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I. Introduction 
If you had a lump of clay and wanted to make a bowl, you would most likely fashion the clay by 
translating your abstract notions of desired size and shape directly into the appropriate tugs and 
pulls. You would probably not be thinking too much about coordinate systems. 
If you wanted to make a table on which to display your bowl, and then some chairs so people 
could sit around the table, you would again be thinking at a fairly high level of abstraction about 
appropriate overall sizes and desired spatial relationships. Even though you would be alternately 
thinking about how a leg fits on a chair and how each completed chair should be positioned 
around the table, these thoughts would not be cast in terms of “chair coordinate systems”, “table 
coordinate systems”, and how one relates to the other. 
On the other hand, when we want to use computers to help us design and visualize the objects in 
our world, we need a formal way to communicate our notions of size and shape to the computer. 
Obviously this is where coordinate systems come in to play, and we all know how they work. 
In fact, coordinate systems work so well in this context that most graphics systems use all sorts 
of them. Component objects like legs are modeled in so-called local coordinate systems. These 
coordinate systems are then instantiated multiple times inside of a chair local coordinate system; 
each chair system is placed in the local coordinate system of the table. This process of 
instantiating an object defined in one local coordinate system inside of another local coordinate 
system continues until we have defined the entire scene. This “special” final local coordinate 
system is commonly called the world coordinate system. 
After having constructed the geometry in this fashion, we establish another coordinate system 
(often called an eye coordinate system) to describe how we want to look at our table and chairs. 
And we typically use yet other coordinate systems as well: projection coordinate systems, device 
coordinate systems, and so forth. 
Clearly we must become proficient in the use of coordinate systems and comfortable with issues 
of how they relate to one another. 
We will study a common set of such coordinate systems as well as transformations between 
them, but first a caveat appropriate to the primary theme of these notes: we must remember that 
coordinate systems are merely an artifact of the language we must use to communicate with a 
computer. That is, our base ideas of size, shape, and orientation are intrinsic properties of the 
objects we create and are independent of any coordinate system. We want to use coordinate 
systems where they are appropriate and necessary, but we don’t want our thinking or analytical 
processes to become unnecessarily dependent upon coordinate systems. This probably doesn’t 
make much sense just yet, but as you will see while studying the mathematics underlying 
computer graphics operations, the process of translating our original abstract notions of object 
manipulation, viewing specifications, and so forth into concrete computer-based actions can 
become overly complex if we force ourselves to think solely in terms of describing these actions 
relative to some specific coordinate system. 
We describe as vector geometric that class of techniques which is based on representing and 
manipulating intrinsic relationships between objects which are independent of any coordinate 
system. Examples include computing the centroid of a group of points, or the vector normal to 
two others. By contrast, coordinate-based approaches generally operate by comparing and 
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manipulating individual x, y, and z coordinates of points. For example, a particular algorithm 
may select one of two points based on whose z coordinate is larger. You will come to understand 
and appreciate these distinctions more completely later. What you will see is that vector 
geometric techniques are most suitable when operating on objects whose position and orientation 
with respect to the current coordinate system are completely general, and when no axis of the 
coordinate system has any special relationship to the current problem of interest. Coordinate-
based methods are preferable when we either know a priori that the geometry is in a known, 
simple position and orientation in the coordinate system, or we pre-process it so that it is. 
I am assuming here that the reader has experience with the use of one or more graphics packages 
such as OpenGL, PHIGS, or GKS, and that you are therefore somewhat familiar with the use of 
coordinate systems as mentioned above. I have taught various combinations of GKS, PHIGS, 
and OpenGL in introductory graphics courses. While my focus is currently on OpenGL, I prefer 
from an instructional and conceptual point of view the strict separation of modeling and viewing 
transformations as formalized in PHIGS to the combined “GL_MODELVIEW” approach of 
OpenGL. Others share this view. For example, Brodlie says the following about his course at the 
University of Leeds [Brodlie & Mumford 96]: 

Both PHIGS and OpenGL have their influence on the course: OpenGL 
for practical exercises, PHIGS for theoretical treatment of the viewing 
pipeline. 

We review in the next section the basic concept of a graphics pipeline and the various coordinate 
systems we will encounter. The following two sections present required mathematical concepts 
and tools and discuss the differences between coordinate-based and vector-geometric approaches 
to analysis. The final sections discuss in turn the implementation of each of the transformations 
we encounter in the pipeline, treating both OpenGL and the more general PHIGS models. 
A set of C++ classes has been developed by the author which include methods and definitions of 
overloaded operators implementing nearly all of the low-level operations and matrix construction 
algorithms presented in these notes. Appendices A-D give the primary class definitions. 
Appendix E shows some sample code using the definitions. 
Final Introductory Remarks 

While the original emphasis when this monograph was written was to cover the mathematics 
required to implement graphics pipelines in interactive graphics systems such as OpenGL and 
PHIGS, the majority of this material is much more widely applicable. The basic low-level 
mathematical tools related to point and vector operations in section III, for example, is required 
background material for any work in Geometric Modeling. The tools discussed there are also the 
primary ones that are needed in other types of graphics processing such as ray tracing. Similarly, 
the comments in section IV are directly applicable to any sort of geometric processing. Sections 
V and VI, while somewhat specific to graphics pipeline architectures, actually serve a dual 
purpose in that they can be viewed as examples of how the tools described in section III can be 
used. 
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II. The 3D Graphics Transformation Pipeline 
As noted in the introduction, it is common to use many coordinate systems while describing the 
position, orientation, and size of geometric objects as well as how we want to view and place 
them on a computer screen. We need to tell the computer many things in order to generate a 
display, and different pieces of information are simply easier to specify in certain specific 
coordinate systems. For example, it is easiest to define the geometry of our table leg if we can 
assume it lies along the y-axis with its base at the origin; but it is easiest to define a desired field 
of view by using a coordinate system in which we are looking along, say, the z-axis. In general, 
these two coordinate systems are different. 
Different graphics APIs (“application programming interface”) employ slightly different names 
for these various coordinate systems. For reference and comparison, the table below summarizes 
the names used by PHIGS [ISO 89, Howard, et. al. 91] and OpenGL [Schreiner, et. al. 08]. 

 Local 
Coordinates 

World 
Coordinates 

Viewing 
Coordinates 

Homogeneous 
Coordinates 

Logical 
Device 

Coordinates 

Physical 
Device 

Coordinates 

OpenGL Object Coordinates Eye 
Coordinates 

Clip 
Coordinates 

(HNDC) 

Normalized 
Device 

Coordinates 

Window 
Coordinates 

PHIGS Modeling 
Coordinates 

World 
Coordinates 

View 
Reference 

Coordinates 
(HNPC) 

Normalized 
Projection 

Coordinates 

Device 
Coordinates 

Table 2.1: Equivalent Coordinate System Names 
Some remarks on the final three columns of the table are in order. As we will see in section III, 
we can describe geometry in affine (x,y,z) space or projective (x,y,z,w) space. Projective 
coordinates may be used for basic model definition in modeling coordinates, and/or they may be 
generated internally by the graphics system when applying a perspective transformation. The 
former represents a common way of defining rational curves and surfaces. In OpenGL, for 
example, one can define rational Bezier curves by passing projective coordinates for control 
points to glMap1*. Here we focus primarily on the internal generation of projective coordinates 
since concepts surrounding the more general definition of models in projective coordinates are 
beyond the scope of these notes. 
It is common to refer to projective coordinates generated internally in this fashion as 
homogeneous coordinates. The internal generation and use of homogeneous coordinates by 
graphics systems is transparent to application programmers. We will see why, when, and how it 
occurs when we discuss the graphics pipeline below. We show the abbreviations HNDC 
(Homogeneous Normalized Device Coordinates) and HNPC (Homogeneous Normalized 
Projection Coordinates) inside parentheses in Table 2.1 to emphasize the fact that they are not 
normally used by (or even visible to) application programmers. 
Both PHIGS and OpenGL employ the notion of a “logical device”. That is, coordinates are 
initially transformed onto a virtual graphics screen whose coordinate dimensions run from 0 to 1 
(PHIGS) or -1 to +1 (OpenGL). In PHIGS, this coordinate system plays a fairly major role in 
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that it appears as a part of the API and allows general screen layouts can be defined. All or part 
of such a layout can then be mapped to all or part of various physical devices. (See the Aside on 
Workstations in PHIGS below.) In OpenGL, this logical device coordinate system is nearly 
transparent to application programmers. The only time an OpenGL programmer needs to be 
aware of the role played by this logical device is if the programmer needs to create a custom 
projection matrix to be used as the GL_PROJECTION matrix. 
The meaning of “Physical Device Coordinates” is obviously device-dependent. For example, 
when generating output for a non-interactive device (e.g., a plotter or a PostScript file), device 
coordinates refer to actual positions on the device. A more common scenario is to run 
interactively on a graphics device on which a window manager is used to allocate portions of the 
physical screen to independent applications. In this case, the window manager is in charge of 
allocating space on the physical screen for the window as well as tracking size and visibility 
changes. The graphics system “runs on top of” the window manager; that is, the only physical 
device coordinate system the graphics system knows is the region (i.e., the window) assigned to 
it by the window manager. Therefore, what the graphics system knows as device coordinate (0,0) 
is actually the corner of the window on the screen, not the corner of the screen itself. (See also 
the Aside on Workstations in PHIGS below.) 
Even though we are generally concerned primarily with producing images on a flat (i.e., 2D) 
display medium, the device coordinate systems in PHIGS and OpenGL are 3D. Among other 
things, this allows these systems to perform hidden surface removal after all transformations and 
clipping are done. 
Now we turn our attention to the so-called graphics pipeline, i.e., the ordered set of steps 
performed by a graphics system when actually drawing an object on the screen. Internally, 
graphics systems typically store the geometry exactly as specified by the application 
programmer: i.e., in modeling coordinates. To generate an image, we need to determine what 
pixels to illuminate for each geometric object. This process of going from modeling coordinates 
to device coordinates is described by the graphics pipeline. Figure 2.1 shows the basic steps in 
the PHIGS pipeline along with the coordinate systems and associated transformations it uses. 

 
Figure 2.1: A PHIGS-like Transformation Pipeline 
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Pipelines such as that of Figure 2.1 – as well as the methods used for implementing the various 
transformations – were designed to optimize our ability to manipulate and render 3D scenes at 
interactive rates. The geometry itself must be linear (points, lines, and polygons); more general 
curves and surfaces are approximated by piecewise linear elements before being sent down such 
a pipeline. In these notes, we use this graphics pipeline as a convenient motivation for the 
geometric tools we develop. This makes sense since many introductory graphics courses begin 
by introducing students to graphics packages such as PHIGS or OpenGL in which such a 
pipeline plays a central role. Other rendering strategies (e.g., ray tracing) are used in applications 
where interactive rates are not as important as are more sophisticated modeling, lighting, and 
viewing effects. In Section III, we develop a powerful set of vector geometric tools. While the 
subsequent discussion and applications of these tools in Sections IV, V, and VI focus on their use 
in the context of this pipeline, the tools are in fact quite general. For example, they are highly 
relevant to these other rendering strategies. Moreover, they are very commonly used in general 
geometric modeling applications – such as the design and manipulation of freeform curves and 
surfaces – for precisely the same reasons you will read about when learning the basic techniques 
in Section III. 
Returning to the pipeline itself, notice that the focus is on transformation of model geometry. 
Sophisticated lighting and shading calculations are also often incorporated, many while 
maintaining interactive speeds. The line between what can be accomplished interactively and 
what is best done as a background process is constantly moving. To best appreciate the issues, 
one needs a firm understanding of lighting and shading models. Such a discussion is beyond the 
scope of these notes. Some excellent references include [Glassner 89, Foley, et. al. 90, Watt & 
Watt 92, Watt 93]. For our purposes, the following paragraph highlights many of the central 
issues and choices. 
When maximum photorealism is required, programs designed to run as background processes are 
normally employed. In these programs, processing steps not shown in the pipeline above may be 
employed, some of the steps shown may not be performed at all, and the order of application 
may be different from that indicated. Reasonably sophisticated lighting models running at 
interactive speeds can be incorporated easily into a pipeline like that of Figure 2.1 after the first 
two transformations (i.e., in VRC coordinates). This is the OpenGL approach [Schreiner, et. al. 
08]. Visible line and visible surface determination algorithms are typically performed much later. 
Algorithms in this category are generally either “Object Precision” Visible Line Determination 
(VLD) algorithms or “Image Precision” Visible Surface Determination (VSD) algorithms [Foley, 
et. al. 90]. Object Precision algorithms would be performed in NPC space, immediately 
following the perspective divide step. These algorithms are generally not interactive. Image 
Precision algorithms operate in pixel units, hence are performed following the workstation 
transformation. It is common for algorithms of this variety to operate at interactive speeds. 
Finally, ray tracing is a popular hybrid algorithm for VSD. Some implementations operate in 
VRC space; others operate in WC. See the comments in section VIII and [Goldman & Miller 97, 
Miller 97]. 
We can understand the operation of pipelines like that of Figure 2.1 by studying how a single 
point is processed. We start with the point defined in modeling coordinates. Recall that modeling 
(or “local”) coordinate systems may be nested arbitrarily deeply. This is signified in Figure 2.1 
by the arrow leaving the first block and immediately returning. Our point enters the pipeline at 
the left end, is transformed by a series of modeling transformations — each transforming it from 
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one local coordinate system into the one which immediately contains it — until the coordinates 
of the point in the world (or “global”) coordinate system have been determined. These 
coordinates are then transformed according to the current viewing specifications, initially into 
View Reference (or “eye”) coordinates, and then into projection coordinates, taking into account 
whether a parallel or perspective projection is being generated. It is to support the possibility of 
perspective transformations that the system will internally generate a representation at this stage 
of the pipeline in homogeneous coordinates if they are not already stored that way. 
The “Perspective Divide” step is the process by which a point in projective space is mapped back 
to normal affine space. We will come to understand what that means in Section III. 
During the “Clip” stage of the pipeline, any portion of the geometry outside the current field of 
view is eliminated. Clipping can be performed solely in HNPC as implied here, or it can be 
performed following the “Perspective Divide” step. The mathematics are simpler in the latter 
case because parallel and perspective view volumes can be assumed to have been sheared and/or 
distorted into a common orthographic view volume for clipping. However an initial partial 
clipping operation must be performed in the case of perspective projections to handle the 
possibility of geometry behind the viewer. We do not discuss clipping algorithms here; hence we 
will implicitly assume that clipping is performed where indicated in the pipeline and not consider 
it further. 
The final stage of the pipeline is the “Workstation Transformation”. This is where the system 
maps coordinates from the logical device space to the physical device. In PHIGS, the 
programmer can request that only part of the logical device be mapped to some part of the 
physical device, hence this process may require further clipping. In OpenGL, on the other hand, 
the entire logical device is mapped to the currently selected portion of the physical device, hence 
no additional clipping is required. 

Aside: The Concept of “Workstations” in PHIGS 

PHIGS employs the concept of a workstation. A workstation is the programmer’s interface to a 
physical device. If the device is an interactive one controlled by a window manager, the PHIGS 
program can actually have several logically different workstations opened at once on the device, 
each in its own window. A PHIGS program can simultaneously have several workstation interfaces 
to different physical devices active. For example, some select portion of a model may be displayed 
on a monitor while the program is directing a possibly different view of the entire model to a plotter. 
The main description of the PHIGS model (also called the Central Structure Store, or CSS) is 
maintained in model coordinates independent of any workstation. That is, all workstations operate 
from the same model. Viewing information, however, is considered to be workstation-dependent. 
Each workstation maintains viewing information independently. This viewing information includes 
the view orientation matrix, the view mapping matrix, and NPC clipping information. The 
workstations actually have a table, each entry of which holds a complete set of this viewing data. 
The model in the CSS specifies views indirectly by indicating the current table position index to be 
used at the workstation. The pipeline shown above therefore branches twice between the first two 
blocks in PHIGS. The first branch takes you to a specific workstation; the second takes you to a 
specific row in the viewing table. While these abilities provide considerable flexibility to the 
programmer, they do not affect the mathematics presented here, so we will not consider these 
matters further. 
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Note that the mapping transformation actually does two things. It first applies the current 
projection (parallel or perspective) by distorting the geometry into a common orthographic view 
volume. It then maps from user units in the VRC coordinate system to the normalized units of 
HNPC. That is, the basic units used by the application programmer (angstroms, meters, parsecs, 
or whatever) are in use throughout MC, WC, and VRC, but they are then supplanted by 
normalized units. 

Aside: Low-Level Implementation Notes 

All the operations shown inside ovals can be implemented by matrix operations when the model 
geometry is linear (points, lines, and polygons). Even though they are shown as distinct steps, most 
graphics implementations actually concatenate as many of the matrices as possible before 
transforming points. Hence a point would be mapped directly from MC to HNPC with a single 
matrix operation. (Those operations shown in the two rectangles – “Clip” and “Perspective Divide” 
– are not matrix operations, hence they “break the pipe”.) Some graphics systems do not introduce 
the extra NPC coordinate system; instead, their view mapping transforms directly into 
(homogeneous) device coordinates. Hence, following the perspective divide, the system would have 
clipped pixel coordinates ready to pass off to the hardware without further transformation. Whether 
an implementation does any of these things is usually transparent to application programmers. 
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III. Mathematical Preliminaries: Points, Vectors, and 
Matrices in Affine and Projective Spaces 
In this section we review many very basic yet critical concepts related to points, vectors, and the 
spaces in which they live. Portions of this material may be review for some readers; they are here 
because of their fundamental importance with respect to understanding all that follows. I stress 
the development of a geometric intuition which will aid you in understanding the derivations 
which follow and help you to master the tools required to develop more advanced vector 
geometric analysis abilities. 
We somewhat restrict our treatment of these topics — especially those related to projective 
spaces and projective maps — to what is required to support an interactive graphics pipeline 
such as that of Figure 2.1. There are several good references for other perspectives as well as for 
additional detail on this material. Examples include [Goldman 85a],  [Goldman 85b], [DeRose 
89], the Appendix of [Foley, et. al. 90], chapters 1 and 2 of [Farin 95], chapter 2 of [Farin 96], 
and Appendices B and C of [Angel 09]. 
In section III.1, we develop a formal understanding of points and vectors. In a sense, they are 
“performers in a play”. Section III.2 then discusses spaces: vector spaces, affine spaces, 
projective spaces, etc. Extending our analogy, spaces represent the “sets” in which our 
“performers” operate. The remainder of section III discusses various transformations, maps, and 
other operations that are applicable to points and vectors in the various spaces. These operations 
characterize how our “performers” work with one another and move about within a given “set”. 
A thorough understanding of this material is important because no graphics or modeling system 
is likely to provide all the functionality you require in exactly the way you will need it. 
Inevitably the need will arise for you to derive and implement computations to obtain some 
required geometric quantity. If you cannot justify your derivations and computations in terms of 
the properties and allowed operations described in this section, your derivation will most likely 
prove invalid. 

III.1 Points and Vectors 
We all have an intuitive sense of what points and vectors are. A point is simply a position in 
space. In order to describe and manipulate a point numerically, we must “address” it by 
specifying signed distances from some reference point along linearly independent directions (i.e., 
we must assign it “coordinates”), but the point is the same regardless of the coordinate system 
we use to address it. 
As a concrete example, the swing set in my back yard sits at a fixed location. From the door to 
my back yard, my kids go 20 feet west and 25 feet north to get to it; hence its coordinates with 
respect to the coordinate system of my back door are (-20,25). My neighbor’s kids also like to 
play on our swing set, but from their back door, they go 30 feet south and 120 feet west. Hence 
the swing set’s coordinates with respect to the coordinate system of their back door are (-120,-
30). Certainly the swing set exists independent of either of our back doors; the doors merely 
provide two equally convenient reference frames to describe the location of the swing set. 
Similarly, points do not “belong” in any sense to any coordinate system; we merely describe 
their positions by reference to such systems. 
By contrast, a vector has no location, rather it is defined solely as a direction and a length. Like 
the point, we describe its direction numerically with respect to some coordinate system, but — 
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also like the point — this numeric description is different in different coordinate systems. 
» The fact that a vector has no position means that we can draw 

the visual representation of a vector anywhere. We are free to 
drag such a visual representation anywhere we wish. 

Many texts gloss over or totally ignore this distinction. However one of the advantages of 
carefully preserving the distinction between points and vectors is that we can derive very general 
expressions and algorithms for important operations which are independent of the position and 
orientation of the geometry with respect to any particular coordinate system. 
There are concrete advantages realized in computer code written based on these observations. 
These advantages include improved computational speed, better numerical reliability, and 
simplicity of implementation. Remarks at the end of section V emphasize some of these 
advantages in the context of common modeling transformations. 
When authors treat a point as if it were a vector, they are really employing a “position vector”. 
That is, they are considering a vector from the origin of some particular coordinate system to the 
point in question. Thus the general concept of a point is being considered as a specific vector in a 
specific coordinate system. Symmetrically, when authors treat a vector as if it were a point, they 
are speaking of the point at which one arrives if you start at the origin of some specific 
coordinate system and traverse the length of the vector. 
It is possible to get a quick sense for why points and vectors must be distinguished by 
considering the example below. We shall see that addition operations applied to the coordinates 
representing points is meaningless, whereas analogous arithmetic operations applied to the 
components of vectors is meaningful (not to mention useful!). 
In Figure 3.1(a), we notice two points (P and Q) and two reference coordinate systems (S1 and 
S2). As measured in S1, P=(-1,2.5) and Q=(1,2.5). Similarly, in S2, P=(-1.5,6) and Q=(-1.5,4). 
So what do we get if we add P and Q? 
Well, first we need to agree what it means to add two points! This issue relates, after all, to a 
major concept we are trying to understand in this part of the notes. What do you get if you add 
two oranges? Two trees? Why should we expect that it makes sense to add two points? 
Presumably because we can describe points with numeric coordinates in some coordinate 
system, we have come to believe that arbitrary arithmetic operations applied to these coordinates 
is sensible. But just because something can be represented numerically does not imply that 
arithmetic on the representation makes sense. Radio station KXQY is at 103.9 on the dial; KRTU 
is at 93.8. Of what significance is it that “KXQY + KRTU = 197.7”? None whatsoever. A recent 
survey revealed that 58,000 people in the city of Pranq listen to KRTU; 43,000 people in Pranq 
listen to KRTU. What is the significance of “101,000”, where 101,000 is the sum of 58,000 and 
43,000? Or of “15,000”, where 15,000 is the difference between these two numbers? 

Exercise: How are the two examples in the previous paragraph the same? 
How are they different? Try to think of as many ways as you can. 

As it turns out, we can make more sense of the arithmetic differences in the two previous 
examples (e.g., “KXQY - KRTU = 10.1”). We will see that the situation is the same for points. 
Well, enough talk. Let’s return to the question “what do we get if we add P and Q?”. Let’s just 
assume that “add two points” means “add their corresponding coordinates”. 
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Using their representation in S1, we get R1=P+Q=(0,5). Using their representation in S2, we get 
R2=P+Q=(-3,10). The numerical results are different, but we expected this. But wait! We needed 
two different dots for R1 and R2. That is, two different points have appeared! So what does this 
mean? Well, we started with two points in space, a concept independent of any coordinate 
system. Then we “added” the points, and obtained answers which depended upon which 
coordinate system we used to describe them. This is exactly the problem! 
To be well-defined, an operation must produce results which are independent of any coordinate 
system when given inputs which are coordinate system independent. Clearly addition of points 
fails this test. You cannot “add” points any more than you can “add” trees or radio stations. 
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It is easy to construct similar examples illustrating why multiplication of points by arbitrary 
scalars (e.g., “2 * P”) is meaningless. (Let us assume that multiplying a point by a scalar means 
multiplying each of its coordinates by the scalar.) 

Exercise: construct such an example to convince yourself. 
Now let’s see how these problems do not exist with vectors. Figure 3.1(b) shows the same two 
coordinate systems with two vectors u and v. As measured in S1, the vector u=(1,1) and 
v=(0.5,1.5). Similarly, in S2, u=(1,-1) and v=(1.5,-0.5). 
So what do we get if we add u and v? 
Well again, we need to agree what it means to add two vectors. Like we did with points, let’s just 
add their components and see what happens. 
Using their representation in S1, we get w1=u+v=(1.5,2.5). Using their representation in S2, we 
get w2=u+v=(2.5,-1.5). As with the previous example, the numbers are different. However, 
unlike the previous example, the vector is the same in either case! To see this, drag the tail of the 
visual representation of w1 to the tail of that of w2

1. The vectors are the same. 
Was this just an accident, or are vectors fundamentally different from points? It turns out that 
they are fundamentally different, but we will wait until Section III.2 before trying to understand 
why. Addition of vectors – as well as multiplication of a vector by a scalar – yields the same 
result regardless of the coordinate system of measure. 

Exercise: construct an example to convince yourself that scalar 
multiplication of vectors is also well-defined. 

In summary, what we get when we add two points or multiply a point by an arbitrary scalar 
depends on the coordinate system in which we choose to work. This is bad. What we get when 
we add two vectors or multiply a vector by a scalar remains independent of the coordinate 
system in which we choose to work. This is good. Together these two observations demonstrate 
that points and vectors are indeed different concepts and should be treated as such. Many other 
examples will show the importance of differentiating between points and vectors. 
We cannot quite leave this example yet, because it leaves us with a problem. Consider what 
happens if we multiply R1 and R2 in the example above by 1/2. We get R1/2=(0,2.5) in S1, and 
R2/2=(-1.5,5) in S2. These two points — labeled R in Figure 3.1(c) — are now the same! (As with 
the vector example, the coordinates are still different, but the points are indeed the same.) Of 
course, this should not be a surprise. Adding corresponding coordinates of two points and 
dividing by two gives us the midpoint, an operation which is certainly well-defined independent 
of any coordinate system. 
Thus we seem to have two conflicting results: since addition and scalar multiplication are not 
well-defined in general, it would appear that our midpoint operation cannot be justified. But of 
course we know that it can be. So the question is: what is special about the midpoint calculation? 
And are there other “special” operations? How can we characterize them in general? And how 
does all this relate to the conditions under which it is meaningful to perform arithmetic 
operations on (the coordinates of) points and vectors? 

                                                
1 Recall that since vectors have no position (they describe a relative quantity), we are free to drag their visual 
representations wherever we wish. 
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In order to address these and other questions, we must formalize our understanding of the spaces 
in which points and vectors live. In the following section, we shall therefore introduce vector 
spaces, affine spaces, and others. Once you have an understanding of these spaces and the 
operations defined in them, you will be able to answer the questions just raised. 

III.2 Spaces 
So far we have focused on points and vectors — our performers — but not the spaces in which 
they live. If we wish to be able to make sense of and use in computations the numeric values 
associated with objects — whether the objects are radio stations or geometric points and vectors 
— we need to understand the significance of the numbers. That is, we need to understand the 
environment or the context to which the numbers relate. I realize it is probably obvious, but take 
a minute and think about the environment to which the numerical quantities in our radio station 
example relate. 
In the context of points and vectors, we characterize this environment by studying the spaces in 
which these two different quantities live. In this section, we shall therefore study commonly 
accepted definitions of vector spaces, affine spaces, and others. As we turn our attention to these 
spaces, we will immediately see other differences between points and vectors. We will also see 
new ways to understand the relationships between them. 

Definition III.1: An n-dimensional vector space consists of a set of 
vectors and two operations: addition and scalar multiplication. The 
vector space is closed under these two operations: addition of two 
vectors yields a vector in the vector space; multiplication of a vector 
by a scalar also produces a vector in the vector space. Finally, there is 
a distinguished member of the set called the zero vector 0 with the 
properties that a·0=0 for all scalars a, and 0+v=v+0=v for all vectors v. 

The concept of a vector space is a very general one with applications far removed from computer 
graphics. The set of all degree n polynomials, for example, forms an n-dimensional vector space. 
Our interest here is geometry, however, and when we stated in section III.1 that a vector was 
characterized by a direction and a length, we were speaking of a “geometric vector”. It turns out 
that such “geometric vectors” form a vector space in the general sense of Definition III.1. Hence 
it was no “accident” that the example of adding two vectors in the previous section produced a 
well-defined result. 
In the context of geometric vectors, addition of two vectors can be interpreted visually by 
positioning the tail of one at the head of the other. The vector from the tail of the first to the head 
of the second represents the vector sum. Multiplying a vector by a scalar scales the length of the 
vector by the absolute value of the scalar. The direction does not change for positive scale 
factors; the direction flips for negative scale factors. 
While we promise not to forget that a vector space in the sense of Definition III.1 is a general 
concept independent of geometry, let us agree that, unless explicitly stated otherwise, when we 
use the term “vector” in the remainder of this monograph, we mean “geometric vector”. 

Definition III.2: An n-dimensional affine space is a set of points, an 
associated n-dimensional vector space, and two operations: subtraction 
of two points in the set and addition of a point in the set and a vector in 
the associated vector space. The former produces a vector in the 
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associated vector space, and the latter produces another point in the 
affine space. Unlike a vector space which has the distinguished vector 
0, there is no distinguished point in an affine space. 

The geometric interpretation of the two allowed affine space operations should be clear. For 
example, given points P and Q in the affine space, the vector (P - Q) has the following 
interpretation. Starting at the point Q, follow the vector (P - Q), and you arrive at the point P. 
The algebraic version of this geometric interpretation is the simple identity: Q + (P - Q) ≡ P. 

Notice that the definition of an affine space permits neither addition of points nor multiplication 
of points by arbitrary scalars. This should not be surprising since our examples from the previous 
section illustrated that such operations were not well-defined since they produced coordinate-
system dependent results in the general case. 
Let us return to the notion of the length of a (geometric) vector. Since Definition III.1 deals with 
the abstract concept of general vector spaces whose elements may not have a length (what’s the 
length of a polynomial?), there is no defined operation related to nor measure of length. (If 
elements of a particular vector space had a length – as do our geometric vectors – we could only 
say that the length of one vector was some multiple of the length of another.) Furthermore, there 
are no tools associated with affine spaces which allow us to talk about the strongly related notion 
of the absolute distance between two points. Euclidean spaces address these needs. 

Definition III.3: A Euclidean space is an affine space with the 
additional concept of distance. 

The primary additional operation applicable to vectors in a Euclidean space is the dot product (or 
inner product). The definition, properties, and various applications of the dot product are 
discussed along with other common vector operations in section III.7. Here we briefly introduce 
the properties of the dot product which make it useful as a distance measure. 
The dot product of two vectors is a scalar. For two vectors u and v: 

u·v = v·u 
u·u ≥ 0 (equality is only possible if u = 0) 
(au)·v = a(u·v) 

We shall see in section III.7 that the length of a vector u can be defined in terms of the dot 
product as u = u !u . (The vertical bars around u denote “length of u”.) Since we can 
characterize the distance between two points as the length of the vector between them, the dot 
product also gives us a way to measure distances between points in an affine space. Specifically, 
the distance between points P and Q is P !Q = P !Q( ) " P !Q( ) . 

We have all grown up with affine (and Euclidean) spaces, and we are quite comfortable with 
them. Now let’s get uncomfortable. Imagine that the affine space we know is actually a plane 
inside of a space whose dimension is one greater than that of the affine space. For example, 
consider the conventional 2D xy affine plane and suppose that it is really the w=1 plane of a 3D 
xyw coordinate space. This “larger” space is called a projective space, and we say that our affine 
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space is embedded in the projective space2. 
We formalize these notions with the following definitions. 

Definition III.4: An (n+1)-dimensional projective space is the space 
in which the points of an n-dimensional affine space are embedded. 
We denote the extra coordinate dimension as w and say that the affine 
points lie in the w=1 plane of the projective space. 
Definition III.5: All projective space points on the line from the 
projective space origin through an affine point on the w=1 plane are 
said to be projectively equivalent to the affine point. 

Returning to two-dimensional affine space as an example, every point (x,y) in the affine space is 
actually a point (x,y,1) in the projective space. (See Figure 3.2.) Furthermore, all projective space 
points (wx,wy,w) where w≠0 are projectively equivalent to the point (x,y). Stated in another way, 
corresponding to every point (x,y) in affine space is the line in projective space which passes 
through (0,0,0) and (x,y,1). 
Projective spaces (and the related notion of projective maps which are introduced in section 
III.3) are the subject of projective geometry. Our treatment of this subject is very cursory. The 
interested reader is referred to [Penna & Patterson 86] or [Coxeter 87] for further information on 
this rich topic. 
The same relationship holds between 3D affine space and projective xyzw space. That is, our 3D 
world lives on the w=1 plane of projective xyzw space. Obviously this is harder to visualize. One 
of my favorite references when trying to understand geometry in dimensions greater than three is 
the nineteenth century book Flatland [Abbott 91]. More recent related references include 
[Burger 65] and [Dewdney 84]. 
 

Aside: Complex Projective Spaces 

The various spaces we have discussed so far are sufficient for our purposes. For completeness, we 
present the following definition. Complex projective spaces are of theoretical and practical 
importance in various areas of Geometric Modeling, most notably in the study of curve and surface 
intersections. 

Definition III.6: An (n+1)-dimensional complex projective space is a 
projective space in which the coordinates of points are allowed to be 
complex numbers. 

 
Figure 3.3 illustrates the relationships between the various spaces we have mentioned. 

                                                
2 This relationship is superficially similar to the way that 2D affine space relates to 3D affine space. That is, the xy 
coordinate plane simply lives on the z=0 plane of 3D space. However the superficial similarity ends there as you will 
see. 
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Figure 3.3 

Relationships Between the Spaces 

While we introduce and talk about projective spaces and projective maps, this machinery is not 
strictly necessary for the vast majority of common graphics operations. With the exception of 
perspective transformations for which a projective map will be needed, affine space and affine 
transformations are adequate for everything that we discuss here. We include a rudimentary 
discussion of projective spaces, in part for completeness, in part so that we can understand how 
they relate to affine transformations, and in part for the additional insight they give us into 
relationships between points and vectors as we discuss next. 
Projective spaces give us new ways to think about the differences between points and vectors. 
Even though we know that they are different, it is annoying that points and vectors are both 
simply represented as tuples of numbers in affine space. In derivations and computer 
implementations, for example, it has simply been our responsibility to know whether we should 
interpret a particular tuple as a point in an affine space or as an element of the associated vector 
space. 
Let’s reconsider the process of creating a vector from the difference of two affine points. For 
purposes of this illustration, let’s consider the example of points in a 3D affine space. If we 
embed the points in projective space and do the subtraction, we get: 

 P !Q = Px ,Py,Pz,1( ) ! Qx,Qy,Qz ,1( ) = Px !Qx,Py !Qy,Pz !Qz ,0( )  

Notice that the w component is zero. If this 4-tuple were considered to be a point and projected 
back onto the w=1 plane, where would it go? 
Projective space points which have w=0 are called ideal points or points at infinity. It is beyond 
the scope of these notes to explore the significance of points at infinity in the context of 
projective geometry — the interested reader is referred to [Penna & Patterson 86] or [Coxeter 
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87] — but clearly there is a one-to-one correspondence between points at infinity and elements 
of the vector space associated with an affine space. 
While it is tempting to imagine that points at infinity and vectors are in fact one and the same, 
this is not true. Nevertheless we will return to the idea of appending a “1” or a “0” to the 
coordinates of points and components of vectors in the context of applying transformations in a 
unified fashion in section III.4. 
Let’s look at another illustration. Consider the affine point (a,b,c) and the vector v in the 
associated vector space from the origin to the point (a,b,c). The direction of the line passing 
through the affine origin and the point (a,b,c) has direction v. Consider the following sequence of 
points along this line: 

  
a,b,c,1( ), 2a,2b,2c,1( ), 3a,3b,3c,1( )! 

These points are projectively equivalent to 

  
a,b,c,1( ), a,b,c,1 / 2( ), a,b,c,1/ 3( )! 

In the limit, this latter sequence of points converges to (a,b,c,0) in projective space: the ideal 
point that corresponds to the vector v with which we started. 
We observed earlier that addition of points in affine space was not a well-defined operation. 
What happens if we express this operation in projective space? 

Exercise: Show that the addition of n affine points, when expressed in 
projective space, yields a projective equivalent of the centroid of the n 
points. 

An example of a projective space is HNPC as shown in the PHIGS pipeline of section II. Since 
HNPC is never visible at the API, most PHIGS discussions do not mention the existence of this 
coordinate system. We will allude to why HNPC is used in section III.3, and we will see in gory 
detail later exactly how it is used. 

III.3 A Return to Points and Vectors: Characterizing Valid Arithmetic 
Expressions 

Armed with the definitions from the previous section, let us now return to the questions we left 
dangling at the end of section III.1. At first glance, the results of the examples we studied there 
would lead us to believe that for arbitrary scalars, points, and vectors (ai, Pi, and vi, respectively): 

aiPi
i= 0

n

! = undefined , but a
i
v
i

i= 0

n

! = vector . The problem is that we know of one specific example 

where such a linear combination of points is valid: midpoint computation. 
We need to characterize the exact conditions under which such linear combinations can be 
considered “valid”. Let us begin by rewriting our problematic linear combination of points: 

 a
i
P
i

i= 0

n

! = a
i
P
0

i= 0

n

! + a
i
P
i
" P

0
( )

i=0

n

! = #P
0
+ a

i
P
i
" P

0
( )

i= 0

n

!  (3.1) 

where ! = a
i

i=0

n

"  is a constant. 
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Since our definition of affine spaces tells us that subtracting two points yields a well-defined 
vector, the summation on the far right-hand side will always yield a well-defined vector since it 
is just a linear combination of vectors. Hence the original summation on the far left-hand side is 
well-defined if and only if we choose α such that αP0 is well-defined. Recall we said earlier only 
that multiplication of points by arbitrary scalars was not well-defined. Perhaps we can find 
particular scalars which produce well-defined results when used to multiply points. Indeed we 
can. 

Observe that if α=1, αP0 is indeed well-defined in the sense that we have considered so far. That 
is, 1·P0 yields the same point regardless of the coordinate system in which we measure P0. Since 
midpoint computation is simply an operation in which n=1 and a0=a1=1/2 (i.e., α=1), we now 
understand why that operation “works”. 

Expressions of the form a
i
P
i

i= 0

n

!  where a
i

i= 0

n

! =1  are very important and common. Such an 

expression is called a barycentric combination of points. Furthermore, if each of the Pi are 
linearly independent and n is the dimension of the space in which they are defined, then we say 

that the ai are the barycentric coordinates of the point Q= a
i
P
i

i= 0

n

!  with respect to the Pi. 

Next observe that if α=0, αP0 yields the n-tuple (0, … ,0). If we interpret this n-tuple as a point 
at the origin, then the result obviously depends on the coordinate system, hence it’s meaningless. 
However, if we instead interpret this n-tuple as the zero vector in the associated vector space, the 
result is independent of the coordinate system. Therefore we say that multiplying a point by “0” 
yields the zero vector, independent of the coordinate system used. In the context of equation 3.1, 
then, the far right-hand side takes the form “vector + vector” when α=0. 

There are no other possible choices for α. That is, for a scalar α and a point P, it can be proved 
that αP can be assigned a well-defined interpretation if and only if α is either 0 or 1. The proof is 
left as an exercise. 
Collecting these facts, we can now state that: 

 aiPi
i= 0

n

! =

point if ai
i=0

n

! = 1

vector if ai
i=0

n

! = 0

undefined otherwise

" 

# 

$ 

$ $ 

% 

$ 

$ 

$ 

 (3.2) 

Not only does this characterization tell us what is allowed in terms of expressions involving 
points and vectors, but also it gives us a “check” of sorts for derivations that we perform. That is, 
we can check the “reasonableness” of some derivation by summing the coefficients on all the 
points in the expression. If they do not sum identically to 0 or 1, our formula cannot be correct. If 
they do, then we know the result is, respectively, a vector or a point. 

Exercise: Based on the characterization of equation 3.2, state which of 
the following expressions yields (i) a point, (ii) a vector, or (iii) an 
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undefined quantity. (Upper case italic letters denote points; lower case 
bold letters denote vectors; lower case italic letters denote scalars.) 

B + v - Q  3Q - R - S -T  2v + tR - Q  

P - Q + R + S  wQ + (1-w)R  2P - R - S +T  
 

A Concluding Observation 

It is important to note that we have been switching fairly casually between two subtly different 
types of arithmetic operations. There is the type specifically provided by our definitions: vector 
spaces permit addition and scalar multiplication (i.e., u + v and av); affine spaces define 
subtraction of points and addition of a point and a vector (i.e., P - Q and P + v). When we write 
one of the two valid forms of the right hand side of equation 3.1: 

 P
0
+ a

i
P
i
! P

0
( )

i= 0

n

"  (3.3) 

or 

 a
i
P
i
! P

0
( )

i= 0

n

"  (3.4) 

we are using only these permitted operations. That is, every individual instance of an addition, 
subtraction, or multiplication operator in equations 3.3 and 3.4 is formally justifiable from the 
definitions. However, when we write the algebraically equivalent summation on the far left-hand 
side of equation 3.1 (or any specific example thereof like “3P - Q - R + S - T”), we are 
employing individual operations which, technically speaking, are not permitted. For example, the 
multiplication of P by 3 is not by itself a valid operation. Yet the expression as a whole is well-
defined. 
So what are the practical implications of this? As graphics and modeling programmers, we 
generally derive geometric expressions which we then implement in our programs. It is typically 
inconvenient to express desired formulas using only the “sanctioned” affine and vector space 
operations, and we would certainly not want our programming tools to force us to do so. 
However  this implies that the onus is on us to ensure that expressions we implement in 
computer code are valid from the perspective of equation 3.2. 
DeRose has formalized this concept in a geometric programming language which systematically 
performs various kinds of type checking utilizing this characterization [DeRose 89]. A broader 
and deeper theoretical treatment of this material is given in [Goldman 85a]. 
To this point, we have been considering general n-dimensional spaces, using 2D and 3D spaces 
as specific examples. For the remainder of this monograph, we shall focus on three-dimensional 
vector and affine spaces, the domain of traditional computer graphics systems. 

III.4 Affine and Projective Maps 
We have seen the importance of coordinate system transformations to the internal operation of 
graphics systems. We can view such a transformation as a function X that maps the coordinates 
of a point as measured in one coordinate system into the coordinates of that point as measured in 
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another. Clearly not just any function X will do, however3. 
It suffices to restrict X to the family of affine maps. Since we are dealing with points in affine 
spaces, and recalling that we have already emphasized in section III.1 the fundamental 
importance of barycentric combinations of such points, it is prudent to base the definition of an 
affine map on barycentric combinations [Farin 96]. We therefore define an affine map as a 
mapping which preserves barycentric combinations. That is, if we define a point Q as the 
barycentric combination: 

 Q = a
i
P
i

i= 0

n

!  

and X is an affine map, then 

 X Q( ) = a
i
X P

i
( )

i=0

n

!  

This equation simply states that if we first compute Q from the untransformed Pi, then transform 
Q, we get the same result as we do when we first transform the Pi, then compute the barycentric 
combination of the transformed Pi. 
It is obvious but worth emphasizing that affine transformations map a point in affine space to 
another point in the same affine space. When we introduce projective maps below, we will see 
that projective maps do not, in general, map affine points to other points in the same affine space. 
That is, affine points will in general be transformed out of the w=1 plane. 

Aside: Freeform Curves and Surfaces as Barycentric Combinations 
The most commonly used freeform curves and surfaces are defined as functional barycentric 
combinations of points called control points. Instead of constants ai, blending functions fi are used in 
the barycentric combinations. For example, a curve might be defined as a mapping from s ∈ R1 to a 
point on the curve as 

 C s( ) = fi s( )Pi
i=0

n

!  

where we require that the blending functions fi satisfy the now familiar constraint 

 fi s( )
i= 0

n

! =1  

for all s in the domain. 
We are guaranteed that the shape of such a curve (or surface) will never change when an affine 
transformation is applied to it. We are also ensured that it suffices to apply the affine transformation 
to the n+1 control points; that is, we need not individually transform every point on the curve (or 
surface). 
 
It is easy to see that X will be an affine map if it takes the form 

                                                
3 For example, after some types of nonlinear transformations, a rectangular bear becomes a polar bear. 
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 X Q( ) = MQ + t  (3.5) 

where M is a 3x3 matrix and t is a vector in the associated vector space [Farin 96]. We can use 
any combination of translation, rotation, and scaling in an affine transformation, and it is well-
known that you can compose any affine map using some combination of these. 
Affine maps preserve parallelism (e.g., two parallel line segments remain parallel following 
transformation by an affine map), and they preserve ratios of signed distances between collinear 
points [Farin 96]. As a consequence of these properties, it is meaningful to apply the 3x3 matrix 
M of an affine map to a vector w in the associated vector space. To see this, choose an arbitrary 
pair of points P and Q such that w=P-Q. Now if we apply our affine transformation individually 
to P and Q, and then form the vector between the resulting transformed points, we obtain: 
 MP + t( ) ! MQ + t( ) = MP !MQ =M P !Q( ) =Mw  (3.6) 

We are occasionally interested in a special affine transformation called the identity 
transformation. The identity transformation maps vectors and points to themselves: X v( ) = v  
and X Q( ) = Q . The matrix M for an identity transformation is the identity matrix, I: 

I =

1 0 0

0 1 0

0 0 1

! 

" 

# 

# # 

$ 

% 

& 

& & 

 

The vector t for an identity transformation is of course the zero vector: t = 0 = (0,0,0). 
Nearly all of the transformations we require in computer graphics can be accomplished with 
affine maps. The exception is the perspective transformation required to model foreshortening 
effects; i.e., the idea that the farther an object is from the eye, the smaller it appears on the 
screen. Perspective transformations require a rational linear transformation; i.e., the 
transformation will employ a ratio involving the coordinates of the point being transformed. 
Projective maps are a generalization of affine maps which can be used to model perspective 
foreshortening, or in general any operation in affine space which is rational linear in the 
coordinates. This is accomplished by mapping a given affine point to a point in projective space 
which is projectively equivalent to the desired affine point. One important difference between 
affine and projective maps is that projective maps do not preserve ratios of signed distances 
between collinear points. An important consequence of this is that projective maps are not 
defined on vectors. For example, suppose (Q, R) and (S, T) are two pairs of points in an affine 
space such that w = Q-R = S-T. If XP is a projective map, then in general: 
  XP(Q) - XP(R) ≠ XP(S) - XP(T) 

 ⇒ XP(Q - R) ≠ XP(S - T)  

 ⇒ XP(w) ≠ XP(w) 

 ⇒ XP is not well-defined on vectors 

We will look briefly at the “syntactical mechanics” of projective transformations in the next 
section. There we will see, for example, that projective transformations map a point in projective 
space to another point in projective space, but they do not map affine points to other affine 
points. That is, if a point happens to be in the affine w=1 plane, there is no guarantee that the 
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transformation will leave it in the w=1 plane. 
In section VII we shall study how a projective transformation can be constructed for a given 
perspective viewing specification. Otherwise, affine maps suffice for everything we wish to do in 
terms of coordinate transformations for computer graphics. 

III.5 Matrices 
In section III.3 we saw that general affine transformations could be represented by a 3x3 matrix 
M and a vector t from the associated vector space (equation 3.5). We also stated in section II that 
a given point typically undergoes a series of affine transformations as the system prepares to 
draw portions of geometry dependent upon the point. In order to minimize required computation, 
it is common to combine as many transformations as possible so that one merged transformation 
can be applied to points. The application of this merged transformation is equivalent to the 
successive application of each individual transformation. 
This process is cumbersome with the representation of equation 3.5, and it does not allow the 
inclusion of projective transformations. Granted it is not common to employ projective 
transformations early in the pipeline; it is common to use one as the final step of the pipeline 
when implementing a perspective transformation. In order to facilitate the mechanics of 
concatenation of transformations and allow projective transformations as well, we embed the 
affine points in projective space and augment the representation of the affine transformation so 
that it describes a linear transformation in projective space. Specifically, we re-write equation 3.5 
as: 
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 (3.7) 

By setting the bottom row to (0,0,0,1), we are guaranteed that this transformation will not map 
points out of the affine plane. Therefore the 4x4 matrix in equation 3.7 describes the same affine 
transformation as does equation 3.5. The only difference is that this description is embedded in 
projective space. 
Let’s look a little more closely at the general form of this 4x4 matrix, focusing on what the 
various portions of the matrix do for us. First note that we will variously use two notations to 
describe 4x4 matrices. You should be equally comfortable with both: 
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Obviously M and t describe an affine transformation as we have seen. When the bottom row is 
different from (0,0,0,1), however, the transformation represented by M4x4 is not affine. If 
B=(0,0,0) and S≠1, a scaling occurs. 
We introduced the identity matrix in section III.4. When the context makes the intent clear, we 
will simply use I to denote either the 4x4 or 3x3 identity matrix. If there is any chance for 
confusion, we will write I3x3 or I4x4 for 3x3 or 4x4 versions of the identity matrix, respectively. 

Exercise: In equation 3.8, suppose M=I3x3, t=B=0, and S>1. Describe 
how M4x4 will uniformly scale any geometry to which it is applied. 
Does the geometry get larger or smaller in affine space? 
Exercise: Given an arbitrary M and t, the transformation represented 
by equation 3.8 with B=0 and S≠1 is an affine transformation. 
Describe how to compute M′  and t′ in terms of M, t, and S so that the 
effect of transforming a point P by the affine transformation 
determined by (M′ , t′) is the same as embedding P in projective space, 
applying the matrix of equation 3.8, and then projecting back to affine 
space. 

Recall we stated that any affine transformation could be described as some combination of 
translation, rotation, scaling, and shear. In terms of M4x4, the information describing these 
transformations is strictly partitioned as follows: all rotation, scaling, and shearing operations are 
encoded in M; all translation is contained in t. 
If we think about this partitioning for a minute, we can tie together our earlier discussion on the 
relationship between ideal points and vectors with the way equation 3.6 says affine 
transformations should be applied to vectors. Vectors have no position, hence it is meaningless to 
apply a translation to them. On the other hand, the translation component of affine 
transformations is of course critical for points, hence it must be included. Observe how an affine 
transformation encoded in a 4x4 matrix like M4x4 can be used to apply the transformation in a 
uniform fashion to points and (the ideal points  associated with) vectors represented in projective 
space: 
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Table 3.2 
It may be difficult to visualize at this point a situation in which you would want B≠(0,0,0). As 
we have remarked, such a transformation would not be affine since it would map points in the 
affine plane to locations in projective space not on the w=1 plane. We will see in section VII how 
such a mapping can be used to implement perspective projections. 

Exercise: All of our comments here apply equally well to 2D affine 
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geometry embedded in projective xyw space. Suppose we have a 3x3 
matrix which describes an affine transformation in 2D space. Describe 
and justify how a 4x4 matrix applying this same transformation to 
geometry in 3D affine space can be constructed. The justification 
should be based on the assumption that the z coordinates of points 
should not be changed by the transformation, nor should they 
influence the transformed x and y coordinates of points. 

Finally, let’s consider again the various coordinate systems introduced in the pipeline of section 
II (Figure 2.1). I specifically noted the existence of “HNPC”, the Homogeneous Normalized 
Projection Coordinate system. In section III.2 I mentioned HNPC as an example of a projective 
coordinate system. Both PHIGS and OpenGL employ 4x4 matrices at the API for setting 
transformation matrices. Therefore in principle PHIGS and OpenGL coordinates can have w≠1 
following the application of the first modeling transformation, and it could be argued that all 
coordinate systems should be labeled with an “H” (e.g., “HWC”, etc.). Employing non-affine 
modeling transformations is extremely rare, and it introduces subtleties that we will not address 
here. Other than defining rational curves and surfaces as mentioned in section II, coordinates 
with w≠1 are most common when processing perspective transformations. Since our use of the 
“H” prefix was intended to emphasize where homogeneous coordinates are used to support such 
projections, we only explicitly show it in Figure 2.1 for HNPC. 

III.6 Inverse Transformations 
It is frequently desirable to apply the inverse of a transformation. For example, a user may click 
in the graphics window to indicate a position in space where some new feature is to be placed. 
The device click coordinates must be transformed back to an appropriate object coordinate 
system. As another example, given a location in world coordinate space on an instance of some 
component piece of geometry, we would like to be able to obtain the corresponding location in 
the local coordinate system in which the component was originally specified. 
We can characterize the inverse of an affine transformation by solving equation 3.5 for Q: 

 Q =M
!1

X Q( ) ! t( )  

We thus see that the inverse of an affine transformation can be written as another affine 
transformation: 

 ! X P( ) = M
"1

P + ! t  

where ! t = "M
"1

t . If X maps points from system S1 to system S2, X′ maps points from S2 back to 
S1. 
Obviously M must be non-singular. This will be the case for all of the transformations we 
describe in these notes. Finding matrix inverses can be computationally expensive and 
numerically delicate. The next section describes an important class of affine transformations for 
which inverse computation is particularly easy and robust. 

III.7 Orthogonal Matrices and Rigid Transformations 
An orthogonal matrix is one which has the property that its inverse is the same as its transpose: 
M

!1

= M
T . Equivalently stated, the rows of an orthogonal matrix are mutually perpendicular unit 
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vectors; that is, they determine an orthonormal coordinate system. 
A 3x3 orthogonal matrix whose rows determine a right-handed orthonormal coordinate system 
describes a rigid transformation. The rows determine a right-handed coordinate system if and 
only if: 

(row1 x row2) · row3 = +1. 
(Section III.7.2 reviews the definition and use of the cross and dot products used in this 
expression.) 
Rigid transformations are an important special class of affine transformations which preserve 
distances between points as well as lengths of and angles between vectors. 
We have stated that all affine transformations can be constructed from translations, rotations, 
scales, and shears. The 3x3 matrices associated with translations and rotations are rigid; those 
associated with scales and shears are not.  

III.8 Common Vector Operations 
Earlier we saw that multiplying a vector by a scalar yielded another vector. This new vector had 
a different length and, if the scalar was negative, pointed in the opposite direction. We also saw 
that addition and subtraction of vectors was well-defined. The situation with points was more 
restrictive. While subtracting two points yielded a well-defined vector, general linear 
combinations of points were only valid under very special conditions. 
In this section we review additional important operations applicable only to vectors in a 
Euclidean space. Most of this material should be review; but, as with previous sections, our 
approach here is to emphasize the geometric intuition behind these operations. A clear 
understanding of this geometric interpretation will be vital to an understanding of the material 
which follows. 
We present three operations here: the dot product, the cross product, and the tensor product. For 
each, we present a mathematical definition from which the geometric intuition derives; a 
computational formula which is used internally to compute the product from two given vectors; 
and a list of properties which we implicitly exploit in later derivations. 
The dot product and the tensor product are well defined on vectors of any dimension. By 
contrast, the cross product is unique to 3D Euclidean space. 

In formulas and discussion below, we will use ˆ i , ˆ j , and ˆ k  to denote unit vectors – i.e., vectors 
whose length is 1 – along the x-, y-, and z-axes of some orthonormal coordinate system. 

III.8.1 The Dot Product 
Mathematical Definition For two arbitrary vectors u and v, their dot product is defined as the 

scalar: 

  u·v = |u||v|cosθ 

 where θ (0≤θ≤π) is the angle between the two vectors when they are 
drawn “tail to tail”. See Figure 3.4(a). 

Properties Multi-linear: u·(av + bw) = a(u·v) + b(u·w) 
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 Commutative: u·v = v·u 
 u·0 = 0·u = 0 
 if (u≠0) and (v≠0) then: 
  (u·v=0) if and only if u is perpendicular to (orthogonal to) v 

 
Computational Formula Clearly ˆ i ! ˆ i = ˆ j ! ˆ j = ˆ k ! ˆ k = 1 and ˆ i ! ˆ j = ˆ i ! ˆ k = ˆ j ! ˆ k = 0 . From these 

observations and the properties summarized above, it is 
straightforward to demonstrate that a numerical value for the dot 
product of two arbitrary vectors u and v can be computed as: 

  u·v = uxvx + uyvy + uzvz 
 For example, if u=(1,-2,3) and v=(-2,1,1) then u·v=-1. 

Notes • The length of a vector is computed as u = u !u . 

 • Since scalar multiplication and division is well-defined for vectors, 
we can normalize a vector (i.e., compute a vector of unit length 
parallel to a given vector) as ˆ u = au , where a = 1 u . A vector of 
unit length is called a unit vector. 

 • Given a unit vector ˆ u , we can compute the length of an arbitrary 
vector v in the direction of ˆ u  as ˆ u ! v . This is illustrated in Figure 
3.4(b) where the red line is the result of projecting v in a direction 
perpendicular to ˆ u  onto the line containing ˆ u . The length of this red 
line is the length of v in the direction of ˆ u . This relationship and 
how it is described by the mathematical definition of the dot product 
given above (when u is a unit vector) can also be understood by 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 27 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

considering the right triangle formed by the hypotenuse v, the red 
line, and the green line. 

 • Given a unit vector ˆ u , it is frequently useful to decompose an 
arbitrary vector v into the sum of two vectors, one parallel to ˆ u  and 
the other perpendicular to ˆ u . The formula makes use of the “length 
of v in the direction of ˆ u ” formula just given. Specifically we write: 

  
v parallel, ˆ u 

= v
||, ˆ u 

= ˆ u ! v( )ˆ u 

v
perpendicular, ˆ u 

= v
", ˆ u 

= v # v
||
= v # ˆ u ! v( )ˆ u 

 (3.9) 

 When there can be no ambiguity as to which unit vector is involved, 
we will usually use the shorthand notation: v

||
 and v

!
. 

 Exercise: Describe the geometric meaning of these two formulas. 

 

III.8.2 The Cross Product 
Mathematical Definition For two arbitrary vectors u and v, their cross product is defined as a 

vector. 
 The length of the cross product vector is defined as: 
  u ! v = u v sin"  

 where θ (0≤θ≤π) is the angle between the two vectors when they are 
drawn “tail to tail”. 

 The direction of the cross product vector is defined as perpendicular 
to both u and v with sense determined by the right hand rule. See 
Figure 3.5(a). 
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Properties Multi-linear: u ! av + bw( ) = a u ! v( ) + b u ! w( )  

 Anti-commutative: u ! v = "v ! u  

 u ! 0 = 0 ! u = 0  
 if (u≠0) and (v≠0) then: 
  (u ! v = 0 ) if and only if u is parallel to v 

Computational Formula Clearly ˆ i ! ˆ i = ˆ j ! ˆ j = ˆ k ! ˆ k = 0 , ˆ i ! ˆ j = ˆ k , ˆ j ! ˆ k = ˆ i , and ˆ k ! ˆ i = ˆ j . 
From these observations and the properties summarized above, it is 
straightforward to demonstrate that a numerical value for the cross 
product of two arbitrary vectors u and v can be computed as: 

  u ! v =

ˆ i ˆ j ˆ k 

ux uy uz

vx vy vz

=

uy uz

vy vz
,"
ux uz

vx vz
,
ux uy

vx vy
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' 
(  

 For example, if u=(1,-2,3) and v=(-2,1,1) then u ! v = "5, "7,"3( ) . 

Matrix Representation Because the cross product of two vectors is itself a vector, and 
because the operation is linear, we can express the cross product as a 
matrix operation. That is, given an arbitrary vector u, we can create a 
matrix U such that, for any other arbitrary vector v, Uv = u x v. It is 
easy to verify that 

  U =

0 !uz uy

uz 0 !ux
!uy ux 0
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 (3.10) 

Notes • The cross product arises frequently in graphics derivations. We will 
see it, for example, when deriving general rotation matrices in a later 
section. 

 • The length of the cross product is the area of the parallelogram 
determined by the vectors u and v. See Figure 3.5(b) where the red 
lines complete the parallelogram determined by the vectors u and v. 

 Exercise: Suppose we define w = u x v and suppose we know only 
that this definition makes w perpendicular to both u and v. Using this 
fact and properties of the dot product, show that you can determine 
w up to a scale factor. 

III.8.3 The Tensor Product 
We will not make extensive use of the tensor product of two vectors in these notes. However, it 
does occasionally appear in the derivation of general modeling transformation matrices. 
Therefore we briefly introduce it here. 
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Mathematical Definition For two arbitrary vectors u and v, their tensor product — written 
u! v  — is an affine transformation whose effect on an arbitrary 
vector w is defined as: 

  u! v( )w = v "w( )u  

Properties Multi-linear: u! av + bw( ) = a u! v( ) + b u! w( )  

 u! v = v !u( )
T  

Computational Formula It is easy to verify by direct expansion of the mathematical definition 
given above that the tensor product of two arbitrary vectors u and v 
can be computed as: 

  u! v =
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 (3.11) 

Notes Equation 3.11 states that if we consider u and v to be column 
vectors, then u! v = u * vT . 

 Recall our formula for computing the component of one vector 
parallel to another (unit) vector. In particular, given a unit vector ˆ u , 
it is easy to show that: 

  v
||
= ˆ u ! v( ) ˆ u = ˆ u " ˆ u ( )v  (3.12) 

 It is in this context that we shall see the tensor product appear when 
developing matrices for general mirrors and rotations. We shall see a 
slight generalization of this in the context of shears. Specifically, for 
arbitrary vectors c, d, and e, it is straightforward to demonstrate that: 

  c !d( )e = e" c( )d = e"d( )c  

III.8.4 Additional Notes on Vector Operations and Manipulations 
The operations we have seen to this point comprise the valid set of operations one can perform 
between a pair of vectors. When performing vector geometric derivations, you must be careful 
that all steps in the derivation can be justified in terms of these operations. A common mistake, 
for example, is to conclude from: 

ˆ n =
n

n
 

that 

n =
n

ˆ n 
 

and then to substitute n / ˆ n  where |n| appears in some other expression. However the second of 
the two equations above is invalid since division of one vector by another is not a defined 
operation! 
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We oftentimes wish to compute an arbitrary vector perpendicular to a given one. We can use 
properties of the dot product to do so. For example, given a vector w, find its two components 
with maximum absolute value. Switch them, negating the component with larger absolute value. 
Set the third component to 0. The resulting vector, say u, will be perpendicular to w. (Why?) A 
third vector v can then be computed as v = w x u. Taken together, (u, v, w) can be normalized 
and used to define a right-handed orthonormal coordinate system. It is common to provide a 
utility implementing these ideas. Appendix B shows the declaration of a class method 
aVector::coordinateSystemFromUW which does so. Examples 4 and 8 of Appendix E illustrate 
its use. 
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IV. Coordinate versus Vector Geometric Approaches for 
Generation of Transformation Matrices 
So far we have considered the roles that transformations play and how they can be represented as 
matrix operations. Starting in the next section we will study how matrices for specific 
transformations can be constructed. Here we briefly review two major approaches to the 
mathematical analysis required to derive expressions for required matrices: coordinate-based and 
vector geometric. While both approaches are sufficiently powerful to derive all matrices of 
interest, we shall see that the two approaches have complementary strengths. Each will emerge 
as ideal for different situations. 
By “coordinate-based” methods, we mean mathematical analyses based directly on the 
relationship of geometry to some specific coordinate system. For example, I may ask how the z 
coordinates of two points compare. By contrast, “vector geometric” methods focus on 
relationships between geometric entities, not their individual positions and orientations with 
respect to some particular coordinate system. For example, I may compute the vector between 
two points and find its length in the direction of some other relevant unit vector. 
You may argue at this point: “But how can you compute the vector and find its length in the 
specified direction without using coordinates of the points?”  It is absolutely correct that to carry 
out these operations on a computer, you need to use coordinates. However, the level of 
abstraction used in the mathematical analysis remains focused on points and vectors in Euclidean 
spaces. We will see several examples of the benefit of this higher level of abstraction in sections 
V and VI when deriving the matrices for general modeling and viewing transformations. For 
example, coordinate-based approaches for constructing matrices for general rotations must 
employ numerically sensitive tests to determine whether intermediate floating point values are 
(close to) zero. By contrast, the vector-geometric approach that we will derive requires only one 
initial test to ensure that the programmer has not given us a zero vector as a rotation axis. Not 
only will we require just this one test, but it is also easier to make it numerically robust. 
As a final rejoinder to the argument that coordinates must be used to actually carry out the 
computations, note that properly engineered modeling system libraries will hide those details 
from you as a programmer. That is, point, vector, affine transformation, and others will be 
abstract data types for which you will only see the fundamental Euclidean space operations of 
addition and subtraction of points and vectors, scaling of vectors, barycentric combinations of 
points, dot and cross products of vectors, etc.4 
With respect to the pipeline of figure 2.1, we will find that vector geometric approaches are best 
suited when deriving transformations for the early stages of the pipeline (i.e., the various 
modeling and view orientation transformation matrices). But then the situation will change. We 

                                                
4 Well, graphics APIs like OpenGL and OpenInventor do ask you to provide coordinates, arrays of coordinates, 
arrays for matrices, and such. I am not suggesting that these and similar APIs are not “properly engineered”. To the 
contrary, they were designed as general low-level APIs for 2D or 3D geometry in either affine or projective space. 
They make no specific assumptions about the application which uses them. My comments here should be interpreted 
as applying to higher level libraries used by your application. The translation to coordinates would then only be 
required to, for example, draw a picture using OpenGL of something you created in your program. In fact, that 
application-dependent translation could easily be hidden in your program in the implementation of some draw 
method for your application’s graphical objects. 
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construct the view orientation transformation so that the resulting VRC system exhibits certain 
important relationships with respect to the graphics display device. Not only do these 
relationships simplify (both for the end-user as well as for the graphics programmer) the 
subsequent specification of projection and workstation mapping data, but also they can be 
exploited to simplify the analysis required to derive the projection and workstation 
transformation matrices. These matrices (as well as the clipping and projection algorithms) are 
most expediently derived using coordinate-based schemes that exploit the special properties that 
we “built into” VRC and NPC. 

IV.1 Coordinate-Based Approaches 
Coordinate-based approaches in effect force us to use a particular coordinate system as an 
intermediary when asking questions about the relationship between two objects. For example, 
instead of directly specifying a query between two entities A and B, I must first look at property 
p of A with respect to the coordinate system and compare the result to property p of B with 
respect to the same coordinate system. Based on the comparison, I must try to determine an 
answer to the original question. If I am lucky — i.e., if A and B happen to be described in a 
convenient coordinate system — everything is OK. Otherwise it gets hairy. 
When this approach works, it generally works well. As an example, suppose we have 
transformed two points into an eye coordinate system, and now we need to know which is closer 
to the eye so that we will know which is visible. The eye coordinate system is constructed so that 
“distance from the eye” relates directly to “z coordinate”. Hence we use “z coordinate” as 
“property p”, and we can answer our original question simply by comparing the two z 
coordinates. Nothing could be simpler. 
On the other hand, suppose we have two arbitrary vectors u and v, and I want the matrix which 
rotates u onto v. Since we cannot assume any special relationships among u, v, and the 
coordinate system, a coordinate-based approach would have to determine the series of 
transformations which would map each vector onto, say, the z axis. The desired transformation 
would then be the result of concatenating the transformations for u followed by the inverse of the 
transformations for v. As we will see below, this is even more complicated than it sounds to 
implement correctly. 

IV.2 Vector Geometric Approaches 
Vector geometric approaches free us from the need to use coordinate systems as intermediaries 
when performing geometric operations or querying the relationship between objects. Instead they 
allow us to derive relevant expressions which are independent of any particular coordinate 
system. 
Two primary considerations with respect to typical geometric analysis make the ability to define 
and manipulate expressions in this manner desirable: 

• There are in general no special relationships between the entities with respect to a given 
coordinate system which can be exploited to make the derivation easier. 

• While there is in general no special relationship that we can exploit, there may coincidentally 
be some special relationship that a coordinate-based algorithm would have to detect and 
handle. 
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Let us examine this second point more closely by again considering the example of rotating u 
onto v that we mentioned above. Suppose we just consider the first part of that process: namely 
computing the matrix which rotates u onto the z-axis. Following the development in [Foley, et. 
al. 90], the required matrix would be the product: 

1 0 0

0
ux
2

+ uz
2

u

!uy
u

0
uy

u

ux
2

+ uz
2

u

" 

# 

$ 

$ 

$ 

$ 

$ 

$ 
$ 

% 

& 

' 

' 

' 

' 

' 

' 
' 

ux

ux
2

+ uz
2

0
uz

ux
2

+ uz
2

0 1 0
!uz
ux
2

+ uz
2

0
ux

ux
2

+ uz
2

" 

# 

$ 

$ 

$ 

$ 
$ 

% 

& 

' 

' 

' 

' 
' 

 

The difficulty arises because the denominators in the second matrix may be zero or nearly zero. 
Geometrically, this means that u is parallel to (or nearly parallel to) the positive or negative y-
axis direction. Therefore, an implementation of this coordinate-based algorithm would have to 
first check for this “special case” rather than simply computing the product of the two matrices. 
This is unsatisfactory because whether u is parallel to some coordinate axis is totally irrelevant to 
the operation that is ultimately desired: namely rotating u onto v. When computing the analogous 
two matrices for v, similar problems of course arise. Finally, the matrix for rotating u onto v is 
computed as the product of four matrices: the two matrices shown above and the inverse of the 
two v matrices. 
By contrast, a vector geometric approach to this operation would simply compute directly the 
matrix which rotates about the vector w (where w = u x v)  by the acute angle between u and v. 
(Refer again to figure 3.4.) We can easily determine the sine and cosine of this angle from the 
formulas presented in the section III.8. We will see later in section V a formula for the desired 
matrix which requires only w, the sine, and the cosine. 
Having derived appropriate formulas, we must of course use some coordinate system so that we 
can generate internal numerical representations to drive our computer programs. Again the point 
is that the choice of coordinate system is irrelevant: we will get the same answer whichever 
coordinate system we use. 
In summary, mathematical derivations based on vector geometric analyses are oftentimes 
simpler, they are free of annoying coordinate-system dependent special cases, and the results are 
never worse and are almost always better in terms of efficiency of implementation. As a result, 
we will see very real and quantifiable differences in that the resulting code 

• is more compact. 

• is more computationally efficient. 

• is more robust. 

• has fewer, if any, special cases. 
Most special cases in vector geometric approaches are trivially detected before the algorithm 
begins. By contrast, coordinate-based methods commonly require special case detection at 
intermediate steps of the algorithm based on quantities derived after a series of numerical 
computations. General rotations (or the example of rotating an arbitrary vector u onto another 
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arbitrary vector v) are excellent examples of this. 
However there are situations where it is useful to transform geometry into special coordinate 
systems where the orientation of the system can be exploited to dramatically simplify and 
accelerate certain types of imaging operations. Examples include clipping algorithms, visible line 
and visible surface determination, and intensity depth cueing. 
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V. Modeling Transformations 
In this section and the next, we will describe how to derive various matrices which apply 
modeling transformations and viewing transformations to points and vectors in Euclidean spaces. 
We already saw in section II how these operations are used in typical graphics pipelines. Given 
what we now know about affine transformations and how they are represented with matrices, a 
logical question to ask is: “What is the difference between modeling and viewing 
transformations?”  In a word, the answer is: “Nothing.” 
Given a matrix describing an affine transformation, it is not possible to characterize it as a 
“modeling transformation” or a “viewing transformation”; that is, it is not possible to state what 
the person who generated the matrix was thinking. Specifically, a given matrix can be interpreted 
either as transforming geometry in a fixed coordinate system (a modeling transformation), or as 
leaving the geometry fixed while applying the inverse of the transformation to the coordinate 
system (a viewing transformation). Both interpretations are equally defensible. 
While there is no difference mathematically, there is a difference in the way in which application 
programmers (or end users) think about and want to specify these transformations. For example, 
in one case a user might want to prescribe a rotation axis and an angle about which some 
geometry is to be rotated (a specification of a modeling transformation); later this same user will 
find it more meaningful to specify a viewing transformation by telling us that an observer of the 
geometry is standing at some point P, and looking at some other point Q. Not surprisingly, it also 
turns out that different analytical approaches for deriving appropriate matrices are useful for 
these different specifications, hence the treatment in two different sections. 
As argued in section IV, it is most often the case that vector geometric analyses are best for 
general modeling and viewing transformations. We will therefore not consider coordinate-based 
approaches for derivations of modeling and viewing transformations in these notes. Such 
descriptions are included in other more comprehensive texts such as [Foley, et. al. 90; Angel 09]. 

V.1 A General Strategy 
Recall we saw in section III.4 that only M (the upper 3x3 portion of a transformation matrix) is 
required to specify how an affine transformation is applied to vectors. Points, on the other hand, 
require both M and t. Therefore it is hardly surprising that it is easier to derive affine 
transformations for vectors than it is for points. 
The alert reader (no — make that the aggressive reader) might also wonder if we could somehow 
complete the derivation of the transformation for points (i.e., go on to determine what t should 
be) by reducing the problem to a vector one. The aggressive reader would be correct. Here is a 
sneak preview. 
Consider a generic point P to which we wish to apply some affine transformation X. We will 
assume that we know how to apply X to vectors. Now suppose we pick some other point F and 
write the identity: P = F + (P - F). This identity has a simple vector geometric interpretation: 
start at the point F, travel along the vector from F to P, and you arrive at P. Recall we want to 
apply the affine transformation to P, hence we can write X(P) = X( F + (P - F) ). Since affine 
transformations distribute over addition, we can rewrite this as X(P) = X(F) + X(P - F). Of 
course, (P - F) is a vector, hence by assumption we can directly compute X(P-F). Now here’s the 
trick: suppose the F we picked is a fixed point of the transformation. That is, suppose F=X(F). 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 36 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

This means we can directly apply X to points once we know how to apply X to vectors and have 
a fixed point. 
Fixed points of modeling transformations are generally always known. For example, if I want a 
matrix which applies a rotation about some axis, every point on the rotation axis is a fixed point. 
I am therefore free to use any point on that axis as F. 
We will therefore adopt the following general strategy when performing the analysis for 
modeling transformations. 

General Strategy #1 

1. Determine a 3x3 matrix M which applies the affine transformation to 3D vectors. 
2. Use a fixed point of the transformation to determine the translation component t of X. 
3. Use M and t to build M4x4 as in equation 3.8, setting B=(0,0,0) and S=1. 

 
Clearly step 3 is just a mechanical process of plugging values into matrices. As implied in the 
“sneak preview” above, it turns out that step 2 is also completely mechanical. Let’s assume we 
have determined M for our affine transformation, and we know a fixed point F. We determine t 
as follows: 

 X F( ) = F = MF + t

! t = F "MF

 (5.1) 

V.2 The Mirror Transformation 
To get an idea for how the general strategy of the previous section works, let’s consider mirror 
transformations. These are common modeling transformations which flip the “handedness” of 
geometry. For example, if I have a model of the left rear door of a car, I can apply a mirror 
transformation to obtain the geometry of the right rear door. Refer to Figure 5.1(a). 
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We stated earlier that the four basic affine transformations are: rotate, translate, scale, and shear. 
A general mirror transformation can be constructed from a combination of rotation, translation, 
and scale transformations. However since it is such a common operation and since specifying the 
mirror plane directly is so much simpler than determining and assembling the required 
component rotation, translation, and scaling transformations, we treat it directly here. Matrices 
which describe a common form of general scale will be treated as an exercise below after we 
have practiced our technique with mirror transformations. 
The mirror transformation is defined by specifying a plane in space to use as the mirror. It is 
common to define this mirror plane by specifying a point B on the plane and a vector n 
perpendicular to the plane as illustrated in Figure 5.1(a). Recall that we cannot assume the plane 
has any particular relationship with respect to the coordinate axes. In our car example, the 
designer would give us the plane which cuts the car in half, splitting the driver’s and passenger’s 
sides. That is, B would be some point in the middle of the car; perhaps where the hood ornament 
is attached to the hood. The vector n would be a vector pointing from the left side of the car to 
the right side. (We could equally well use the vector pointing from the right side to the left side. 
See the Exercise below.) The mirror transformation would then map a point on one side of the 
plane to a point on the other side which is an equal distance away as shown in Figure 5.1(a). 
A 4x4 matrix defined only in terms of B and n which represents this transformation is stated 
without proof in [Goldman 90]. The remainder of this example illustrates how the vector 
geometric tools we have been studying are used to derive this matrix. The example here 
concludes with sample C++ code implementing the formula. 
Our general strategy says that we need to focus first on vectors. Think for a minute about how 
we could describe the way vectors are affected by a mirror transformation. In particular, think 
back to vector decomposition as discussed in section III.8.1 (and summarized in equation 3.9). 
Consider an arbitrary vector v and its components parallel to and perpendicular to the plane 
normal n. How would each be affected by the mirror operation? The component perpendicular to 
n will not change, right? The component parallel to n is simply flipped (i.e., negated). Pretty 
simple. Figure 5.1(b) illustrates the basic idea. 

To use our equations, we need to compute ˆ n  from the given mirror plane normal vector n. As we 
will see in the algorithm at the end of this section, it is common to perform this vector 
normalization at the start of the algorithm. This allows us to use simplified equations like 
equation 3.9, and it also allows us to check right away for input errors. In the case of mirror 
transformations, the only possible error is providing a zero vector for n. 
Having done this, we determine how v is transformed as follows. (As has been our convention so 
far, we will use X to denote the current transformation; i.e., the mirror transformation.) 

 

X v( ) = X v
||
+ v

!( )

= X v
||

( ) + X v
!

( )

= "v
||
+ v

!

 

Now using our formulas for vector decomposition from equation 3.9, we can write: 
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X v( ) = ! v " ˆ n ( )ˆ n + v ! v " ˆ n ( )ˆ n ( )

= v ! 2 v " ˆ n ( )ˆ n 

 

We need to write this as a matrix operation5, but there is this dot product stuff going on. 
Remember the role we mentioned for the tensor product? In particular, recall equation 3.12 
which allows us to write the expression for X(v) as the following matrix operation: 
 X(v) = Mv 
where 

 M = I ! 2 ˆ n " ˆ n ( )  (5.2) 

Exercise: Using equation 3.12, show that equation 5.2 is correct. 
Step 1 of our general strategy is now complete. The matrix M of equation 5.2 is what we need 
for vectors. 
For step 2 we need a fixed point. Clearly any point on the mirror plane is a fixed point. In 
particular, we just use the point B mentioned in the problem description and compute t using 
equation 5.1 with F=B. Step 3 then simply has us assemble the final 4x4 matrix as: 

 M
4 x4

=
M t

0 0 0 1

! 

" 

# 

# 

# 
# 

$ 

% 

& 

& 

& 
& 

 (5.3) 

Exercise: Show that the matrix of equation 5.3 is unaffected if ˆ n  is 
replaced by - ˆ n . (Note that this requires that both M and t be 
unaffected.) 
Exercise: Suppose B=(-1,3,2) and n=(2,1,-1). Show the 4x4 matrix 
which results from these values. Don’t forget that n must be 
normalized before equation 5.2 (and hence equation 5.1) can be used! 
Exercise: Show how the matrix of equation 5.3 specializes when the 
mirror plane is (i) the xy-plane, (ii) the xz-plane, (iii) the yz-plane. 
What do you use for B and n in each of the three cases? Do the 
resulting matrices make sense? Are they what you would expect? 
Exercise: A generalized scaling operation can be defined with a point 
C and three scale factors sx, sy, and sz. Geometry is scaled about C by 
the given scale factors in the three coordinate directions. Show how to 
use General Strategy #1 to derive a 4x4 matrix which will apply this 
scale transformation to points. 
Exercise: Characterize the conditions under which the general scale 
transformation of the previous exercise will be identical to the general 
mirror transformation derived above. 

                                                
5 If one only wishes to mirror individual vectors, then the formula just derived should be used. One needs the matrix 
we derive next only to allow concatenation of modeling and viewing transformations in the graphics pipeline. 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 39 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

Before moving on to the more complex example of general rotations, let’s think briefly about 
how one would write code to implement the results of this analysis. In particular, code is only 
needed to implement the final matrix of equation 5.3, not the derivations leading up to it. To 
summarize, a pseudo-code implementation for general mirror matrix generation might look like: 

algorithm BuildMirrorMatrix(B,n) returns 4x4Matrix 
1. if |n| == 0 then flag error; return IdentityMatrix 
2. nHat = normalize(n) 
3. Compute M using equation 5.2 
4. Compute t using equation 5.1 with F=B 
5. return the 4x4 matrix of equation 5.3 
end algorithm 

Using the C++ class definitions for points, vectors, and matrices documented in the Appendices, 
we can give a concrete implementation of a version of this function which creates the 3x3 matrix 
M and the translation vector t for this affine transformation: 
bool BuildMirrorTransformation(aPoint B, aVector n, Matrix3x3& M, aVector& t) 
{   aVector nHat; 
    double length = n.normalizeToCopy(nHat); 
    if (length < tolerance) 
        // a zero vector was provided for n. We cannot proceed. 
        return false; 
    Matrix3x3 T = Matrix3x3::tensorProductMatrix(nHat,nHat); 
    M = Matrix3x3::IdentityMatrix - 2.0*T; 
    // The point B is a fixed point of the transformation, hence: 
    t = B - M*B; 
    return true; 
} 

V.3 Rotation About an Arbitrary Axis in Space6 
A general rotation in 3D Euclidean space is defined by specifying a rotation axis and a rotation 
angle. Figure 5.2 illustrates our cube from the previous section being rotated about such an axis. 
The rotation axis is simply a straight line which can be specified by providing a point on the line 
and a vector giving the orientation of the line. We will therefore consider the specification 
(B, ˆ w ,θ) as defining a rotation by θ about the axis (B, ˆ w ). The positive direction of rotation is 
determined by the right hand rule, with your right thumb pointing in the ˆ w  direction. 

Exercise: Refer again to Figure 5.2. Assuming 0 < θ < 180º, which 
cube is the “original”, and which is the result of rotating the original 
about the axis? 

                                                
6 Ron Goldman first showed me this derivation when we were working together in the early 1980s. Having labored 
previously only with the “classical” approaches of standard computer graphics texts, this was my first insight into 
the power of vector geometric approaches. I have since seen similar expressions for the final matrix (e.g., page 596 
of [Schreiner, et. al. 08]). 
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In [Goldman 90], the formula we are about to derive (equation 5.4 below) is stated without 
proof. Let us see how this formula can be derived. 
As has been our practice, we begin by considering how an arbitrary vector v is rotated about the 
vector ˆ w . We will proceed as we did with mirror transformations. That is, we will consider how 
the components of v parallel and perpendicular to ˆ w  are transformed. It should be clear that any 
vector parallel to the rotation axis ˆ w  will be unaffected by the rotation. We therefore need only 
think about what happens to the perpendicular component. In effect, this allows us to reduce the 
3D problem to a 2D one. 
Consider the geometry in Figure 5.3. We see the rotation axis ˆ w , the generic vector v, and the 
components of v parallel and perpendicular to the rotation axis ˆ w . Also indicated is a plane 
perpendicular to the rotation axis. It is in this plane that we want to work. Notice the two vectors 
in this plane labeled v

!
 and ˆ w ! v

"
. Clearly they are perpendicular to each other and lie in the 

plane. (Why?) 
When we rotate v about ˆ w , we get X(v) as indicated in the figure. As argued, X(v||) is simply the 
original v||. We wish to characterize how X(v⊥) relates to v and ˆ w . The figure indicates that: 

 X v
!

( ) = cos"v
!
+ sin" ˆ w # v

!
( )  

Exercise: Demonstrate that this formula is correct. (Hint: Think of 
X(v⊥) as the hypotenuse of a right triangle and use the definitions and 
properties from section III.8.) 

We now can write a vector expression describing how to compute X(v): 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 41 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

 
X v( ) = X v

||( ) + X v
!( )

= v
||
+ cos"v

!
+ sin" ˆ w # v

!( )
 

Exercise: Show that this equation can be simplified to the following. 
(Refer again to the definitions and properties from section III.8.) 
 X v( ) = cos!v + 1" cos!( ) v # ˆ w ( ) ˆ w + sin! ˆ w $v( )  

(Notice in particular that the final term uses ˆ w ! v , not ˆ w ! v
"

.) 

Exercise: Finally, show that the 3x3 matrix M (where X(v) = Mv) can 
be computed as: 
 M = cos!I + 1 " cos!( ) ˆ w # ˆ w + sin!W  (5.4) 

where W is the 3x3 cross product matrix; i.e., Wv = ˆ w ! v . (Review 
equation 3.10.) 

Exercise: We observed in section V.2 that replacing ˆ n  with - ˆ n  did not 
affect the mirror matrix. By contrast, here we know that replacing ˆ w  
with - ˆ w  specifies a rotation in the opposite direction. What specific 
term(s) in equation 5.4 change when ˆ w  is replaced by - ˆ w ? How does 
it (do they) change? 

Of course the 4x4 matrix applying this rotation to points can now be computed as we have seen 
before by using equation 5.1 with F=B. 
The OpenGL routines glRotate[d|f](angle,x,y,z) provide just a slightly less general capability 
than what we have derived. The rotation axis for this OpenGL routine is defined as the line 
passing through the origin and the point (x,y,z) [Schreiner, et. al. 08]. In our notation, we can 
choose the origin as a fixed point of such a rotation (i.e., F in equation 5.1), hence t = (0,0,0). 
Therefore, using t = 0 and ˆ w =(x,y,z), we see that the matrix shown on pages 776-777 of 
[Schreiner, et. al. 08] (what the authors state the glRotate call produces) is a special case of 
what we have derived here. 
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Speaking of special cases, the table below lists the three basic primitive 3D rotation matrices 
(rotating about each of the coordinate axes by an angle θ). Coordinate-based derivations for these 
matrices are straightforward [Foley, et. al. 90]. 

Rotation About the x-axis by θ Rotation About the y-axis by θ Rotation About the z-axis by θ 

R
x

=

1 0 0 0

0 cos! " sin! 0

0 sin! cos! 0

0 0 0 1
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Table 5.3 
Exercise: Show how the matrix for general rotations (equation 5.3 
with M defined as shown in equation 5.4 and t as defined in equation 
5.1) specializes to the matrices of Table 5.1. What do you use for B 
and ˆ w  in these three cases? 
Exercise: Show the 4x4 rotation matrix which results from B = (0,-
2,1), w = (-1,0,2), and θ = 30 degrees. 

V.3.1 Representing an Arbitrary Rigid Transformation as a General Rotation (Optional) 
Consider an affine transformation (R, δ) where R is a 3x3 matrix describing some rigid 
transformation, and δ is a vector. (Recall the definition of rigid transformations as presented in 
Section III.7.) 
Here is a fact you probably did not know. For any such matrix, R, there exists a unit axis vector 
ˆ w  and an angle θ such that the 3x3 matrix M generated by equation 5.4 exactly matches R. 

Moreover, there is a point B and a (possibly zero) translation vector t such that the composite 
affine transformation which results from the rotation (B, ˆ w , θ) followed by a translation by t is 
equivalent to the original affine transformation (R, δ). 

In other words, regardless of how R was computed (it need only be orthogonal and right-
handed), the transformation it describes on vectors is equivalent to a rotation about the unit axis 
vector ˆ w  by θ. Furthermore, the transformation that (R, δ) describes on affine points is 
equivalent to first rotating them about (B, ˆ w ) by θ, then translating them by the (possibly zero) 
vector t. 
Let’s make sure we understand what this means. Consider as an example the sequence of m 
transformations depicted in Figure 5.4(a), and suppose we construct our affine transformation 
(R, δ) by concatenating these m transformations. Let us assume that each of the Xi is a rigid 
transformation (i.e., either a rotation or a translation). Suppose the 4x4 matrices encoding each of 
these m transformations are stored in M1, … , Mm, respectively, and suppose we compute R4x4 as: 

  
R
4x4

= M
m
*!*M

1
 

Exercise: Explain the order of multiplication in this equation. 
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Since we chose to compute the transformation (R, δ) by concatenating these m rigid 
transformations, we also know that 
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R
4x4

=
R !

0 0 0 1
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$ 
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Therefore, as implied in Figure 5.4(b), the matrix R4x4 will transform the cube from its original 
position to its final position directly. We knew this already. What is more interesting (i.e., the 
“fact you probably did not know”) is that, as implied in Figure 5.4(c), there is a point B, a unit 
vector ˆ w , an angle θ, and a possibly zero vector t such that the rotation determined by (B, ˆ w , θ) 
followed by a translation by t will also transform the cube from its original position to its final 
position. 

Let us see how we can determine B, ˆ w , θ, and t given only (R, δ). 

Eigenvector analysis tells us how to find ˆ w . Given an nxn matrix N, if there is a scalar λ and an 
n-dimensional vector e such that Ne = λe, then we say that λ is an eigenvalue of N and e is the 
corresponding eigenvector. We find the eigenvalues by rewriting the equation as (λI - N)e = 0. If 
we consider this as an equation in the unknown variable e, then there can be nontrivial solutions 
(i.e., solutions where e≠0) only if the determinant of (λI - N) is zero. If this determinant is zero, 
then at most n-1 of the n rows of (λI - N) are linearly independent. 

For the problem at hand, n=3, and the 3x3 matrix N whose eigenvectors we seek is the 
transformation matrix R. Any eigenvector of R corresponding to an eigenvalue λ=1 will give the 
direction of the rotation axis (i.e., the significance of an e which satisfies the equation is that it 
will be the desired 3D axis vector w). 

Exercise: Explain why such an e would be the desired 3D axis vector. 

Using R for N and substituting λ=1, our 3D eigenvector equation becomes: (I - R)w = 0. A 
vector w satisfying this equation is not unique; however a unit vector satisfying (I - R)w = 0 is 
unique up to a sign. We can compute such a vector by observing that specifying “(I - R)w = 0” is 
equivalent to stating that each of the three rows of (I - R) is either the zero vector, 0, or a non-
zero vector perpendicular to w. 

Exercise: Explain why this observation is true. 
Therefore we can compute w by forming the cross product of any two linearly independent rows 
of (I - R). Normalizing this vector w yields a suitable unit axis vector ˆ w . 

Exercise: How would you determine which two rows of (I - R) to use 
in order to maximize the numerical accuracy of the computed w? 
Justify your answer. 

Given ˆ w , we can compute cosθ using equation 5.4. Notice that diagonal terms are of the form: 
“cosθ + (1-cosθ)wi

2”. The sum of the three diagonal elements (called the trace of the matrix) is 
therefore: 

trace M( ) = M
1,1
+ M

2,2
+ M

3,3
= 2 cos! +1  
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Finally, any off-diagonal element Ri,j corresponding to a non-zero element Wi,j can be used to 
solve for sinθ since we know that Ri,j = (1-cosθ)wiwj + sinθWi,j for any i≠j. 

Exercise: How would you determine which off-diagonal element is 
best to use in order to maximize the numerical accuracy of the 
computed sinθ? Justify your answer. 

If a base point B exists which satisfies (I - M)B = δ , then the vector t defining the post-
translation is the zero vector. 

Exercise: Use equation 5.1 to justify this statement. (Warning: 
Because of the context of that equation as compared to the context of 
this analysis, the vector “t” in equation 5.1 is the vector “δ” here.) 

Since (I - M) is singular, however, “(I - M)B = δ” represents at most two linearly independent 
equations in the three unknowns Bx, By, and Bz. Hence we have an over-constrained system for 
which a solution (i.e., an exact base point B) may not exist. Our approach is to construct a base 
point which will satisfy at least two of the three equations. We then compute the post-translation 
vector t = δ  - (I - M)B. In the event that B is an exact base point, then clearly t will be 0. 

The approach to computing B is very much like that used to find ˆ w . We begin by observing that 
we can arbitrarily prescribe one of the coordinates of B. 

Exercise: Explain why we are able to arbitrarily prescribe a coordinate 
of B. For example, if x is the coordinate we choose to prescribe, we are 
saying that we can set Bx to anything we want, and then compute the 
remaining two coordinates By and Bz, given this choice for Bx. Include 
in your argument a characterization of which coordinates are 
candidates, and a rationale for selecting the best candidate so as to 
maximize the numerical accuracy of the point we ultimately compute 
for B. 
Exercise: Suppose we set this coordinate to zero. Show how a cross 
product can be used to compute the other two coordinates. 

The analysis described here is very general. The example of Figure 5.4 showed taking an (R, δ) 
computed by concatenating an arbitrary number of rigid transformations. We could equally well 
have computed R by generating three random mutually perpendicular unit vectors and then 
computed δ  by generating three more random numbers. The analysis described above would still 
have produced a (B, ˆ w , θ) and post-translation t describing a transformation equivalent to the 
one randomly generated. 

V.4 Shear Transformations (Optional) 
Shear transformations “slide” points in a given direction parallel to a shearing plane by an 
amount that is directly proportional to their signed distance from the plane. Points in the plane do 
not move at all (they are fixed points); points on opposite sides of the plane move in opposite 
directions. 
You use a shear transformation every time you “straighten up” a deck of playing cards sitting on 
a table. If you use the table as the shearing plane as in Figure 5.5(a), all cards except the bottom 
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one slide to the left. If instead we use a card in the middle of the deck for the shear plane as 
illustrated in Figure 5.5(b), cards in the top half of the deck slide to the left; those in the bottom 
half slide to the right, and the card in the middle does not move. 
It may be difficult to imagine how you could create a 4x4 matrix that would have such an effect. 
As we will see, our tools from section III will make this straightforward. 

 
Figure 5.5: Using a shear transformation to straighten a deck of playing cards 

Shear transformations are most commonly used in the context of projections (i.e., as a viewing 
rather than as a modeling transformation). For example, we will study coordinate-based 
techniques in section VII for constructing a matrix to shear a general oblique view volume into 
an orthogonal view volume, much like our deck of cards analogy above. In that context, z 
coordinates will remain unchanged; x and y coordinates will be sheared by an amount 
proportional to their z coordinate. Specifically, the farther they are away from the projection 
plane, the more they will be sheared. 
Using shear transformations to construct geometric models (i.e.,  using a shear transformation as 
a general modeling transformation) is certainly less common. Nevertheless, studying shears 
gives us an opportunity to exercise the use of the analytical tools we studied in section III. 
Moreover – taken together with our coordinate-based schemes in section VII – the derivation 
emphasizes the fact that the most appropriate analytical approach to a given problem (such as the 
construction of a matrix) depends upon the specific context. Recall the remarks in section I. 
Figure 5.6 illustrates the effect of shear modeling transformations on a house. In Figure 5.6(a), 
we see the house as defined without any shearing. In Figures 5.6(b) and 5.6(c), we see the house 
after different shear transformations. In both cases, the shear plane passes through the upper left 
corner of the door. In 5.6(b), the plane is perpendicular to the ground, and the shear direction is 
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straight up; in 5.6(c), the plane is parallel to the ground, and the shear direction is to the left. Just 
for fun, Figure 5.6(d) illustrates the house after being sheared first with the transformation used 
for 5.6(c), then with that used for 5.6(b). 

  
(a) Original house before any shearing (b) Original house sheared in x direction 

  
(c) Original house sheared in y direction (d) House sheared first in y, then in x direction 

 
We can describe a desired general shear modeling transformation in any of a number of ways. 
For starters, let us assume we define the shear plane by specifying a point B on the plane, and a 
vector n perpendicular to the plane. A vector u in the plane will be provided as the shear 
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direction7. Refer to Figure 5.7(a). We also must specify the amount of the shear. From what we 
have described so far, it should be clear that an arbitrary vector v will be sheared by an amount 
proportional to the length of v in the direction of n. Hence the specification of the shear must 
include specification of a scalar factor f as the constant of proportionality between “length of v||” 
and “amount of shear”. 
As an example, we see in Figure 5.7(b) two vectors v1 and v2 such that v1,! , ˆ n  = v2,!, ˆ n , but v2,||, ˆ n  > 
v1,||, ˆ n . Notice in Figure 5.7(c) that v2 gets sheared more in the direction of û than does v1. 

To summarize, our shear transformation will be specified by (B, n, u, f). That is, if someone 
gives us these four parameters, we will give them back the 4x4 matrix performing the shear. 
As we have been doing all along, we first characterize how the shear affects an arbitrary vector 
v. To derive the required expression, we normalize n and compute the unit vector û in the 
direction of the component of u perpendicular to ˆ n . Performing these two operations should be 
very familiar to you by now. Finally, we stipulate that a multiple of û will be added to our 
arbitrary vector v; this multiple will be the constant of proportionality, f, times the length of the 
component of v parallel to ˆ n  (i.e., v||, ˆ n ). 

Exercise: Explain why the following equation expresses the intent of 
the final sentence of the previous paragraph. 

 X v( ) = v + f v ! ˆ n ( ) ˆ u  (5.5) 
Exercise: Explain why the use of equation 5.5 will shear v in the û 
direction if v points to the same side of the plane as does ˆ n , but will 
shear v in the -û direction otherwise. 
Exercise: What is X(v) if v lies in the shear plane? Why? 
Exercise: Show that equation 5.5 can be written as X(v)=Mv where 
 M = I + fˆ u ! ˆ n . (5.6) 
Exercise: Show that we obtain the result of equation 5.5 if, as we have 
been doing, we characterize individually how the components of v 
parallel to and perpendicular to ˆ n  are affected. 

An alternative way to specify the amount of the shearing is to specify the angle α formed 
between ˆ n  and X( ˆ n )8. That is, we may be told how much ˆ n  is sheared. See Figure 5.8. Therefore 
instead of the shear being specified by (B, n, u, f), it would be specified by (B, n, u, α). 

Exercise: How are f and α related? That is, given an f, how could I 
compute an equivalent α, and vice versa? 
Exercise: Assume B=(3,-1,0), n=(-1,0,1), u=(1,0,1), and f=2. Show the 
4x4 matrix which shears points about this shearing plane. 
Exercise: Suppose we want to use the yz-plane as a shear plane and 
employ the z direction as the shear direction with f=2. What values do 
you specify for (B, ˆ n , û, f)? What assumptions did you make? Show 

                                                
7 Since a programmer will be giving us this vector, we cannot assume that it is actually in the plane (i.e., 
perpendicular to n). We therefore will need to actually consider only the component of u perpendicular to n as we 
will see shortly. 
8 Yet another angle-based alternative is given on page 152 of [Angel 97]. A shear in the x direction is presented there 
using an angle θ which (in our terms) is the angle between X( ˆ n ) and û. See Figure 5.8. 
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the 4x4 matrix. Show how this matrix transforms the three affine 
points: (-1,0,0), (0,0,0), and (1,0,0). Are the results what you would 
expect? 
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It is important to remember that shears are not rigid transformations. The length of a vector will, 
in general, change when a shear transformation is applied to it. Equivalently, the distance 
between two points will, in general, change after they have both been transformed by the 
shearing operation. 

Exercise: Since points in the shear plane are fixed points, the distance 
between any two points in the shear plane will obviously not change 
when the shear transformation is applied to them. Consider two points 
not in the shear plane. Under what circumstances will the distance 
between such points remain unchanged after the shear transformation 
is applied? 

Shear transformations can be constructed from a combination of rotation, translation, and scale 
transformations. 

Exercise: For the various shear transformation specifications 
mentioned above, show how to create the shear transformation by 
concatenating combinations of basic affine transformations (i.e., 
rotation, translation, and scale). 

V.5 Summary and Retrospective 
Our approach to the development of modeling transformations in this section was based solely 
on vector geometric analysis. Derivations for these matrices were occasionally tricky, but a 
major benefit is that the final computer code that one writes is much simpler, more compact, and 
free of nasty special case handling. It typically involves fewer arithmetic operations as well. 
I will not obsess here with exhaustive operation counts, but I will make some general 
observations to justify the claim that fewer arithmetic operations are usually required. Consider 
equation 5.4 for the upper 3x3 part of the general rotation matrix. Given the sine and cosine of 
the rotation angle (required by any approach), it takes 36 multiplies and 19 adds for a completely 
dumb implementation of equation 5.4. By “dumb” I mean that we do not try to exploit any 
special properties of the terms in 5.4 such as the symmetry of ˆ w ! ˆ w , the zeros in the cross 
product matrix W, or the fact that cosθI can actually be generated with no multiplications. If 
instead we symbolically expand equation 5.4 and implement the result, we can compute M with 
just 15 multiplies and 10 adds. Computing the translation vector t with equation 5.1 then requires 
an additional 9 multiplies and 9 adds. Therefore the total required to compute (M, t) (and hence 
the full 4x4 rotation matrix) is 45 multiplies and 28 adds for the dumb approach, or 24 multiplies 
and 19 adds for the optimized approach. 
The traditional coordinate-based algorithm described in the standard texts embodies a “reduce to 
the previously solved problem” approach. It works by combining primitive affine 
transformations to achieve more general ones. A completely dumb implementation of the 
combination of two affine transformations entails multiplying the two 4x4 matrices describing 
them. This step requires 64 multiplies and 48 adds. Recognizing that concatenating two affine 
transformations really only requires multiplying their respective (M, t), we observe that we can 
optimize concatenation of two affine transformations so that it requires only 36 multiplies and 27 
adds. 
As noted, this traditional “reduce to the previously solved problem” approach of combining 
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primitive affine transformations to achieve more general ones requires several concatenations of 
affine transformations. To do a rotation about a general axis in space, for example, one needs to 
concatenate seven affine transformations (i.e., perform six matrix multiplications). Therefore, 
assuming the optimized affine transformation implementation, it requires 216 multiplies and 162 
adds to create a general rotation matrix. Clearly this is far more expensive than our optimized 
vector geometric approach which by comparison required only 24 multiplies and 19 adds. 
Don’t forget that the traditional approach is even more complex in that the construction of the 
various matrices has to be “guarded” by checking for certain special cases like distances 
computed for denominators being zero or nearly zero. By contrast, once we determine that we 
have not been given the zero vector for a rotation axis (analogous to the initial test in the 
BuildMirrorTransformation function at the end of section V.2), no special case detection of any 
sort is required to implement our vector geometric equation for M. Therefore, while it is true that 
the generation of a “primitive” rotation like those in Table 5.1 is best implemented by directly 
writing code to construct the appropriate matrix, anything more general is best done with an 
implementation of equations 5.4 and 5.1. 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 53 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

VI. View Orientation Transformations 
I argued in section IV that vector geometric approaches for modeling transformations were 
useful because there were no special relationships between source and target coordinate systems 
that we could exploit, yet there were potential coincidental relationships that coordinate-based 
techniques would have to detect and handle. Moreover, there was little to be gained by 
attempting to exploit properties of either coordinate system since no operations other than 
subsequent transformations to other coordinate systems were carried out in them. 
However, the situation changes at the stage of the pipeline where viewing transformations begin. 
We have a completely assembled geometric model of which we want to generate a view. 
Realistic images of 3D models typically require one or more of the following effects: hidden line 
or hidden surface removal; intensity depth cueing; depth clipping; perspective foreshortening; 
continuous tone shading; stereo projections; and others. While it is not our intent to discuss these 
and other techniques here (see, for example, standard graphics texts such as [Foley, et. al. 90; 
Watt & Watt 92; Angel 09]), it is prudent at this point to consider common mathematical 
requirements and what is done in viewing pipelines to facilitate them. 
Let’s consider an example. A fundamental operation in hidden line elimination is to determine 
which of two points P and Q is closer to the eye. Let us assume that E is the position of the eye 
and ê is the unit vector along the line of sight, both E and ê being represented in world 
coordinates. Now if P and Q are also represented in world coordinates, we would have to 
compute dP = (P-E)·ê and dQ = (Q-E)·ê. The smaller of dP and dQ would then identify the point 
closer to the eye. 
Each such computation of a “d” requires 3 multiplies and 5 adds. If P and Q had been 
transformed into a coordinate system in which, say, the eye was at the origin and the line of sight 
was along the negative z-axis, then no “d” computations would be required at all, and we would 
need only compare Pz to Qz. Such comparisons are typically performed a large number of times 
in hidden line elimination algorithms (e.g., O(n2) where n is the number of surface elements in 
the scene). It therefore pays to transform geometry into such a coordinate system to save this 
large number of floating point computations. 
This is not an isolated example. It turns out that a large number of the operations required to 
achieve realistic images in interactive graphics systems are view-dependent and can be most 
efficiently implemented in an “eye coordinate system” such as that mentioned in the previous 
paragraph. This fact is the major motivation for the view orientation transformation described in 
this section. 
To avoid confusion over the labeling of the axes in the world and eye coordinate systems, let us 
associate the labels u, v, and n with the eye coordinate system axes. Then our task is to determine 
how to transform (x,y,z) world coordinates into (u,v,n) eye coordinates. We shall assume that the 
eye is at the origin of the eye coordinate system, the û and ˆ v  axes are parallel to the horizontal 
and vertical directions of the display surface, and the ˆ n  axis is perpendicular to the display. The 
ˆ u ̂  v ̂  n  axes form a right-handed orthonormal coordinate system in which - ˆ n  is the unit vector 

along the line of sight. 
The eye coordinate system conventions described in the previous paragraph are typical of those 
in many graphics systems such as OpenGL. As we will see section VI.3, PHIGS uses a so-called 
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view reference coordinate system which represents a slight generalization of these conventions. 
To better understand the eye coordinate system and to begin to get a feel for how we can derive 
the matrix which represents the affine map from world coordinates to eye coordinates, you can 
imagine the ˆ u ̂  v -plane as a display screen which you drag around inside the 3D world coordinate 
system. Any given position and orientation of this display screen determines an eye system. 
Numerically, we will describe the horizontal and vertical directions of this screen by computing 
the world coordinate descriptions of the vectors û and ˆ v . (Since the vectors define a right-
handed orthonormal coordinate system, the third vector can be computed from a cross product 
once any two are known.) 
Before studying specifically how we compute these numerical descriptions, let’s first see how we 
will use them once we have them. That is, suppose we know the world coordinate descriptions of 
unit vectors û, ˆ v , and ˆ n . How can we use them to map an arbitrary vector m represented in 
world coordinates into its representation in eye coordinates? 
To be able to answer this question, we need to understand the geometric significance of the 
components of a vector. That is, what is the significance of, say, mx? It is simply the length of the 
vector m in the direction of the world coordinate x axis. That language should sound very 
familiar. 
In section III.8.1 we read that the dot product of an arbitrary vector m with a unit vector was the 
length of m in the direction of the unit vector. Hence, mx = m·ˆ i . It follows, then, that we can 
compute the components of m with respect to our eye coordinate system axes simply by 
computing dot products with the unit vectors û, ˆ v , and ˆ n . Specifically, meye = (m· û , m· ˆ v , 
m· ˆ n ). This means the three rows of the matrix M representing the view orientation affine 
transformation are simply these three unit vectors: 

 M =

ux uy uz

vx vy vz

nx ny nz

! 

" 

# 

# 
# 

$ 

% 

& 

& 
& 

 (6.1) 

Hence determining the three unit vectors û, ˆ v , and ˆ n  represents completion of step 1 of “General 
Strategy #1” from section V. Given these vectors, we must use a fixed point to determine the 
translation vector of the affine transformation. What can we use as a fixed point? 
Uh-oh. 
In general there is no fixed point in a view orientation transformation. Imagine, for example, 
placing our display screen so that it is parallel to the xy plane, but translated away from the 
origin. There would be no point whose world coordinates would be the same as its eye 
coordinates. 

VI.1 Generalizing Our General Strategy 
For situations like we just encountered where there is no fixed point, a minor variation 
oftentimes works. Go back and review the discussion that led up to equation 5.1. Notice in 
particular that what was important about our fixed point F was that we knew what X(F) was. 
That is, we knew the representation of F in the target coordinate system. In fact, its 
representation was the same in the source and target systems; that is, X(F)=F. 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 55 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

Suppose we know a point Q in the source coordinate system, and we know the point Q′ to which 
it gets mapped. Then a slight variation of equation 5.1 yields: 

 
X Q( ) = ! Q = MQ + t

" t = ! Q #MQ
 (6.2) 

This derivation is applicable to any affine transformation for which we know such a Q and a Q′. 
In the context of the eye coordinate system specification, it is common for graphics APIs to 
require that programmers specify the world coordinates for the position of the viewer (the point 
E introduced at the start of section VI). 
To what point does E get mapped by the view orientation transformation? According to the 
definition of the eye coordinate system, E must get mapped to (0,0,0) in the eye system. 
Let us therefore consider the following generalization of General Strategy #1: 

General Strategy #2 

1. Determine a 3x3 matrix M which applies the affine transformation to 3D vectors. 
2. Use a point whose coordinates are known before and after application of X (i.e., use a point 

whose coordinates are known in the source and target coordinate systems) to compute the 
translation component t of the affine transformation as in equation 6.2. 

3. Use M and t to build M4x4 as in equation 3.8, setting B=(0,0,0) and S=1. 

VI.2 Derivation of the OpenGL Viewing Transformation 
The input parameters to the OpenGL gluLookAt routine are E=(eyeX, eyeY, eyeZ), C=(centerX, 
centerY, centerZ), and up=(upX, upY, upZ). The point C is an arbitrary point along the line of 
sight. It should therefore be clear that we can compute n = E - C (recall that -n is along the line 
of sight), and we normalize n to get ˆ n . The unit vector ˆ v  is defined as the unit vector in the 
direction of the component of up perpendicular to ˆ n  (recall equation 3.9). Finally, û is simply 
the cross product of ˆ v  and ˆ n . Equation 6.1 specifies how to construct the 3x3 matrix M from 
these three unit vectors. Using equation 6.2 with Q=E, and Q′=(0,0,0) completes the 
specification of the affine transformation. 

Exercise: Determine the 4x4 matrix which results from each of the 
following sets of parameters: 

• E=(0,0,0), C=(0,0,10), up=(0,1,0). 
• E=(3,1,10), C=(3,1,0), up=(0,1,0). 
• E=(3,1,10), C=(3,1,0), up=(1,0,0). 
• E=(7,3,-1), C=(0,3,9), up=(1,0,1). 

VI.3 The PHIGS View Reference Coordinate System and View Orientation 
Transformation 

PHIGS does not use an eye coordinate system per se, rather the programmer defines parameters 
for a view reference coordinate system (VRC). The VRC coordinate system is used as a 
reference system (hence the name) in which subsequent viewing information (including the 
actual position of the eye) is defined. As with OpenGL,  the û and ˆ v  axes of VRC are parallel to 
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the horizontal and vertical directions of the display surface, and the ˆ n  axis is perpendicular to the 
display. The difference is that - ˆ n  – while directly related to – is not necessarily parallel to any 
line of sight. 
The input parameters to the PHIGS evaluate_view_orientation_matrix are the view 
reference point V, the view plane normal vpn, and the view up vector up. Like the point E in 
section VI.2, the point V is defined as the origin of VRC, hence it is mapped to (0,0,0) in VRC. 
(Again the difference is that V will not necessarily be the actual position of the eye.) The vpn 
vector is used to specify the ˆ n  axis direction. Specifically, the unit vector ˆ n  is obtained by 
normalizing vpn. PHIGS’ up vector is interpreted exactly as OpenGL’s up vector in gluLookAt. 

Exercise: Determine the 4x4 matrix which results from each of the 
following sets of parameters: 

• V=(0,0,0), vpn=(0,0,1), up=(0,1,0). 
• V=(4,2,3), vpn=(0,0,1), up=(0,1,0). 
• V=(4,2,3), vpn=(0,0,1), up=(1,0,0). 
• V=(6,3,-17), vpn=(0,1,-1), up=(1,0,1). 
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VII. Projections and Device Mappings 
To this point, we have been studying a succession of coordinate systems, their uses, and how to 
compute the transformations from one to the next: modeling coordinate systems, the world 
coordinate system, and the eye coordinate system. In all of these, the units along the axes have 
been those used by the application (e.g., centimeters, miles, angstroms, hours). In terms of 
coordinate systems, the final steps of the graphics pipeline involve projecting the 3D geometry 
onto a plane and mapping the units from those used by the application to those used by the 
output device. These steps may be done in either order, and the mapping to device units is often 
done in two steps, mapping first to a “logical device” whose dimensions along each axis are 
[0..1] (as in PHIGS) or [-1..+1] (as in OpenGL). If such a logical device is used, clipping is 
normally performed in that space, then a simple scaling and offset is performed to map the 
clipped model to the desired portion of the display surface. 
The process of mapping a source rectilinear region of space (defined, for example, in application 
units in the eye coordinate system) to a destination rectilinear region of space on either a logical 
or physical device is specified using a so-called window-viewport transformation. Regardless of 
whether we use a logical device space or a physical device space (e.g., pixels), application units 
are left behind following application of the window-viewport transformation. 
We begin this section by studying the window-viewport transformation. These transformations 
are fairly easy to understand, and they are often embedded in the matrices implementing the 
projection operation. Following coverage of the window-viewport transformation, the remainder 
of this section will be devoted to projections. We shall review the major types of projections, 
study the basic steps required to implement a projection, and finally derive projection 
transformation matrices, relating them to the graphics APIs we have been following: OpenGL 
and PHIGS. 

VII.1 Window-Viewport Transformations 
Window-viewport transformations are a common means of specifying a transformation between 
two coordinate systems defined by specifying how an nD rectangle in one is to be mapped onto 
an nD rectangle in the other. In 2D graphics packages, for example, the programmer might 
specify that the rectangle -10≤x≤15 and 30≤y≤55 is to be mapped onto a portion of the screen 
whose pixel limits are 200≤x≤500 and 200≤y≤500. 
An issue which we shall largely ignore here relates to aspect ratios. For any rectangular region (a 
window, a viewport, a pixel, etc.), the aspect ratio is defined as the ratio of the height of the 
region to its width. The window-viewport transformations as constructed below will blindly map 
the corners of the window to the corners of the viewport. If the aspect ratios of these two regions 
differ (taking into account not only their dimensions, but also the aspect ratio of the pixels), then 
the image will be scaled differently along the x and y directions, producing a distorted image on 
the device. Some graphics APIs leave this totally up to the programmer to control, others 
automatically prevent such distortion. PHIGS does a little of both: in its mapping to logical 
device space, any distortion introduced by the programmer is permitted; later in the workstation 
window-viewport transformation (the mapping from the logical device to a physical device), 
PHIGS will utilize only the largest portion of the physical device viewport whose aspect ratio 
matches that of the window defined in the logical device. 
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Since the aspect ratios of the window and the viewport in the example in the first paragraph of 
this section are both “1” (assuming square pixels), no distortion will be introduced by that 
mapping. If instead the y pixel limits were 200≤y≤350, then the image would be stretched twice 
as much in x as in y. 
Let us now focus on 3D window-viewport mappings as might be found in OpenGL or PHIGS. 
To re-establish our context in terms of where we left off in section VI, we shall assume we 
define our window in the uvn eye coordinate system. The 6-tuple W = (umin,umax , vmin,vmax , 
nmin,nmax) defines the 3D window, and a corresponding 6-tuple V = (xmin,xmax , ymin,ymax , 
zmin,zmax) defines the viewport. For our purposes here, V will be a region in either a logical or a 
physical device, but recall that window-viewport transformations can be used to specify a 
transformation between any two coordinate systems9. 
Depending on the other projection parameters, W may be a parallelepiped (orthogonal or 
sheared), or a frustum (again, orthogonal or sheared). However, the window-viewport 
transformation is defined as a linear transformation which only scales and translates. In 3D 
systems where sheared windows and/or windows which are frustums appear, we shall see that 
appropriate transformations will be applied first which will shear and/or stretch nonlinearly the 
window W so that it becomes an orthogonal parallelepiped. Only then will the window-viewport 
transformation as described below be created and applied. 
For discussion here, we will use c to denote a generic window coordinate (c being one of u, v, or 
n) and C to denote a generic viewport coordinate (C being one of x, y, or z). 
In PHIGS, 0 ≤ C ≤ 1. Programmers can specify multiple viewports in a device independent 
fashion on this logical device, and the workstation transformation (discussed in section VIII) 
later maps this logical device layout to a physical device. To support this, programmers are given 
tools which allow them to specify arbitrary subsets of this 0..1 logical device when generating 
view mapping transformations. OpenGL assumes -1 ≤ C ≤ +1, but programmers never “see” this 
coordinate space. That is, the OpenGL projection matrices map the viewing window into this 
viewport, but then the “true” viewport which maps this entire space onto a physical device 
viewport is applied. In OpenGL, programmers are never allowed to specify subsets of the 
OpenGL logical device. 
The window-viewport mapping operates independently in the three coordinate directions. That 
is, given window limits (cmin, cmax) and corresponding viewport limits (Cmin, Cmax) in 
corresponding directions c and C, the viewport coordinate corresponding to a window coordinate 
is computed as C = acc + bc where ac and bc are uniquely determined from these corresponding 
limits. For example, the following two equations can be solved for ac and bc in each coordinate 
direction to determine the constants defining the window-viewport map: 

Cmin = accmin + bc 
Cmax = accmax + bc 

With one exception, we will therefore simply use ac and bc in the derivations below without 
                                                
9 Recall, for example, we stated above that PHIGS uses two window-viewport transformations. The first employs a 
W defined in view reference coordinates and a V defined in its [0..1] logical device space. In the second (the 
workstation transformation) W is defined in the [0..1] logical device space, and V is a region on the physical device. 
A similar mechanism is used in OpenGL, but only the former is really reflected in any matrices placed on OpenGL 
matrix stacks. 
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further comment. The exception is that we will see a slight variation in the n direction when 
dealing with perspective projections. 
It should be clear that the derivations of this section are independent of whether V is measured in 
pixels, fixed at (-1,1 , -1,1 , -1,1) in OpenGL’s logical device space, set to some subset of 
PHIGS’ 0..1 space, or anything else. However we will use our understanding of choices such as 
these later when examining how the matrices shown in other references (e.g., [Schreiner, et. al. 
08; Foley, et. al. 90]) relate to those developed here. 

Exercise: Given window coordinate limits W = (-1,4 , 0,8 , -5,-1) and 
corresponding logical device viewport limits V = (0.0,0.2 , 0.6,0.8 , 
0.0,0.3), derive the six constants of the window-viewport 
transformation au, bu, av, bv, an, bn. (Assume W defines an orthogonal 
parallelepiped.) Does this window-viewport map preserve aspect 
ratios? Why or why not? 
Exercise: Repeat the previous exercise using the 2D window and 
viewport limits stated in the first paragraph of this section. 
Exercise: Repeat the previous exercise, but use the modified y limits 
as suggested in the third paragraph of this section: 200 ≤ y ≤ 350. 

VII.2 Types of Projections 
Planar Geometric Projections refer to mappings of 3D geometry onto an infinite plane using a 
family of straight lines called projectors. The reader is strongly encouraged to read the excellent 
survey paper by Carlbom and Paciorek which describes the history, mathematics, and common 
uses of planar geometric projections [Carlbom & Paciorek 78]. In terms of the taxonomy of 
projections developed in that paper, the two most important and most commonly supported in 
graphics systems are parallel and perspective projections. Orthogonal and oblique projections 
are special cases of parallel projections. 
As the name implies, the family of straight lines used to implement parallel projections are all 
parallel to one another. (For obvious reasons, they cannot be parallel to the projection plane.) By 
contrast, the family of lines used to implement perspective projections all share a common point. 
In the context of graphics system view specifications, this common point is the position of the 
viewer. 
The role played by these projectors in the generation of a view is to simulate a line of sight. For 
each visible point on an object, the projection line which contains that point is followed to where 
it meets the projection plane. The collection of all such projected visible object points constitutes 
the image as seen by the viewer. 
In interactive graphics systems based on linear objects (points, lines, and polygons), only vertices 
are actually projected this way. This is the context we will implicitly assume for the remainder of 
this section. In other rendering strategies (e.g., ray tracing), the focus is not on vertices, rather 
points in a dense sampling pattern across the interior of visible surface elements are projected in 
this fashion. While conceptually the same idea, the implementation details are much different, 
due to the overall operation typical of ray tracing algorithms. 
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Figure 7.1: Projecting a point onto a projection plane 

One of the purposes of converting to an eye coordinate system was that it simplified subsequent 
view-dependent operations like projections in interactive systems., In particular, the projection 
plane in this coordinate system is a plane of constant n. We will refer to this value as n = npp. 
Figure 7.1 is a view of the uv-plane of an eye or view reference coordinate system. Since we are 
looking in a direction perpendicular to the n-axis, the projection plane n=npp appears as a line. 
This figure illustrates a generic vertex, P, a projection vector, d, and the point P´ to which P 
projects. (At this point, it doesn’t matter whether this is a parallel or perspective projection. We 
will return to this idea shortly, but for now, we require only that dn ≠ 0.) We wish to compute P´ 
from P, d, and npp. Stated another way, we wish to compute the scalar, r, such that: 

 P′ = P + rd (7.1) 

Recalling that this represents three equations (one each in u, v, and n) and recalling that the n 
coordinate of P´ must be npp, we get: 

 P′n = npp = Pn + rdn ⇒ r = (npp - Pn) / dn (7.2) 

Since npp and dn are constants, we can compute P´ from P as required. As mentioned above, this 
analysis does not depend on whether parallel or perspective projections are involved. In this 
context, these projections differ only in how d (and hence dn) is computed. 
PHIGS provides the programmer with tools for creating matrices applying both general parallel 
as well as general perspective projections. By contrast, OpenGL provides matrix generation tools 
in its API only for orthogonal and general perspective projections. However both the OpenGL 
and PHIGS APIs allow arbitrary matrices to be specified for the projection operation, hence the 
programmer who understands the derivations presented in this section can compute matrices for 
use in an OpenGL program which accomplish any arbitrary projection. 
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Following an examination of desired properties of projections and their coordinate systems, we 
will proceed to develop the matrices used to implement projections in interactive graphics 
systems such as OpenGL or PHIGS. We will see that parallel projections which preserve depth 
information can be implemented as affine maps. Perspective projections, on the other hand, 
cannot be implemented with affine transformations. We shall see that we need to employ a more 
general projective transformation to accomplish this task. 

VII.3 Desired Properties of the Projection Coordinate System 
In section VI, we discussed how geometry was transformed into an eye (or view reference) 
coordinate system. We argued there that transforming into this special system allowed us to 
simplify a whole host of image rendering effects. An important example was visible line and 
visible surface determination. Major simplifications and algorithm speedups are enabled by 
decomposing the general 3D logic required into independent sets of 1D and 2D questions which 
are both simpler to answer and simpler to organize. 
In visible surface determination, the critical 2D question is to determine whether two objects A 
and B overlap on the screen. Clearly this is a necessary condition for one to obscure the other. 
We would like to be able to make this determination based strictly on comparing their x and y 
coordinates after the projection transformation has been applied. Since the window view volume 
may have an arbitrary shape, however, we will have to make sure that the projection 
transformation distorts the window so that it maps into the orthogonal viewport volume V in 
such a fashion that screen position (and hence overlap) is determined solely by x and y 
coordinates. Furthermore, even though the analysis is based on projecting geometry onto the 
projection plane, we do not want our object to be flattened by the projection transformation. 
Instead we want the transformation to preserve exact depth relationships if possible, and at least 
preserve relative depth relationships otherwise. We shall see that this requires a shear 
transformation in the case of parallel projections and a special nonlinear transformation in the 
case of perspective. 
As implied at the start of section VII, we will derive the various projection transformation 
matrices to accomplish both the projection operation and the window to viewport map. 
Following application of this matrix, coordinates will therefore be represented in either a logical 
or a physical device space, depending on the units used in the viewport specification. 
To summarize, after the projection transformation has been applied, the graphics system need 
only look at the final x and y coordinates to draw geometry on the screen. Depth information will 
be preserved in the z coordinates so that we can perform not only the depth comparisons required 
for visible line and surface determination, but also calculations required for other effects such as 
intensity depth cueing. 

VII.4 Parallel Projections, Part 1 
We shall first study the simplest of projections: the orthogonal projection. We shall then learn 
how to employ a simple shear transformation to implement more general oblique projections. 

VII.4.1 Orthogonal Projections 
In orthogonal projections, all projectors are perpendicular to the projection plane, hence d = (0, 
0, dn). Using this fact in equations 7.1 and 7.2, it is clear that P′ = (Pu, Pv, npp) for orthogonal 
projections. But as stated in the previous section, this would result in all our geometry being 
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smashed flat onto the projection plane. Instead we wish to preserve the original depth, so we 
really want P′=(Pu,Pv,Pn). That is, we want the transformation to map P to itself. Hence the 
matrix accomplishing our depth-preserving orthogonal projection is simply the identity matrix! 
Recall, however, that we wish to apply the window-viewport transformation along with the 
projection. That only requires use of au, bu, av, bv, an, bn as described in section VII.1. The desired 
matrix is therefore: 
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VII.4.2 General Oblique Projections 
General parallel projections can be specified in a number of ways. Let us assume the PHIGS 
specification. A programmer defines a parallel projections in PHIGS by providing (i) the VRC 
window W, (ii) the NPC viewport V, (iii) a projection reference point R, and (iv) the n 
coordinate of the projection plane npp. Most of these parameters are illustrated in Figure 7.2. The 
projection reference point is used to determine the common direction of projection, d, that we 
introduced in section VII.2: 
 d = R - M 
where M is the midpoint of the window on the projection plane. That is, 
 M = ( (W.umin+W.umax)/2 , (W.vmin+W.vmax)/2 , npp) 

umin umax

R

P P"
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d
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n
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Figure 7.2: Parallel Projection Geometry 
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We saw in section VII.2 how to compute P′ from P and d. (Recall equations 7.1 and 7.2.) In 
order to preserve the original depth, however, we want to shear the view volume so that it maps 
P to P´´ as indicated in Figure 7.2. Note that: 

 P´´ = (P′u, P′v, Pn) (7.3) 

We therefore want a shearing matrix S such that P´´ = SP. 
Exercise: From equations 7.1, 7.2, and 7.3, show that the desired shear 
matrix S can be written as: 

 S =
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 (7.4) 

Exercise: Recall our derivation of general shear matrices in section 
V.4. How would you assign values to B, ˆ n , û, and f as functions of the 
PHIGS parameters described above to obtain this same matrix S? 
Demonstrate that your assignment works. 

The shear transformation S establishes an orthogonal view volume, but the units are still window 
(application) units. As we did in section VII.4.1, we compute a matrix to apply the window-
viewport mapping. It should be clear that the complete projection matrix can be written as 
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 (7.5) 

Exercise: Suppose W=(-1,4 , 3,8 , 0,5), R=(0,0,10), npp=4, and V = 
(0,1,0,1, 0,1). Show the resulting matrix. 

Recall that the only direct interface provided by OpenGL for parallel projections 
(glOrtho) supports an orthogonal transformation as derived in section VII.4.1. Since 
general matrices can be loaded or concatenated onto either the GL_MODELVIEW or 
GL_PROJECTION matrix, however, an OpenGL programmer could create the matrix 
indicated above to achieve an oblique projection in an OpenGL program. Care must 
be taken to account for the specifics of the internal logical device coordinate space 
used in OpenGL, however. This comment leads directly to the topic of the next 
section. 
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VII.5 Interlude on Handedness of Viewing Coordinate Systems 
Before we can show how our matrix expressions relate to those in common texts, we must look 
carefully at the notion of handedness of viewing coordinate systems. While general in nature, 
these concepts are most relevant to us here when understanding projection matrices, both parallel 
and perspective. 
It was common for early graphics texts and early graphics APIs to employ right-handed 
coordinate systems for all modeling operations, and then have the viewing transformations 
switch to a left-handed eye coordinate system. Computing “distance from eye” was required for 
hidden line and hidden surface removal, hence early algorithms focused on keeping these 
distances and on using matrices which transformed coordinates in the z direction so that these 
distances, not z coordinates, appeared in the third position of transformed points. In addition, 
there seemed to be the belief that, intuitively, “increasing z coordinate” implied “increasing 
distance from the eye”. Since it was desired to map the x and y directions to the horizontal and 
vertical screen directions, it was only possible to achieve the desired z direction by having the 
positive z axis go into the screen10, hence a left-handed system emerged. 
Whether this history and motivation is completely accurate is unimportant. What matters is that 
there is a legacy of the early practice of using left-handed coordinate systems that continues to 
survive in various ways in texts and APIs of today. In these notes, we derive the general 
formulas used for the PHIGS model. We then see how they specialize to the slightly simpler 
OpenGL model [Schreiner, et. al. 08].  
To start, note that the primary projection interfaces in OpenGL are glOrtho (for orthogonal) and 
glFrustum (for perspective). The parameter sequence for both of these routines takes the 
window 6-tuple (left, right, bottom, top, near, far). The (left, right, bottom, top) parameters 
describe the u and v eye coordinate system window limits in the obvious way. The parameters 
“near” and “far”, however, are distances, not coordinates. They may be signed in the case of 
glOrtho, but in any case, (i) the coordinate planes involved are n=-near and n=-far, (ii) the value 
supplied for “far” must be greater than that supplied for “near”, and (iii) both “near” and “far” 
must be positive for glFrustum. Note that using right-handed system conventions, (nmin, nmax) = 
(-far, -near). 
Once we have determined the coordinates of the near and far clipping planes, the OpenGL 
matrices map them to the viewport so that near⇒-1 and far⇒+1; i.e., a left-handed convention. 

VII.6 Parallel Projections, Part 2 
The derivation of parallel projections in [Foley, et. al. 90] and [Foley, et. al. 94] assumes that the 
projection plane is the uv plane. (They call it “xy”.) In our notation, this means that npp=0. 
Making this substitution in equation (7.4), we obtain equation 6.30 of [Foley, et. al. 90] 
(equivalently, equation 6.20 of [Foley, et. al. 94]). Then, they transform into the canonical 
viewport volume (-1,1 , -1,1 , -1,0). They do the window-viewport map by translating the center 
of the window on the near clipping plane to the origin and then scaling about the origin. 
Although the final matrix they show (equation 6.36 of [Foley, et. al. 90]; equation 6.26 of [Foley, 
                                                
10 Of course the positive y direction on some screens is assumed to extend from the top of the screen towards the 
bottom. This was another case of hardware considerations (i.e., the refresh path) influencing external software 
interfaces. Using that orientation for y would allow a right-handed coordinate system with z going into the screen. 
This seems now to be a separate issue, however. 
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et. al. 94]) includes two matrices implementing the view orientation, it should be straightforward 
to show that the composite parallel projection matrix derived there is equivalent to our equation 
(7.5) above when using the indicated viewport view volume to derive the a and b constants of 
our window-viewport matrix. 
Now let’s consider the OpenGL matrices as presented in [Schreiner, et. al. 08]. First recall that 
OpenGL only provides a direct programming interface for orthogonal projections, hence we are 
working from the matrix developed in section VII.4.1. The OpenGL orthogonal projection is 
defined as mapping the supplied window to the canonical viewport (-1,1,-1,1,-1,1). As we noted 
above, this is straightforward in the u and v directions. In the n direction, points with n=-near get 
mapped to viewport points with z=-1; points with n=-far get mapped to viewport points with 
z=+1.11 Using the abbreviations (l, r, b, t, n, f) for the formal parameters (left, right, bottom, top, 
near, far), the matrix generated is shown as follows on page 778 of [Schreiner, et. al. 08]: 

 

2

r ! l
0 0 ! r + l

r ! l
0

2

t ! b
0 ! t + b

t ! b
0 0

!2
f ! n

!
f + n

f ! n
0 0 0 1

" 

# 

$ 

$ 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

' 

' 

 

Exercise: Demonstrate that the matrix of section VII.4.1 is equivalent 
to this matrix when (i) the window-viewport constants are computed as 
described in section VII.1, (ii) the indicated viewport is used, and (iii) 
the indicated mapping in the z direction is applied. 

If more general parallel projection matrices are to be given to OpenGL, it is the responsibility of 
the programmer to build them so that the left-handed convention as discussed above and 
demonstrated in the exercise is observed. 

Exercise: Suppose we want to create a projection matrix for use in an 
OpenGL program which implements an oblique parallel projection 
with W=(-1,4 , 3,8 , 0,5) and d=(2,6,10). Assume the standard 
OpenGL convention for the location of the projection plane and the 
logical device viewport. Show the matrix you would have to pass to 
glLoadMatrix to accomplish this projection. 

VII.7 Perspective Projections 
In this section, we first derive the perspective projection matrix using the OpenGL convention 
that the viewer is at the origin of the eye coordinate system. Next we consider the more general 
PHIGS model in which the actual position of the viewer is specified by an arbitrary placement of 
the projection reference point, R, inside the view reference coordinate system. 

VII.7.1 Eye at the Origin 
Figure 7.3 illustrates the basic viewing geometry and uses the same conventions as figures 7.1 

                                                
11 Recall since the window is defined in eye coordinates, we use u, v, and n for its axes. We use x, y, and z for the 
axes of the viewport system. 
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and 7.2. 

 
Figure 7.3: Perspective projection geometry with the eye at the origin 

Unlike parallel projections, the direction of projection d is not common. Instead, the required 
projector is defined by passing a line from the point to be projected through the origin (the 
assumed position of the eye). Hence for an arbitrary point P: 
 d = (0, 0, 0) - P = (-Pu, -Pv, -Pn) (7.6) 
Equation 7.1 still applies, and equation 7.2 becomes: 

 P′n = npp = Pn + r(-Pn) ⇒ r = (npp - Pn) / -Pn (7.7) 

Notice that the n coordinate of our generic point P appears in the denominator! This result tells 
us that we cannot use an affine transformation to represent the effect of equation 7.1 using the r 
from equation 7.7. 
But notice that, while nonlinear, equation 7.1 with this value for r is rational linear. That is, it 
includes terms expressed as the quotient of two terms which are linear in the coordinates of the 
point being projected. Rational linear transformations on affine points can be described as linear 
operations when the points are embedded in projective space. Recall that the affine point (x,y,z) 
is projectively equivalent to the projective space points (wx,wy,wz,w) for all w≠0. To see how we 
can use this projective equivalence, let’s use our expressions for d and r from equations 7.6 and 
7.7 to expand equation 7.1: 

 
! P = P + rd

= P +
npp " Pn

"Pn

"P( )
 (7.8a) 
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= "n pp( )P
 (7.8b) 

Based on this expression and recalling that we actually want a P″ which preserves at least 
relative depth, we want to establish a transformation which computes a projective equivalent of 
P″, namely (wPu′, wPv′, wPn″, w) where w = -Pn. From these observations, it should already be 
clear that we will need a 4x4 matrix whose bottom row is different from (0,0,0,1). In fact, much 
more should be obvious as the following exercise indicates. 

Exercise: Show that rows 1, 2, and 4 of a matrix M which 
accomplishes the mapping in the u and v directions are given by: 
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 (7.9) 

Now what about the n direction? That is, what should the third row of M be so that we can 
preserve depth information? Equation 7.8b implies that it should be (0,0,-npp,0), but this would 
leave all geometry smashed flat on the projection plane. 
Let’s step back to re-examine things. Clearly the u and v coordinates of P must not be allowed to 
affect Pn″. That is, two points which have the same n coordinate should get mapped to points 
which have the same viewport z coordinate, regardless of their u and v coordinates. Therefore the 
first two elements of the third row must be “0”. Recalling also that equation 7.8b tells us the third 
row must produce Pn″(-Pn), we need only determine the third and fourth elements of the third 
row of M (let’s call them An and Bn) so that: 

 Pn″(-Pn) = An Pn  + Bn (7.10) 

With parallel projections, we were able to establish the matrix so that the actual depth was 
preserved. That is, Pn = Pn″ in the parallel case. Can that work here? That is, can we find An and 
Bn so that the actual depth is preserved? Unfortunately not. From the form of the equation above, 
it can be shown that for any given constants An and Bn, it is only possible for at most two specific 
values of Pn to be preserved. 
It turns out that the best we can do is to preserve relative depth. That is, the best we will be able 
to do will be to establish An and Bn so that, for any two points P and Q, if Pn > Qn, then Pn″ > Qn″. 

To establish reasonable values for An and Bn, it suffices to apply the relevant window-viewport 
limits. For example, we can use the OpenGL conventions for the n direction as studied in section 
VII.5. 
The hard part is done. As a final step, we need to apply the window-viewport transformation like 
we did with parallel projections. In the u and v directions, we will simply use au, bu, av, bv just 
like we did for parallel. The required window-viewport map in the n direction has of course 
already been done. 
The complete mapping matrix for perspective projections can now be assembled as: 
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 (7.11) 

Let’s consider a specialization of this result. If assume that the eye at the origin, a generic point 
(x,y,z) is projected onto the projection plane to a point (xp,yp) such that 

 
xp

d
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x

z
 and 

yp

d
=
y

z
 (7.12) 

where d is the z coordinate of the projection plane. (With the eye at the origin, it should be clear 
that the sign  of x must agree with the sign of xp (same for y and yp), hence, the sign of d must 
agree with that of z. That is, d must be the actual projection plane z coordinate, not a distance.) 
By substituting npp=d, P′=(xp,yp,d), and P=(x,y,z) into equation (7.8a), we immediately obtain 
equation (7.12). 

Exercise: Make these substitutions to verify that (7.12) follows from 
(7.8a). 

Now let us look at the OpenGL matrix generated by a glFrustum call. The projection plane 
assumed by this routine is the near clipping plane, hence npp=-near. Recall that the projection 
includes a mapping from the supplied window to the canonical viewport (-1,1,-1,1,-1,1), and 
recall that in the n direction, n=-near is mapped to z=-1; n=-far is mapped to z=+1. Using the 
abbreviations (l, r, b, t, n, f) for the formal parameters (left, right, bottom, top, near, far), the 
matrix generated is shown as follows on page 777 of [Schreiner, et. al. 08]: 
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Exercise: Using the remarks of the previous paragraph, show that the 
matrix of equation (7.11) produces the matrix of equation (7.13) when 
the indicated parameter assignments are employed. 

VII.7.2 General Placement of the Eye in VRC 
As we have stated before, the PHIGS viewing model interprets the coordinate system determined 
by the view orientation matrix – what we have been calling the eye coordinate system – as a view 
reference (or VRC) system. That is, this system is one in which subsequent viewing information, 
including the actual position of the eye, is defined. Here we must focus on the position of the 
eye. In section VII.4.2, we saw that PHIGS used the projection reference point, R, to 
characterize the common direction of projection for oblique projections. In the perspective case, 
this same point R is interpreted as the actual position of the eye. Since R can be positioned 
anywhere in this VRC system, the projector associated with an arbitrary point, P, is defined with 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 69 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

the following slight generalization of equation 7.6: 
 d = R - P (7.14) 
Figure 7.4 illustrates this geometry. Equation 7.7 for r then becomes: 
 r = (npp - Pn) / (Rn - Pn) (7.15) 
Continuing our generalization of the treatment from the previous section, equation 7.8 becomes: 

 
! P = P + rd

= P +
npp " Pn

Rn " Pn

R" P( )
 (7.16a) 

 
! P Rn " Pn( ) = P Rn " Pn( ) + npp " Pn( ) R " P( )

= Rn " npp( )P " Pn R + npp R
 (7.16b) 

With this generalized equation and our understanding from the previous section, we can start 
working on the projection matrix. 

Exercise: Show that rows 1, 2, and 4 of a matrix M which 
accomplishes the mapping in the u and v directions are given by: 
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 (7.17) 

Just as in the previous section, the third row of M must be (0, 0, An, Bn) where An and Bn can be 
determined by applying the window-viewport limits in the n direction in the following equation: 

 Pn″(Rn - Pn) = An Pn  + Bn (7.18) 
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Figure 7.4: Perspective Projection Geometry with the eye at an arbitrary point R in VRC 

The complete view mapping matrix for perspective projections with general placement of the eye 
in VRC can be obtained by applying the remainder of the window-viewport transformation as we 
did with parallel projections: 
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 (7.19) 

Now let’s continue our comparison of these results to those in the various texts and in OpenGL. 
First, since equation (7.19) simplifies to equation 7.11 when we make the substitution R = (0, 0, 
0), all the comparisons mentioned there apply to equation 7.19. 
The Foley texts mention an alternative formulation of the perspective matrix which has the 
projection plane on the xy plane and the eye (i.e., R) placed at (0,0,d). One can show either 
directly from the geometry or by specialization of equation (7.16a) that: 
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VIII. Concluding Topics 
We have completed our tour of the mathematical techniques required to implement the various 
pieces of the traditional graphics pipeline. Here we make a few additional observations before 
summarizing. 

VIII.1 Remaining Pieces of the Graphics Pipeline 
We have really only covered the first three of the six blocks in the graphics pipeline introduced 
in section II. We are therefore only half done! 
Well, not really. 
The fourth block — “Clipping” — is the process of partitioning the transformed geometry into 
two disjoint sets: one outside and the other inside the field of view. Typically the portion outside 
the field of view is discarded. Several coordinate-based as well as vector geometric algorithms 
have been developed for this operation. Descriptions of the major algorithms and critical 
comparisons among them are given in [Foley, et. al. 90], [Foley, et. al. 94], and [Angel 09]. 
The fifth block — “Perspective Divide” — is simply the process of mapping points in projective 
space back to affine space. This is required if the view mapping matrix (or any earlier 
transformation, for that matter) mapped affine points off the w=1 plane. 
Finally, the sixth and last block — “Workstation Transformation” — is the process of mapping 
all or part of the logical device to a portion of the physical device. This is implemented as a 
window-viewport map with an associated clipping operation. No techniques other than those we 
have already described are required. 

VIII.2 Applications of Vector Geometric Analysis 
The power, utility, and applicability of vector geometric analyses extends far beyond what we 
have seen here. The tools developed in section III and whose use was illustrated in sections V 
and VI are employed throughout graphics and geometric modeling analyses. 
Ray tracing is one of the most popular image generation algorithms in use today for situations 
that require realistic modeling of light interactions with surfaces [Glassner 89]. The method 
basically uses straight lines to model (i) the line of sight, and (ii) rays of light which bounce from 
object to object in a scene. The core operations are to (i) generate a line (for example, 
corresponding to a line of sight, a ray of light reflected or refracted from a surface, a “shadow 
test”, etc.), and (ii) compute points of intersection with the objects in the scene. We describe 
vector geometric approaches for both of these core operations in [Goldman & Miller 1997] and 
[Miller 1997]. 
The design of curves and surfaces, especially freeform curves and surfaces such as those 
constructed using the Bezier and B-spline formulations, make extensive use of vector geometric 
analysis as well as projective coordinate systems. The projective coordinate systems are used to 
represent the rational forms of these polynomial curves and surfaces. See [Farin 95 or Farin 96] 
for an introduction. 

VIII.3 Summary 
We have reviewed the basic operations in common interactive graphics pipelines and developed 
two different styles of analysis: vector geometric and coordinate-based. The former were most 
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applicable in situations where no assumptions could be made reliably about how geometry 
related to coordinate systems. We saw that vector geometric methods operate by expressing 
coordinate-system-independent relationships between points and vectors. Not only did these 
expressions not rely upon special configurations of the geometry with respect to each other or the 
coordinate system, but also they did not exhibit anomalous behavior in the event that special 
relationships were involved. This proved to be a powerful analytical technique that led to highly 
efficient and robust computer implementations. 
However there are situations where it is useful to transform geometry into special coordinate 
systems where the orientation of the system can be exploited to dramatically simplify and 
accelerate certain types of imaging operations. As examples, we listed clipping algorithms, 
visible line and visible surface determination, and intensity depth cueing. 
The vector geometric tools themselves were introduced and described in section III. The material 
in sections V and VI illustrated their use and emphasized their advantages over coordinate-based 
techniques for general geometric manipulations. Section VII discussed the generation of parallel 
and perspective projections, serving as one example of where coordinate-based schemes are 
useful. The eye coordinate system employed to derive these projection matrices was also 
described as facilitating a host of other view-dependent operations in graphics systems since 
“distance from eye” is directly represented in the z coordinates of points. 
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Appendix A 
// aPoint.h -- 3D Affine points 
 
// When spherical coordinates are used below, the meaning of the (theta,phi) 
// angles is the following. Assume R is the vector from the origin to a 
// given point in space. Assume Rxy is the projection of the vector R onto 
the 
// xy-plane. Then: 
//     phi   = angle between R and the z-axis (0 <= phi <= PI) 
//     theta = angle from the x-axis to Rxy. Positive angles are counter- 
//             clockwise from the x-axis. Normal range: (-PI <= theta <= 
+PI). 
// Notice that this convention is different from the convention used in some 
// contexts such as image synthesis where the roles of theta and phi are 
often 
// reversed, probably because theta has historically been used in Image 
// Synthesis to characterize an angle of incidence. That is, to describe the 
// angle between the outward pointing normal vector to a surface (a local "z" 
// axis) and an incoming light direction. 
 
#ifndef APOINT_H 
#define APOINT_H 
 
#include "Basic.h" 
#include "ioSpec.h" 
 
#ifndef A_VECTOR 
class aVector; 
#endif 
 
// indices for extracting coordinates from points 
 
const int W = -1; 
const int X =  0; 
const int Y =  1; 
const int Z =  2; 
 
class aPoint 
{ 
public: 
 
 // --------- basic constructors 
 aPoint(); // 3D point at origin 
 aPoint(const aPoint& p); 
 aPoint(const Dxyzw p); 
 aPoint(const Fxyzw p); 
 
 // --------- other constructors 
 aPoint(const aVector& v); 
 aPoint(real xx, real yy, real zz=0.0); 
 
 // --------- destructor 
 virtual ~aPoint(); 
 
 // --------- operators as methods 
 aPoint operator=(const aPoint& rhs); 
 aPoint operator+=(const aVector& rhs); 



The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches Page 76 

DesignLab Technical Report DL-1997-03 J. R. Miller January 1997 (Rev: 4/22/08) 

 aPoint operator+=(const aPoint& rhs); 
 aPoint operator-=(const aVector& rhs); 
 aPoint operator*=(real f); 
 aPoint operator/=(real f); 
 real  operator[](int index) const; // read-only indexing 
    // see indexing constants above 
 
 // --------- operators as friend functions (Points only) 
 friend aPoint operator+(const aPoint& p1, const aPoint& p2); 
 
 friend aPoint operator*(real f, const aPoint& p); 
 friend aPoint operator*(const aPoint& p, real f); 
 friend aPoint operator/(const aPoint& p, real f); 
 
 friend ostream& operator<<(ostream& os, const aPoint& p); 
 friend istream& operator>>(istream& is, aPoint& p); 
 
 // --------- operators as friend functions (Points and Vectors) 
 friend aVector operator-(const aPoint& p1, const aPoint& p2); 
 friend aPoint operator+(const aPoint& p1, const aVector& v2); 
 friend aPoint operator-(const aPoint& p1, const aVector& v2); 
 
 // ---------- General Methods 
 //                  Extract affine coordinates into ... 
 DxyzP  aCoords(Dxyz coords) const; // ... a double[] 
 FxyzP  aCoords(Fxyz coords) const; // ... a float[] 
 bool  coincidentWith(const aPoint& p) const; 
 real  distanceFromOrigin() const; 
 real  distanceSquaredFromOrigin() const; 
 real  distanceSquaredTo(const aPoint& p) const; 
 real  distanceTo(const aPoint& p) const; 
 real  normalize(); // move point along line through 
     // origin until it lies on the unit sphere 
 DxyzwP pCoords(Dxyzw coords, real w=1.0) const; 
     // extract coords, represent in projective 
     // space using provided "w" -> double array 
 FxyzwP pCoords(Fxyzw coords, real w=1.0) const; 
     // extract coords, represent in projective 
     // space using provided "w" -> single array 
 void  toCylindrical(real& r, real& theta, real& z) const; 
 void  toSpherical(real& rho, real& theta, real& phi) const; 
 
 // ---------- General Class Methods 
 static void  addPoint(const aPoint& P, aPoint* list, int& nInList, 
      int listLength); 
 static aPoint centroid(const aPoint p[], int nPoints); 
 static aPoint fromCylindrical(real r, real theta, real z); 
 static aPoint fromSpherical(real rho, real theta, real phi); 
 static real  getCoincidenceTolerance(); 
 static char* getInputFormat(int iAspect); 
 static char* getOutputFormat(int oAspect); 
 static void  inputFormat(int iAspect, char iValue); 
 static void  inputFormat(int iAspect, const char* iValue); 
 static void  ioFormat(int ioAspect, char ioValue); 
 static void  ioFormat(int ioAspect, const char* ioValue); 
 
  // find the point in the given buffer which is farthest 
  // away in the given direction. If that point is 'P', the 
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  // function return value is "(P-ref).dir". If there is 
  // exactly one such farthest point, then the indices i1 
  // and i2 will both contain the index of 'P' in 'buf'. If 
  // several points tie, then i1 and i2 are the indices of the 
  // first succession of adjacent points all at that offset. 
  // If there are multiple sets of adjacent tieing points, 
  // only the indices of the first are returned. 
 static real  maxOffsetInDirection( 
     const aPoint& ref, const aVector& dir, 
     const aPoint buf[], int bufSize, 
     int& index1, int& index2); 
 static void  outputFormat(int oAspect, char oValue); 
 static void  outputFormat(int oAspect, const char* oValue); 
 static real  ratio(const aPoint& a, const aPoint& b, 
          const aPoint& c); 
 static void  setCoincidenceTolerance(real tol); 
 
    // ---------- Global constants 
 
 // 1. Special Points 
 static const aPoint origin; 
 static const aPoint xAxisPoint; 
 static const aPoint yAxisPoint; 
 static const aPoint zAxisPoint; 
 
 // 2. Values for "ioAspect" in "ioFormat" 
 static const int  openDelimiter;  // e.g.: '(', '[', '{', '<', ' 
' 
 static const int  separator;      // e.g.: ' ', '\t', '\n', ',' 
 
protected: 
 
 // --------- instance variables 
 real x; 
 real y; 
 real z; 
 
private: 
 
 static real  sCoincidenceTol; 
 
 static ioSpec iSpec; // for input 
 static ioSpec oSpec; // for output 
 
 // --------- private methods 
}; 
 
#endif 
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Appendix B 
// aVector.h -- 3D affine vectors 
 
#ifndef A_VECTOR 
#define A_VECTOR 
 
#include "Basic.h" 
#include "ioSpec.h" 
 
#ifndef A_POINT 
class aPoint; 
#endif 
 
// indices for extracting components from vectors 
 
const int DW = -1; 
const int DX =  0; 
const int DY =  1; 
const int DZ =  2; 
 
class aVector 
{ 
public: 
 
 // --------- basic constructors 
 aVector(); // zero vector 
 aVector(const aVector& v); 
 
 // --------- other constructors 
 aVector(const aPoint& p); 
 aVector(real Dx, real Dy, real Dz=0.0); 
 aVector(const double xyz[]); 
 aVector(const float xyz[]); 
 
 // --------- destructor 
 virtual ~aVector(); 
 
 // --------- operators as methods 
 aVector operator=(const aVector& rhs); 
 aVector operator+=(const aVector& rhs); 
 aVector operator-=(const aVector& rhs); 
 aVector operator*=(real f); 
 aVector operator/=(real f); 
 bool operator==(const aVector& rhs); 
 bool operator!=(const aVector& rhs); 
 real  operator[](int index) const; // read-only indexing 
     // see indexing constants above 
 
 // --------- operators as friend functions (Vectors only) 
 friend aVector operator+(const aVector& v1, const aVector& v2); 
 friend aVector operator-(const aVector& v1, const aVector& v2); 
 friend aVector operator-(const aVector& v); 
 
 friend aVector operator*(real f, const aVector& v); 
 friend aVector operator*(const aVector& v, real f); 
 friend aVector operator/(const aVector& v, real f); 
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 friend ostream& operator<<(ostream& os, const aVector& v); 
 friend istream& operator>>(istream& is, aVector& v); 
 
 // --------- operators as friend functions (Points and Vectors) 
 friend aVector operator-(const aPoint& p1, const aPoint& p2); 
 friend aPoint operator+(const aPoint& p1, const aVector& v2); 
 friend aPoint operator-(const aPoint& p1, const aVector& v2); 
 
 // ---------- General Methods 
 void   arbitraryNormal(aVector& normal) const; 
 aVector  cross(const aVector& rhs) const; 
 void   decompose(const aVector& arbitraryVector, 
     aVector& parallel, aVector& perpendicular) 
     const; 
 real   dot(const aVector& rhs) const; 
 real   length() const; 
 real   lengthSquared() const; 
 real   maxAbsComponent(int& componentIndex) const; 
 real   minAbsComponent(int& componentIndex) const; 
 real   normalize(); 
 real   normalizeToCopy(aVector& normalizedCopy) const; 
 bool   parallelTo(const aVector& v) const; 
 
 // ---------- Class Methods 
   // The following assumes U and W have values (even if 
   // all zero). W gets normalized; the component of U 
   // perpendicular to W becomes U. Finally V <- W x U. 
   // If W is zero vector, then (xu, yu, zu) are copied 
   // into U, V, and W. If the component of U perpendicular 
   // to W is zero, then an arbitrary vector perpendicular 
   // to W is created and used.) 
 static void  coordinateSystemFromUW 
      (aVector& U, aVector& V, aVector& W); 
   // The following is analogous to previous, but with the 
   // roles of V and U reversed. 
 static void  coordinateSystemFromVW 
      (aVector& U, aVector& V, aVector& W); 
 static aVector cross(const aVector& v1, const aVector& v2); 
 static real  dot(const aVector& v1, const aVector& v2); 
 static char* getInputFormat(int iAspect); 
 static char* getOutputFormat(int oAspect); 
 static void  inputFormat(int iAspect, char iValue); 
 static void  inputFormat(int iAspect, const char* iValue); 
 static void  ioFormat(int ioAspect, char ioValue); 
 static void  ioFormat(int ioAspect, const char* ioValue); 
 static void  outputFormat(int oAspect, char oValue); 
 static void  outputFormat(int oAspect, const char* oValue); 
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 // ---------- Global constants 
 
 // 1. Special Vectors 
 static const aVector xu; 
 static const aVector yu; 
 static const aVector zu; 
 static const aVector zeroVector; 
 
 // 2. Values for "ioAspect" in "ioFormat" 
 static const int openDelimiter;  // '(', '[', '{', or ' ' 
 static const int separator;   // ' ', '\t', '\n', or ',' 
 
protected: 
 
 // --------- instance variables 
 real dx; 
 real dy; 
 real dz; 
 
private: 
 
 static ioSpec iSpec; // for input 
 static ioSpec oSpec; // for output 
 
 // --------- private methods 
}; 
 
#endif 
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Appendix C 
// Matrix3x3.h -- 3x3 Matrices 
 
// This interface is designed for the specification and manipulation of 
// 3x3 matrices as a part of Affine transformations specified on 3D 
// vectors. As such, it provides facilities to create 3x3 matrices which 
// rotate and mirror vectors, form tensor products of vectors, and provide 
// other support required by Matrix4x4 in its role of representing 
// transformations of 3D geometry. This interface is NOT intended to 
// provide facilities for representing 2D transformations in homogeneous 
// form. 
 
#ifndef MATRIX3x3_H 
#define MATRIX3x3_H 
 
#include "aPoint.h" 
#include "aVector.h" 
 
class Matrix3x3 
{ 
public: 
 
 // --------- basic constructors 
 Matrix3x3(); // Identity Matrix 
 Matrix3x3(const Matrix3x3& M); 
 Matrix3x3( 
  real m11, real m12, real m13, 
  real m21, real m22, real m23, 
  real m31, real m32, real m33); 
 
 // Mirror matrix construction 
 Matrix3x3(const aVector& mirrorPlaneNormal); // General 
 Matrix3x3(char axis); // mirror plane is perpendicular to indicated 
axis 
 
 // Rotation matrix construction (angle is in radians) 
 Matrix3x3(const aVector& rotationAxis, real angle); // General 
 Matrix3x3(char axis, real angle); // axis is the indicated axis 
 
 // Scale matrix construction 
 Matrix3x3(real sx, real sy, real sz); 
 
 // construct as tensor product matrix 
 Matrix3x3(const aVector& u, const aVector& v); 
 
 // --------- destructor 
 virtual ~Matrix3x3(); 
 
 // --------- operators as methods 
 Matrix3x3  operator=(const Matrix3x3& rhs); 
 bool   operator==(const Matrix3x3& rhs) const; 
 
 Matrix3x3  operator*=(const Matrix3x3& rhs); 
 Matrix3x3  operator*=(real f); 
 Matrix3x3  operator+=(const Matrix3x3& rhs); 
 
 aPoint  operator*(const aPoint& p) const; 
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 aVector  operator*(const aVector& v) const; 
 
 // --------- operators as friend functions 
 friend Matrix3x3 operator*(const Matrix3x3& m1, const Matrix3x3& m2); 
 friend Matrix3x3 operator+(const Matrix3x3& m1, const Matrix3x3& m2); 
 friend Matrix3x3 operator-(const Matrix3x3& m1, const Matrix3x3& m2); 
 friend Matrix3x3 operator*(real f, const Matrix3x3& m); 
 
 friend ostream& operator<<(ostream& os, const Matrix3x3& m); 
 friend istream& operator>>(istream& is, Matrix3x3& m); 
 
 // ---------- General Methods 
 
 real  determinant() const; 
 real  elementAt(int i, int j) const; 
 int  extractAxisAngle(aVector& w, real& theta) const; 
 void  extractRows(aVector& row1, aVector& row2, 
     aVector& row3) const; 
 bool  isOrthogonal() const; 
 bool  isRightHanded() const; 
 real  largestDiagonalElement(int& pos) const; 
   // in the following, 'a' and 'b' are asssumed to be 
   // arrays[3] 
 void  multiply(const real a[], real b[]) const; 
 void  setElementAt(int i, int j, real newValue); 
 real  trace() const; 
 void  transpose(); 
 
 // ---------- General Class Methods 
 
 // If any matrix cannot be built due to zero-length vectors, an 
identity 
 // matrix will be returned. 
 static Matrix3x3 crossProductMatrix(const aVector& u); 
 static char* getInputFormat(int iAspect); 
 static int  getOutputElementFieldWidth(); 
 static char* getOutputFormat(int oAspect); 
 static void  inputFormat(int iAspect, char iValue); 
 static void  inputFormat(int iAspect, const char* iValue); 
 static void  ioFormat(int ioAspect, char ioValue); 
 static void  ioFormat(int ioAspect, const char* ioValue); 
 static Matrix3x3 mirrorMatrix(const aVector& mirrorPlaneNormal); 
 static void  outputFormat(int oAspect, char oValue); 
 static void  outputFormat(int oAspect, const char* oValue); 
 static void  outputFormat(int oAspect, int  oValue); 
 
 // All angles in following are measured in radians.... 
 // If any matrix cannot be built due to zero-length vectors, an 
identity 
 // matrix will be returned. 
 static Matrix3x3 rotationMatrix( 
       const aVector& rotationAxis, real angle); 
 static Matrix3x3 rotationMatrix( 
       const aVector& uFrom, const aVector& uTo); 
 static Matrix3x3 rotationMatrix( 
       const aVector& uFrom, const aVector& vFrom, 
       const aVector& uTo,   const aVector& vTo); 
 static Matrix3x3 scaleMatrix(real sx, real sy, real sz); 
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 static Matrix3x3 shearMatrix( 
       const aVector& n, const aVector& u, real f); 
 static Matrix3x3 tensorProductMatrix( 
       const aVector& u, const aVector& v); 
 static Matrix3x3 xRotationMatrix(real angle); 
 static Matrix3x3 yRotationMatrix(real angle); 
 static Matrix3x3 zRotationMatrix(real angle); 
 
 // ---------- Global constants 
 
 // 1. Special Matrices 
 static const Matrix3x3 IdentityMatrix; 
 static const Matrix3x3 ZeroMatrix; 
 
 // 2. Values for "ioAspect" in "ioFormat" 
 static const int elementFieldWidth;   // the integer width 
 static const int openMatrixDelimiter; // e.g., '(', '[', '{', or ' ' 
 static const int openRowDelimiter;    // e.g., '(', '[', '{', or ' ' 
 static const int elementSeparator;    // e.g., ' ', '\t', '\n', or ',' 
 static const int rowSeparator;        // e.g., ' ', '\t', '\n', or ',' 
 
 // 3. Return codes for extraction of unit axis vector & rotation angle 
 //    from 3x3 matrices which are 'supposed to be' orthogonal and 
 //    right-handed. 
 
 // 3.1: Abnormal internal errors which should never be returned: 
 static const int ImMDeterminantNotZero; 
 static const int CannotDetermineUnitAxisVector; 
 static const int CosTermsNotEqual; 
 static const int SinTermsNotEqual; 
 
 // 3.2: "Normal" errors if user provides inappropriate matrix: 
 static const int NotOrthogonal; 
 static const int NotRightHanded; 
 
 // 3.3: Successful extraction of unit axis vector and angle: 
 static const int Extracted_wTheta; 
 
 friend class Matrix4x4; 
 
protected: 
 
 // --------- instance variables 
 real mElem[3][3]; 
 
private: 
 
 static ioSpec matrix_iSpec; 
 static ioSpec matrix_oSpec; 
 
 static ioSpec row_iSpec; 
 static ioSpec row_oSpec; 
 
 // --------- private methods 
 void copy(const Matrix3x3& rhs); 
 int computeImMRows(Matrix3x3& ImM, 
     // the rows of I-M and the indices of the 
     // two most linearly independent rows. 
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     aVector rows[], int& r1, int& r2) const; 
 int extractPrimitiveAxisAngle(int pos, aVector& w, real& theta) 
const; 
}; 
 
#endif 
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Appendix D 
// Matrix4x4.h -- 4x4 Matrices 
 
// See comments at start of Matrix3x3.h 
 
#ifndef MATRIX4x4_H 
#define MATRIX4x4_H 
 
#include "Matrix3x3.h" 
 
#ifndef PPOINT_H 
class pPoint; 
#endif 
 
class Matrix4x4 
{ 
public: 
 
 // --------- basic constructors 
 Matrix4x4(); // Identity Matrix 
 Matrix4x4(const Matrix4x4& m); 
 Matrix4x4( 
  real m11, real m12, real m13, real m14, 
  real m21, real m22, real m23, real m24, 
  real m31, real m32, real m33, real m34, 
  real m41, real m42, real m43, real m44); 
 Matrix4x4(const float OGLMatrix[16]); 
 Matrix4x4(const double OGLMatrix[16]); 
 
 // From 3x3 
 // ** This is (currently) the only interface in either Matrix3x3 or 
 // ** Matrix4x4 that supports 2D transformations in any way. 
 // This assumes "M" describes a 2D xform in projective space. 
 // The implementation slides the third row and third column over 
 // to the fourth, and inserts a third row and third column from 
 // a 4x4 Identity matrix. 
 Matrix4x4(const Matrix3x3& M); 
 
 // From an Affine transformation spec: (M, t). 4th row gets (0,0,0,1) 
 Matrix4x4(const Matrix3x3& M, const aVector& t); 
 
 // From an affine matrix M and a fixed point: 
 Matrix4x4(const Matrix3x3& M, const aPoint& FixedPoint); 
 
 // From an affine matrix M and a point whose pre- and post-imagea 
 // are known 
 Matrix4x4(const Matrix3x3& M, 
   const aPoint& PreImage, const aPoint& PostImage); 
 
 // Translation matrix construction 
 Matrix4x4(const aVector& v); 
 
 // --------- destructor 
 virtual ~Matrix4x4(); 
 
 // --------- operators as methods 
 Matrix4x4 operator=(const Matrix4x4& rhs); 
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 bool  operator==(const Matrix4x4& rhs) const; 
 
 Matrix4x4 operator*=(const Matrix4x4& rhs); 
 Matrix4x4 operator*=(real f); 
 Matrix4x4 operator+=(const Matrix4x4& rhs); 
 
 aPoint operator*(const aPoint& p) const; 
 pPoint operator*(const pPoint& p) const; 
 aVector operator*(const aVector& v) const; 
 
 // --------- operators as friend functions 
 friend Matrix4x4 operator*(const Matrix4x4& m1, const Matrix4x4& m2); 
 friend Matrix4x4 operator+(const Matrix4x4& m1, const Matrix4x4& m2); 
 friend Matrix4x4 operator-(const Matrix4x4& m1, const Matrix4x4& m2); 
 friend Matrix4x4 operator*(real f, const Matrix4x4& m); 
 
 friend ostream& operator<<(ostream& os, const Matrix4x4& m); 
 friend istream& operator>>(istream& is, Matrix4x4& m); 
 
 // ---------- General Methods 
 
 real  determinant() const; 
 real  elementAt(int i, int j) const; 
 
   // Two extraction routines useful in OpenGL, OpenInventor, 
   // etc. 
 float* extract(float m[16]) const;  // GLfloat 
 double* extract(double m[16]) const; // GLdouble 
 
   // The following method does not check to see if this IS an 
   // affine transformation. Clients should use the 
   // method "isAffineTransformation" if there is a 
   // possibility that it is not. 
 void  extractAffineMt(Matrix3x3& M, aVector& t) const; 
 
   // The following routine uses Matrix3x3::extractAxisAngle 
to 
   // find the unit axis vector and angle to reconstruct the 
   // upper 3x3 portion of the matrix. It then computes a base 
   // point B which, when combined with (w,theta) will at 
least 
   // approximate the entire 4x4 matrix. At worst, a residual 
   // "postTranslation" will be required to reproduce the 
   // effect of the original 4x4 matrix. That translation 
   // (possibly 0) is returned in "postTranslation". 
 int  extractAxisAngle( 
    aPoint& B, aVector& w, real& theta, 
    aVector& postTranslation) const; 
 bool  inverse(Matrix4x4& mInv) const; 
 bool  isAffineTransformation() const; 
   // in the following, 'a' and 'b' are asssumed to be 
   // arrays[4] 
 void  multiply(const real a[], real b[]) const; 
 void  setElementAt(int i, int j, real newValue); 
 Matrix3x3 subMatrix(int skipRow, int skipCol) const; 
 
 // ---------- General Class Methods 
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 static char* getInputFormat(int iAspect); 
 static int  getOutputElementFieldWidth(); 
 static char* getOutputFormat(int oAspect); 
 static void  inputFormat(int iAspect, char iValue); 
 static void  inputFormat(int iAspect, const char* iValue); 
 static void  ioFormat(int ioAspect, char ioValue); 
 static void  ioFormat(int ioAspect, const char* ioValue); 
 static void  outputFormat(int oAspect, char oValue); 
 static void  outputFormat(int oAspect, const char* oValue); 
 static void  outputFormat(int oAspect, int  oValue); 
 static Matrix4x4 xRotationMatrix(real angle); 
 static Matrix4x4 yRotationMatrix(real angle); 
 static Matrix4x4 zRotationMatrix(real angle); 
 
    // ---------- Global constants 
 
 // 1. Special Matrices 
 static const Matrix4x4 IdentityMatrix; 
 static const Matrix4x4 ZeroMatrix; 
 
 // 2. Values for "ioAspect" in "ioFormat" 
 static const int elementFieldWidth;   // the integer width 
 static const int openMatrixDelimiter; // e.g., '(', '[', '{', or ' ' 
 static const int openRowDelimiter;    // e.g., '(', '[', '{', or ' ' 
 static const int elementSeparator;    // e.g., ' ', '\t', '\n', or ',' 
 static const int rowSeparator;        // e.g., ' ', '\t', '\n', or ',' 
 
 // 3. Return codes for extraction of base point, unit axis vector, 
 //    and rotation angle from 4x4 matrices which are 'supposed to 
 //    describe' affine transformations whose upper 3x3 matrix is 
 //    'supposed to be' orthogonal and right-handed. (See the Matrix3x3 
 //    method "extractAxisAngle".) 
 
 // 3.1: Abnormal internal errors which should never be returned: 
 static const int InternalBasePointComputationError; 
 
 // 3.2: "Normal" errors if user provides inappropriate matrix: 
 static const int NotAffine; 
 // (Note that the Matrix3x3 error codes may be returned as well.) 
 
 // 3.3: Successful extraction of unit axis vector and angle: 
 //      If the 3x3 extraction of (unit axis vector, angle) is 
 //      successful, then the 4x4 utility tries to determine a base 
 //      point. If successful, then "Matrix4x4::Extracted_BwTheta" is 
 //      returned, otherwise the 3x3 code 
("Matrix3x3::Extracted_wTheta") 
 //      is returned, signifying that the (unit axis vector, angle) 
 //      information was successfully computed and returned, but only an 
 //      approximation to a rotation axis base point was able to be 
 //      determined. In this case, 'postTranslation' will contain a 
 //      non-zero vector which, if added to a point after rotation, will 
 //      yield the correct point. 
 static const int Extracted_BwTheta; 
 
protected: 
 
 // --------- instance variables 
 real mElem[4][4]; 
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private: 
 
 static ioSpec matrix_iSpec; 
 static ioSpec matrix_oSpec; 
 
 static ioSpec row_iSpec; 
 static ioSpec row_oSpec; 
 
 // --------- private methods 
   void copy(const Matrix4x4& rhs); 
 
 static int determineBasePoint(aVector ImMRows[], int maxWCompLoc, 
    int r1, int r2, const aVector& trans, aPoint& B); 
 
   void installMt(const Matrix3x3& M, const aVector& t); 
}; 
 
#endif 
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Appendix E 
Sample Code Using the C++ Point, Vector, and Matrix Classes 

 
Many queries and operations common in graphics and geometric modeling are easily expressed 
using applications of the vector geometric techniques developed in this monograph. 
Computations involving distances and signed distances between various combinations of points, 
lines, planes, and other basic curves and surfaces are frequently required. 
In our first two examples here we show C++ code using vector geometric operations for two 
common distance queries. Derivations for these and similar queries can be found in the literature 
(e.g., [Glassner 90, Georgiades 92, Miller 97a]). Others are left as an exercise for the reader. 
The examples in this appendix assume various subsets the definitions given in the header files in 
Appendices A-D. 
Example 1: Finding the Signed Distance of a Point Q from a Plane 
A plane in space can be characterized by a point B on the plane and a vector n perpendicular to 
the plane (e.g., the mirror plane of Figure 5.1(a)). The signed distance of an arbitrary point Q 
from such a plane is defined as the actual distance if Q is on the side of the plane to which n 
points, and the negative of this distance if it is on the other side. A C++ routine using the point 
and vector utilities described in Appendices A and B and implementing this definition can be 
written as: 

bool signedDistancePntPlane( 
 aPoint Q,             // the point 
 aPoint B, aVector n,  // the plane 
 real& signedDist)     // the signed distance 
{ 
 aVector nHat; 
 double length = n.normalizeToCopy(nHat); 
 if (length < BasicDistanceTol) 
  // a zero vector was provided for n. We cannot proceed. 
  return false; 
 signedDist = aVector::dot( (Q-B) , nHat ); 
 return true; 
} 

 
Example 2: Testing Whether a Point Q lies on a Plane 
A point is on a plane if and only if its signed distance is zero (within a tolerance). 

bool PointOnPlane( 
 aPoint Q,             // the point 
 aPoint B, aVector n)  // the plane 
{ 

real signedDist = 0.0; 
if (signedDistancePntPlane(Q,B,n,signedDist)) 

return ( abs(signedDist) < BasicDistanceTol ); 
 else 
  return false; 
} 
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Example 3: Finding the Distance of a Point Q from a Line 
A line in space can be defined by a point B on the line and a vector w specifying the direction of 
the line (e.g., the rotation axis of Figure 2). We frequently need to compute the distance between 
an arbitrary point Q and the line. We could adopt an approach based on the Pythagorean 
Theorem by considering the right triangle formed by B, Q, and the perpendicular projection of Q 
onto the line. In the code below, however, we compute the component of the vector (Q-B) which 
is perpendicular to w, and then return the length of this vector. 

bool distancePntLine( 
 aPoint Q,             // the point 
 aPoint B, aVector w,  // the line 
 real& distance)       // the distance 
{ 
 aVector wHat; 
 double length = w.normalizeToCopy(wHat); 
 if (length < tolerance) 
  // a zero vector was provided for w. We cannot proceed. 
  return false; 
 aVector vParallel, vPerpendicular; 
 wHat.decompose( (Q-B), vParallel, vPerpendicular ); 
 distance = vPerpendicular.length(); 
 return true; 
} 

 
Example 4: Testing Whether a Point Q lies on a Line (Uses the “Point on Plane” utility) 

bool PointOnLine( 
 aPoint Q,             // the point 
 aPoint B, aVector w)  // the line 
{ 
 if (w.length() < BasicDistanceTol) 
  // a zero vector was given 
  return false; 
 
 aVector u, v; 
 aVector::coordinateSystemFromUW(u,v,w); 
 
 // "w" is parallel to the line direction vector; "u" and "v" are 
 // perpendicular to "w". Therefore "Q" is on the line if and only 
 // if it is on the two planes: 
 return PointOnPlane(Q,B,u) && PointOnPlane(Q,B,v); 
} 
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Example 5: Create a sphere to contain N points 
// This routine will find a sphere containing the given points. This 
// routine will NOT in general find a "good" such containing sphere. 
// It is only meant to illustrate use of the PVM classes! 

 
void ContainingSphere(aPoint pts[], int N, 
                      aPoint& center, real& radius) 
{ 
 center = aPoint::centroid(pts,N); 
 radius = pts[0].distanceTo(center); 
 for (int i=1 ; i<N ; i++) 
 { 
  real r = pts[i].distanceTo(center); 
  if (r > radius) 
   radius = r; 
 } 
} 

 
Example 6: Rotate N points by 30 degrees about a supplied rotation axis 

// Create a matrix to rotate about an axis by 30 degrees. Transform 
// the points in a given array by the matrix. 
 
void Transform(aPoint pts[], int N, aPoint AxisBase, aVector 
AxisDir) 
{ 
 Matrix3x3 M(AxisDir, degreesToRadians(30.0)); 
 Matrix4x4 Rot(M, AxisBase); // AxisBase is a Fixed Point 
 for (int i=0 ; i<N ; i++) 
  pts[i] = Rot * pts[i]; 
} 
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Example 7: Use OpenGL and the glut to draw a Bounded Cone 
#include <math.h> 
#include <GL/glut.h> 
 

void DrawBoundedCone(aPoint Vertex, aPoint Base, real rAtBase, 
                     int nSides) 
{ 
 // Create transformations which will map the canonical bounded 
 // cone created by glutSolidCone (base at origin; vertex at 
 // (0,0,height)) to the desired position and orientation. 
 aVector w = Vertex - Base; 
 real height = w.normalize(); 
 aVector rotAxis = aVector::cross(aVector::zu,w); 
 real sine = rotAxis.normalize(); 
 real cosine = aVector::dot(aVector::zu,w); 
 real angle = atan2(sine,cosine); 
 // insulate callers from the effects of these xforms 
 

 glPushMatrix(); 
 

 glTranslated(Base[X],Base[Y],Base[Z]); 
 glRotated(radiansToDegrees(angle) , 
             rotAxis[DX],rotAxis[DY],rotAxis[DZ]); 
 glutSolidCone(rAtBase,height,nSides,2); 
 

 glPopMatrix(); 
} 

 

Example 8: Use OpenGL to draw a Bounded Cylinder (glut has no bounded cylinder) 
#include <math.h> 
#include <GL/glut.h> 
 

void DrawBoundedCylinder(aPoint P1, aPoint P2, real radius, 
                         int nSides) 
{ 
 aVector u, v; // initialized to zero vectors 
 aVector w = P2 - P1; 
 aVector::coordinateSystemFromUW(u,v,w); 
 

 if (nSides < 3) 
  nSides = 3; 
 real dTheta = TWO_PI / real(nSides); 
 real theta  = 0.0; 
 

 glBegin(GL_QUAD_STRIP); 
 for (int i=0 ; i<=nSides ; i++) 
 { 
  aVector offset = radius * (cos(theta)*u + 
sin(theta)*v); 
 

  aPoint c1Pt = P1 + offset; 
  glVertex3d(c1Pt[X],c1Pt[Y],c1Pt[Z]); 
 

  aPoint c2Pt = P2 + offset; 
  glVertex3d(c2Pt[X],c2Pt[Y],c2Pt[Z]); 
 

  theta += dTheta; 
 } 
 glEnd(); 
} 
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Example 9: Extract a rotation axis from a matrix and draw it. This example uses the utilities from 
examples 7 and 8. 

#include <math.h> 
#include <GL/glut.h> 
 
#include "Matrix4x4.h" 
 
void DrawVector(aPoint Tail, aPoint Common, aPoint Vertex, 
                real rCyl, real rCon) 
{ 
 DrawBoundedCylinder(Tail, Common, rCyl, 10); 
 DrawBoundedCone(Vertex,Common,rCon,10); 
} 
 
void ExtractAndDrawAxis(const Matrix4x4& M, 
                        real lengthCyl, real rCyl, real rCon) 
{ 
 aPoint B; 
 aVector w, postTranslation; 
 real       theta; 
 
 int  outcome = M.extractAxisAngle(B, w, theta, postTranslation); 
 if (outcome == M4x4_Extracted_BwTheta) 
 { 
  // successfully extracted (B, w, theta) & postTranslation. 
         // Draw them. 
 
  aPoint Common = B + lengthCyl*w; 
  DrawVector(B, Common, Common + rCon*w, rCyl, rCon); 
  if (postTranslation != aVector::zeroVector) 
  { 
   // The given matrix is equivalent to a rotation about 
   // (B,w,theta) followed by a translation. Draw the 
               // translation vector. 
 
   Common = B + lengthCyl*postTranslation; 
   DrawVector(B, Common, Common + rCon*postTranslation, 
                          rCyl, rCon); 
  } 
 } 
} 
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Example 10: Compute a vector perpendicular to a cone at a given point on the cone 
It is frequently necessary to compute a unit vector perpendicular to a surface at a given point on 
the surface. Intersection computations and rendering algorithms are two examples. Suppose we 
wish to compute the outward pointing normal to a cylinder — defined by its axis (B, ˆ w ) and 
radius r — at a point Q on the surface of the cylinder. The implementation would be identical to 
what we just saw in “distancePntLine”, except rather than computing the length of 
“vPerpendicular” at the end, we would normalize it and return it as the unit outward pointing 
normal. Furthermore, if Q did not precisely lie on the cylinder, the normal so computed would be 
the normal for the point on the cylinder closest to Q. This extended notion of “normal at Q” only 
fails if Q lies on the axis of the cylinder, that is, if “vPerpendicular” is the zero vector. 
A slightly more complicated but still relatively straightforward example is finding the outward 
pointing normal to a right circular cone at a point Q on the cone different from the vertex. Up to 
a sign, the desired normal is the component of the cone axis vector perpendicular to the ruling 
containing Q. In Figure 4, the red vector along the cone ruling is “wParallel”; the red vector 
pointing into the cone is “wPerpendicular”. 

bool normalToCone( 
 aPoint Q,             // the point 
 aPoint V, aVector w,  // the cone axis; V is the vertex 
 aVector& normal)      // the outward pointing normal 
{ 
 aVector ruling = Q - V; 
 double d = ruling.normalize(); 
   if (d < tolerance) 
  // Q is at the vertex. We cannot proceed. 
  return false; 
 

 aVector wParallel, wPerpendicular; 
 ruling.decompose( w, wParallel, wPerpendicular ); 
 d = wPerpendicular.normalizeToCopy(normal); 
 if (d < tolerance) 
  // Q is on the cone axis -or- w is the zero vector. We 
  // cannot proceed in either case. 
  return false; 
 // invert normal if necessary (The outward pointing normal must 
 // point away from the cone axis.) 
 if (aVector::dot(w,ruling) > 0.0) 
  normal = -normal; 
 return true; 
} 
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Example 11: Find the intersection between a line and a plane 
int intLinePlane( 
 aPoint linePnt, aVector lineDir,     // the line 
      aPoint plnPoint, aVector plnNormal,  // the plane 
 aPoint& intPoint)                // the computed point of intersection 
 
 // return value “-1” ⇒ line parallel to plane 
 // return value “ 0” ⇒ line contained in plane 
 // return value “+1” ⇒ single point of intersection returned in 
 //                      “intPoint” 
{ 
 aVector nHat, uHat; 
 plnNormal.normalizeToCopy(nHat); 
 lineDir.normalizeToCopy(uHat); 
 if (abs( aVector::dot(uHat,nHat) ) < BasicUnitTol) 
  // line direction is parallel to plane 
  if ( PointOnPlane(linePnt, plnPoint, plnNormal) ) 
   return 0; 
  else 
   return -1; 
 
 double numerator = aVector::dot(nHat,(plnPoint - linePnt)); 
 double distance = numerator / aVector::dot(uHat,nHat); 
 
 intPoint = linePnt + distance*uHat; 
 return 1; 
} 


