW AW
S —— e
!
I
|
|
!
LAY
|
——

FIG. 2. Geometric definitions of the natural quadric surfaces.

each of the two lines for the points of closest approach. If
these two points are identical, then they describe the
point at which the lines intersect; if they are different, the
lines are skew.

Given a triangle with sides of length d1, d2, and 43, we
often use the Law of Cosines to compute the cosine of
the angle between the sides of length d1 and d2 (see Fig.
3). It is common to then compute the projection & of d1
on d2 by h = d1*cos B (Fig. 3). For optimal numerical
reliability, we advocate instead the use of the following
auxiliary procedure.

procedure LawOfCosines (input d1, d2, d3: real;
output cosf3, h: real);

begin
h := (d1*d1 + d2*d2 — d3*d3) / (2*d2);
cosf := h/dl

end;

Finally we will need tests to determine if a point lies on
a cylinder or a cone. To perform these tests, we can use
the geometric form of the implicit surface equations. A
point Q lies on a cylinder C if and only if [11]

(Q-C.B)-(Q—C.B)—((Q—C.B)-C-w)—C.rr=0.
Similarly, a point Q lies on a cone C if and only if [11]
(Q-C.V)-C.w?~cos’a(Q—-C.V)-(Q—-C.V)=0.

4.0. ISOLATED TANGENT POINTS

We show in [6] that two point tangencies can arise
between pairs of natural quadrics only under the situa-
tions enumerated in Table 3. In our implementation, we
do not test explicitly for these conditions, and, if they are
satisfied, invoke individual geometric constructions to
compute the pairs of tangent points. Instead we have a
single common algorithm, briefly outlined below, that
finds all isolated tangent points, whether they are single,
double, or occur in conjunction with other nonplanar in-
tersection curves. This procedure is incorporated into the
general algorithm for computing nonplanar intersections

dl ! a3

-
fe———]
T

FIGURE 3
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TABLE 3
Summary of Conditions Giving Rise to Two Point Tangencies
Between Pairs of Natural Quadric Surfaces

Surface pair Geometric conditions

Center of sphere in plane (V, w) at distance d =
r/cos a from vertex V.

Sphere/cone

Skew axes; distance between axes, d =
r sin 8/V'sin? 8 — sin? «, where 6 is the acute angle
between the axis vectors.

Cylinder/cone

Perpendicular axes; V, in plane (V,, w)); distance,
u, from V,; to axis line(V;, w;) and distance, v,
from V, to plane (V,, w;) are related as v =

V1 — tan? a, tan? a; cos a; cot a, w.

Cone/cone

Same as previous with roles of the cones reversed.

Skew axes and two additional complicated con-
straints. (See [6].)

between two natural quadrics and is described fully
in [11].

Consider two quadrics Q; and Q; and suppose that Q,
is a ruled quadric to be used as a parameterization sur-
face for a nonplanar intersection curve as described in
{11]. The (s, t) parameters on Q, have the following geo-
metric interpretation. The parameter ¢ selects a ruling
(—m=1t=+ 7)), and s is a signed distance along the
ruling. Nonplanar intersections between two such quad-
rics can be described using an implicit equation in the
parameter space of Q; as [10, 11, 19]

a(f)s? + b(t)s + c(®) = 0. (2)
The functions a, b, and ¢ are rational quadratic polynomi-
als that depend upon the types of quadrics involved. Or-
dered sets of points can be generated along the intersec-
tion curve by selecting successive rulings on Q, (i.e., by
selecting successive values of ¢ in the range —7 to +w)
and then solving the resulting quadratic equation (2) in s.
In general, only the subsets of the entire —# to += range
where the discriminant of (2) is nonnegative correspond
to real portions of the intersection curve. The ranges of
parameter space that satisfy this inequality are delimited
by the zeros of the discriminant, i.e., by those values of ¢
satisfying

b(2)* ~ da()c(r) = 0. 3

Equation (3) can be expressed equivalently as a rational
quartic polynomial equation [10, 11]; thus there are up to
four real roots corresponding to the ¢ values of rulings on
Q; that are tangent to Q,. All other values of ¢ correspond
to rulings on Q that either have no real intersection with
Q; (if the left-hand side of (3) is negative) or intersect Q.

in two distinct real points (if the left-hand side of (3) is
positive). Points of tangency between Q; and Q, deter-
mine unique rulings on Q, that are tangent to Q;, and
each ruling on Q, that is tangent to Q, corresponds to a
real root of (3). Thus if Q, and Q, are tangent at one or
two points, those points can be computed by solving (2)
using the appropriate roots of (3). The appropriate roots
of (3) are those where the ¢ values in intervals on either
side yield a negative discriminant. In [11] we describe
robust geometric methods to find all such roots without
explicitly solving any equation of degree greater than
two. We will therefore not consider isolated tangent
points further in this paper.

5.0. PAIRWISE ANALYSIS OF
SURFACE INTERSECTIONS

Table 4 summarizes the configurations of natural quad-
rics that yield planar intersection curves as derived in [6].
The remainder of this section is devoted to a discussion
of how the planar curves in the intersection can be com-
puted for some of the more complex cases. Complete
details for all cases are given in [14]). The case-specific
pseudocode presented in that report is generally short
and was carefully developed in order to maximize speed
and numerical reliability.

Our algorithms work with the natural quadrics in gen-
eral position and orientation, and they do not employ
coordinate system transformations of any sort. The algo-
rithms for the sphere-sphere, sphere-cylinder, sphere—
cone, and cylinder—cylinder cases operate by directly de-
termining the type of the planar curve(s) and computing
the defining parameters shown in Table 1. Since these
algorithms are straightforward, we will not present the
details here. For a complete analysis, see [6, 14].

As we will see below, some degenerate configurations
involving cylinder—cone and cone—cone intersections are
more complex. In those cases we determine the plane or
planes containing the conics, thereby reducing the prob-
lem to a pair of plane—cone or plane—cylinder intersec-
tions. Detailed procedures for intersecting planes and
natural quadrics based on geometric constructions are
described in [9, 13].

We will not present here the derivations of the expres-
sions for the planes containing the intersection as they—
like those leading to the characterizations summarized in
Table 4-—are generally long and somewhat tedious.
These derivations can be found in [14]. Our general ap-
proach there is to write the quadric equation of the planes
containing the conics as determined by the appropriate
pencil matrix and the corresponding constraints derived
in [6]. We then manipulate the equation into a form that
can be easily factored into two linear terms. These terms
are the plane equations from which the normal vectors
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TABLE 4
Summary of Conditions Giving Rise to Planar Intersection Curves Between Pairs of Natural Quadric Surfaces

Surface pair Geometric conditions

Results

Sphere/sphere All
Sphere/cylinder  Center of sphere on axis of cylinder
Sphere/cone Center of sphere on axis of cone
Cylinder/cylinder Parallel axes
Intersecting axes and equal radii
Cylinder/cone Coincident axes
Axes intersect in a point at distance d = r/sin a from the vertex of
the cone
Cone/cone Parallel axes, same half angle

Coincident axes

Axes intersect at point [ such that d, sin |, = d, sin «a; where d, is
the distance from vertex i to /. (This includes the case where the

vertices coincide; i.e., d; = d, = 0.)

Empty, one tangent point, or one circle
Empty, one tangent circle, or two circles

Empty, one tangent circle, one circle + vertex,
or two circles

Empty, one tangent line, or two lines
Two ellipses

Two circles

Two ellipses (same or opposite halves of the cone),
or one ellipse and one tangent line

Ellipse, shared tangential ruling, or hyperbola
Two circles or single vertex
Various combinations of pairs of conics or a

tangent line plus a conic
(1—-4 lines if the vertices coincide)

can immediately be found. It is then straightforward to
find a point common to the two planes.

5.1.

In [6] we showed that the intersection of a cylinder and
a cone is a planar curve if and only if either (i) the axes
coincide, or (ii) the axes intersect at a distance r/sin «
from the cone vertex.

5.1.1. Coincident Axes. We consider first the case of
identical axes. The intersection is two circles lying on
opposite cone halves at a distance d = r/tan « from the
vertex (see Fig. 4):

Cylinder—Cone Intersections

input: cyl: cylinder; con: cone

d := cyl.r/tan(con.a)
output: circle 1: C := con.V + d*con.w

W = COn.w
r:=cylr
circle 2: C := con.V — d*con.w

W = con.w
r:=cylr

Il

5.1.2. Intersecting Axes. If the axes intersect at a
point I whose distance from the vertex is r/sin «, then the
intersection is either one ellipse plus a tangent line or a
pair of ellipses. The former results if the acute angle be-
tween the axis lines is the same as the cone half-angle.
Our approach is to find the pair of planes containing the
intersection. When the intersection is a tangent line plus
an ellipse, one of the planes is tangent to the cylinder and

the cone along the shared ruling. While in principle,
therefore, we need not distinguish between the line-plus-
ellipse and two-ellipse cases, it is desirable to do so since
detecting tangentially shared rulings is quite delicate nu-
merically. If we were to compute the plane and then rely
on the plane-cylinder algorithm to detect a tangent line
of intersection, there would be a much greater probability
that, due to small numerical errors, the plane might be
judged to intersect the cylinder in two parallel lines, a

— > |-

cyl.r

o= tan {con.a)

- ————>

FIGURE 4
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long skinny ellipse, or not at all. Fortunately a simple test
in terms of the parameters of the given cylinder and cone
suffices. We therefore advocate detecting this special
case and then computing directly the defining parameters
of the tangent line.

It can be shown that the normals to the planes contain-
ing the intersection are {14]

n, = cyl.w + sec a con.w
and
n, = cyl.w — sec « con.w.

To complete the specification of the planes containing the
conic curves, we must find a point on each plane. A long
but relatively straightforward calculation shows that a
point Q common to the two planes can be computed as
[14]

w sin? «

cw sin? a
———cylw + lw — T_

Q=V+ 32 ) con.w,

where

¢ =conw:-cylw=cos8;c2+s*=1,

and w is the signed distance of I along the cone axis line
(o] = r/sin a.) [6].

In the line-plus-ellipse case, 8 = «, and it can be shown
that m, is perpendicular to the cylinder axis vector and
that Q is a point on both the cylinder and the cone [14].
When we determine that 6 = «, we only intersect the
cylinder with plane (Q, m;); we express the tangent line
directly.

We show I—the intersection of the cylinder and cone
axes—as a parameter to this routine. This is reasonable
since I would have been computed previously while test-
ing to see if the intersection is planar.

We summarize our results in the following pseudo-
code:

input: cyl: cylinder; con: cone; I: point

cos_theta := cyl.w.con.w
sin_sqr_theta := 1 — cos_theta*cos_theta
cos_alpha := cos(con.«)
F := 1/ cos_alpha
sin_sqr_alpha := 1 — cos_alpha*cos_alpha
w := signed_distance_along_line(l , line(con.V,con.w))
n; := normalize(cyl.w + F*con.w)
:= w*sin_sqr_alpha/sin_sqr_theta
Q := con.V + cos_theta*t*cyl.w + (w-t)con.w
conic_1 := intersect(cyl , plane(Q,m))
if abs(cos_theta) = cos_alpha then

conic_2 := line(con.V,cyl.w)

else
n; := normalize (cyl.w — F*con.w)
conic_2 := intersect(cyl , plane(Q,ny))

Figure 5 illustrates the three possible results: (a) two
intersecting ellipses on the same half of the cone, (b) an
ellipse plus a tangentially shared ruling, and (c) two el-
lipses on opposite halves of the cone.

5.2. Cone—Cone Intersections

We showed in [6] that the intersection between two
cones is a planar curve if and only if one of the following
three conditions is satisfied: (i) the axes are distinct but
parallel, and the cones have the same half-angle; (ii) the
axes intersect at a point  equidistant from the two cones;
or (iii) the axes are coincident. Condition (ii) is equivalent
to r; sin | = r; sin a3, where r; is the distance from vertex
i to I, and a; is the half-angle of cone i. The treatment of
condition (iii) is fairly straightforward [14]. We now con-
sider the other two cases in turn.

5.2.1. Distinct Parallel Axes, Same Half-Angle.
When condition (i) is satisfied, the pencil contains a sin-
gle plane, and the intersection is therefore a single (possi-
bly degenerate) conic. The intersection is a hyperbola, an
ellipse, or a double line if the vertex of one cone is,
respectively, outside, inside, or on the other cone. (See
Fig. 6). The intersection cannot be a parabola, nor can it
be a circle since the axes are distinct.

We derive an invariant characterization of the plane in
terms of the parameters of the two cones which will yield

FIGURE 5
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the correct plane for any of these relative vertex loca-
tions. As we argued in Section 5.1.2, however, it is pru-
dent to detect the tangent line case since it is especially
delicate numerically. This configuration is easily discov-
ered by testing to see if the vertex of one cone lies on the
surface of the other cone. For the other cases, we use the
following results derived in [14]:

« the normal vector to the plane is parallel ton = (V, —
V) — w sec? a,w,, where w is the signed distance between
V; and plane (V;, w,),

+ the midpoint of the vertices lies on the plane.

We summarize these results in the following algorithm.
Figure 6 illustrates the possible results.

_illp_ut: C1, C2: cone
vl_to_v2 :=C2.V - Cl.V
if C2.V on C1 then
conic := line(C1.V, normalize(vl_to_v2))
else
w = vi_to_v2-Cl.w
Q := midpoint(C1.V , C2.V)
F2 := sec(C2.a)
n ;= normalize(vl_to_v2 — w*F2*F2*Cl.w)
conic := intersect(C1 , plane(Q,n))

5.2.2. Intersecting Axes. Finally we consider the
more complex condition (ii). If the vertices of the two

cones are identical (i.e., r; = r, = 0), the cones intersect
in one to four lines, or they intersect only at their com-
mon vertex. If the vertices are distinct (i.e., condition (ii)
is satisfied with r; # 0), the intersection may consist of
various pairs of (possibly degenerate) conics depending
on the angle between the axes and on the cone half-
angles.

As before, our approach is to compute the pair of
planes containing the conics and then to perform two
plane—-cone intersections. It can be shown that the nor-
mals to the two planes are parallel to [14]

n SE€C aWy + SEeC a W)

Ny = S€C aywy — S€C W),

A long and tedious calculation demonstrates that a point
common to the two planes can be computed as [14]

Q=ClLV—gC2w+ (3'— + cg) Cl.w,
1
where
_ce, e
d; ds
d] = 2 sec a
d2 = S2d1
dy = 252 sec as,

and ey, e;, 5, ¢, U, and w can be defined in terms of trigo-
nometric constants and signed distances as summarized
in the pseudocode below. It can also be shown that this
expression for Q reduces to C1.V if the vertices are coin-
cident. Thus, while in principle this need not be a special
case, we handle it as such in the algorithm in the interests
of performance and numerical reliability.

input: C1, C2: cone

/* Compute trigonometric constants */
c:=Cl.w(C2w

c_sqr := ¢c*C

s_sqr := 1.0 — c_sqr

s := sqrt(s_sqr)

Fl := sec(Cl.a)

F2 := sec(C2.a)

F2_sqr ;1 F2*F2

/* Compute vectors normal to planes containing conics */
nl := normalize(F2*C2.w + F1*Cl.w)

n2 := normalize(F2*C2.w — F1*Cl.w)

/* Compute point common to two planes */
if CL.V = C2.V then
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Q:=ClLV
else
vli_to_v2:= C2.V — Cl1.V
= vi_to_v2-Cl.w

u = (vi_to_v2-C2.w — c*w)/s

el := 2(s*w-c*u)/(s*F1)

e2 := 2(u(l-s_sqr*F2_sqr)-s*c*F2_sqr*w)/(s*F2)
dl := 2*F1

d2 ;= s_sqr * dl

d3:=2*s_sqr* F2

g = c*el/d2 + e2/d3

Q:=CLV — g*C2.w + (el/dl + c*g)Cl.w

/* Compute the two (possibly degenerate) conics by inter-
secting one of the cones with the two planes. */
conic_1 := intersect(C1 , plane{Q,nl))

conic_2 := intersect(C1 , plane(Q,n2))

/* Finally, ensure that no extraneous vertex intersections
are reported. */
if conic_1 is a single point then
return only conic_2
else if conic_2 is a single point then
return only conic_1
else
return both conic_1 and conic_2

Figure 7 illustrates the results of applying this single
algorithm to a variety of cone pairs. Shown are coinci-
dent vertices yielding two real lines of intersection (Fig.

FIGURE 7

7a), a pair of intersecting ellipses (Fig. 7b), an ellipse plus
a tangentially shared ruling (Fig. 7c), and an ellipse plus a
hyperbola (Fig. 7d).

6.0. OTHER POSSIBLE DEGENERATE INTERSECTIONS

By Bezout’s Theorem, two quadric surfaces always
intersect in a degree four curve in complex projective
space. Thus far we have been concerned here exclusively
with situations where this degree four curve splits into
two (possibly degenerate) degree two curves. The other
possible way in which the intersection curve can degen-
erate is into a line and a nondegenerate degree three
space curve. This cannot happen when spheres are in-
volved since there are no straight lines on a sphere.
Clearly too it cannot happen in cylinder—cylinder inter-
sections since the cylinder axis vectors must be parallel
in order for the intersection to contain a straight line. But
when their axes are parallel, two cylinders either have no
real intersection, or they intersect in one tangent or two
parallel lines. Therefore we need only concern ourselves
with cylinder-cone and cone-cone intersections. The
following two theorems present necessary and sufficient
conditions for the line plus space cubic case to arise in
cone—cylinder and cone-cone intersections.

Although portions of this material are natural conse-
quences of Bezout’s Theorem, some of these results have
not been well understood by all in the modeling commu-
nity. We therefore include their statements here for com-
pleteness; for rigorous proofs, see [14].

THEOREM 3. The intersection of a cylinder and a
cone degenerates into a line and a space cubic if and only
if all the following conditions hold:

(i) The angle @ between the axis vectors is the same
as the cone half-angle «.
(i) The cone vertex lies on the cylinder.
(iti) The axes are skew.

When the conditions of Theorem 3 are satisfied, the
line of intersection can be written as line (V, w.y). Calcu-
lation of the space cubic is discussed in [11]. The best
way to visualize the geometry giving rise to a line and a
space cubic is to start with the geometry of Fig. 5b. Re-
call in this case that the cylinder and cone axes intersect,
and the intersection curve splits into a tangent line and an
ellipse. If we rotate either the cylinder or the cone about
their common line, the axes become skew, the ruling is
no longer shared tangentially, and the ellipse breaks apart
into a space cubic at the point where it intersects the
shared ruling. One end of the ellipse then tends toward
infinity in one direction, and the other toward infinity in
the opposite direction. See Fig. 8.

THEOREM 4. The intersection of two cones degener-
ates into a line and a space cubic if and only if all the
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Jollowing conditions hold:

(i) FEach vertex lies on the other cone.
(ii) The vertices are distinct.
(i) The axes are skew.

When the conditions of Theorem 4 are satisfied, the
line of intersection can be written as line (V;, normalize
(V, — V). Calculation of the space cubic is discussed in
[11}. One can visualize this geometry in a manner analo-
gous to that described for the cylinder—cone case above.
Start with the geometry of Fig. 7c and twist one of the
cones about the common ruling. The result is illustrated
in Fig. 9.

Given the geometric data for cylinders and cones, it is
easy to implement analytic tests for the geometric condi-
tions in Theorem 3 and 4. A procedure for deciding
whether two lines are skew is described in Section 3.
Formulas for deciding whether a given point lies on a
cylinder or cone are also provided at the end of Section 3.

FIGURE 9

7.0. SUMMARY

Detecting the presence of conic sections in quadric sur-
face intersections is important for a variety of reasons
including more efficient and reliable representation and
analysis [6, 11, 19] and the possibility of blending with
low-degree surfaces [23]. Using algebraic geometry, we
characterized in [6] all configurations where the intersec-
tion of a given pair of natural quadrics is planar. Here we
have discussed methods for calculating these planar in-
tersection curves once we have determined that they ac-
tually arise. These methods are based solely on the geo-
metric data of natural quadrics in general position and
orientation. This combination of algebraic and geometric
approaches is ideal since it exploits the rigor of the alge-
braic method and the numerical reliability of computer
implementations based on geometric representations.

All the algorithms described in this paper have been
implemented by the first author in a solid modeling sys-
tem being developed at the University of Kansas and
have proven to be quite efficient and highly reliable in
practice. The algorithms were originally implemented in
C under UNIX on a Silicon Graphics IRIS 4D/60 work-
station where some performance evaluation was con-
ducted. This machine runs at about 7 MIPS and is capa-
ble of approximately 0.7 MFLOPS. We measured the
required execution times for the two computationally in-
tensive examples: the cylinder—cone case of Fig. Sc and
the cone—cone case of Fig. 7d. Measurements indicate
that the geometry of Fig. S5c can be intersected approxi-
mately 480 times per second, while that of Fig. 7d can be
performed at the rate of about 330 per second.

The algorithms presented in this paper complement
those described elsewhere. How all these procedures fit
together is best understood by examining the following
prototypical high-level intersection algorithm:

intersect_two_quadrics (Q1, Q2)

1. Test the relevant conditions from Table 4. If one is
satisfied, then execute the corresponding algorithm as
presented in Section 5 of this paper (invoking the algo-
rithms described in [13] as appropriate) and return the
result.

2. If one of the quadrics is a cone and the other is
either a cylinder or a cone, test for the line and space
cubic conditions described in, respectively, Theorems 3
and 4 of Section 6. If the relevant conditions are satisfied,
compute and return the line defined in Section 6 and the
space cubic using the algorithms described in [11].

3. Otherwise the intersection is a nondegenerate quar-
tic curve. Compute the general quadric surface intersec-
tion curve (QSIC) as described in [11]. While determining
the parametric limits of the QSIC on the parameterization
surface, detect single and double points of tangency as
discussed briefly in Section 4 and detailed in [11]. Tan-
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gent points may arise in conjunction with disjoint QSIC
branches.
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