
Implementing and using computer graphics and mod-
eling systems rely on mathematical operations on points
and vectors. This tutorial reviews the basic ideas sur-
rounding points and vectors in affine and projective spaces.
In Part 1 of this tutorial I advocate vector geometric analy-
sis to simplify required derivations and implementations.
Part 2 in the next issue builds on this background and
shows several specific applications of these techniques.

If you had a lump of clay and wanted to make
a bowl, you would most likely fashion the

clay by translating your abstract notions of desired size
and shape directly into the appropriate tugs and pulls.
You would probably not think much about coordinate
systems.

If you wanted to make a table on which to display your
bowl, and then some chairs so people could sit around

the table, you would again think at
a fairly high level of abstraction
about appropriate overall sizes and
desired spatial relationships. Even
though you would alternately think
about how a leg fits on a chair and
where each completed chair should
stand around the table, these
thoughts would not involve “chair
coordinate systems” and “table coor-
dinate systems,” and how one
relates to the other.

On the other hand, when we want
to use computers to help us design
and visualize the objects in our
world, we need a formal way to
communicate our notions of size
and shape to the computer. Obvi-

ously, coordinate systems come into play here, and we
all know how they work.

In fact, coordinate systems work so well in this context
that most graphics systems use all sorts of them. We
would model component objects like legs in local coordi-
nate systems. These coordinate systems are then instan-
tiated multiple times inside of a chair local coordinate
system; each chair system goes into the table’s local coor-
dinate system. This process of instantiating an object
defined in one local coordinate system inside of another
local coordinate system continues until we have defined

the entire scene. This “special” final local coordinate sys-
tem is commonly called the world coordinate system.

After having constructed the geometry in this fashion,
we establish another coordinate system (often called an
eye coordinate system) to describe how we want to look
at our table and chairs. And we typically use yet other
coordinate systems as well: projection coordinate sys-
tems, device coordinate systems, and so forth.

Clearly we must become proficient in using coordi-
nate systems and comfortable with issues of how they
relate to one another.

We will study a common set of such coordinate sys-
tems as well as transformations between them, but first
a caveat appropriate to the primary theme of this article:
we must remember that coordinate systems are merely
an artifact of the language we must use to communicate
with a computer. That is, our base ideas of size, shape,
and orientation are intrinsic properties of the objects
we create and remain independent of any coordinate
system. We want to use coordinate systems where
appropriate and necessary, but we don’t want our think-
ing or analytical processes to become unnecessarily
dependent upon coordinate systems. This probably
doesn’t make much sense just yet. As you will see while
studying the mathematics underlying computer graph-
ics operations, translating our original abstract notions
of object manipulation, viewing specifications, and so
forth into concrete computer-based actions can become
overly complex if we force ourselves to think solely in
terms of describing these actions relative to some spe-
cific coordinate system.

I describe as vector geometric that class of techniques
based on representing and manipulating intrinsic rela-
tionships between objects that are independent of any
coordinate system, such as the centroid of a group of
points or the vector normal to two others. By contrast,
coordinate-based approaches generally operate by com-
paring and manipulating individual x, y, and z coordi-
nates of points. For example, a particular algorithm
may select one of two points based on whose z coordi-
nate is larger. You will come to understand and appre-
ciate these distinctions more completely later. It will
become apparent that vector geometric techniques
prove most suitable when operating on objects whose
position and orientation with respect to the current
coordinate system are completely general, and when
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no axis of the coordinate system has any special rela-
tionship to the current problem of interest. Coordinate-
based methods become preferable when we either
know a priori that the geometry occupies a known, sim-
ple position and orientation in the coordinate system,
or we preprocess it so that it does.

In this article I present the basic language and meth-
ods of vector geometric analysis and characterize the
situations favoring vector geometric versus coordinate-
based analysis. A companion article (Part 2 of this tuto-
rial)1 illustrates many of the ideas by deriving specific
expressions and computer code for common important
operations. Taken together, these two articles represent
a condensed version of an earlier technical report with
expanded applications.2

A set of C++ classes I developed includes methods
and definitions of overloaded operators implementing
nearly all of the low-level operations and matrix con-
struction algorithms presented in this article and its
companion.1 Sample code using these tools to perform
representative common operations appears in both the
companion article and technical report.1,2

Points and vectors in affine and
projective spaces

This section reviews many basic yet critical concepts
related to points and vectors, and the spaces in which
they live. I stress developing a geometric intuition that
will help you understand the derivations that follow and
master the tools required to develop more advanced vec-
tor geometric analysis abilities.

I limit the treatment of these topics—especially those
related to projective spaces and projective maps—to
that required to support a graphics pipeline. Several
good references cover other perspectives as well as
additional detail on this material (see the “Further
Reading” sidebar).

In this section we begin by developing a formal under-
standing of points and vectors. In a sense, they are “per-
formers in a play.” Next I’ll briefly discuss vector, affine,
and projective spaces. Extending the analogy, spaces
represent the “sets” in which our “performers” operate.
Finally, we consider various transformations, maps, and
other operations applicable to points and vectors in the
various spaces. These operations characterize how our
“performers” work with one another and move about
within a given “set.”

A thorough understanding of this material is impor-
tant because, in all likelihood, no graphics or modeling
system will provide all the functionality you require in
exactly the way you need it. Inevitably, the need will
arise for you to derive and implement computations to
obtain some required geometric quantity. If you cannot
justify your derivations in terms of the properties and
allowed operations described in this section, your
derivation will most likely prove invalid.

Points and vectors
We all have an intuitive sense of points and vectors. A

point is simply a position in space. To describe and
manipulate a point numerically, we must “address” it by
specifying signed distances from some reference point

along linearly independent directions (that is, we must
assign it “coordinates”), but the point stays the same
regardless of the coordinate system we use to address it.

As a concrete example, the swing set in my back yard
sits at a fixed location. From the door to my back yard,
my kids go 20 feet west and 25 feet north to get to it;
hence its coordinates with respect to the coordinate sys-
tem of my back door are (−20, 25). My neighbor’s kids
also like to play on our swing set, but from their back
door, they go 30 feet south and 120 feet west. Hence the
swing set’s coordinates with respect to the coordinate
system of their back door are (−120, −30). Certainly the
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Further Reading
Goldman1 provides a rigorous theoretical justification for many

of the concepts that I introduce at a more intuitive level here. He
also gives several additional examples of vector geometric
expressions relating to useful curve and surface properties and
analytical queries. Goldman2 and DeRose3 have advanced very
similar recommendations for geometric software development
based on the rigorous use of the properties of points and vectors in
affine spaces as described here. DeRose3 in addition suggests that
homogeneous coordinates (projective space points) are overused
in graphics systems. He argues that the simpler affine formulations
are often preferable. Several standard textbooks address these
issues as well. While it is impractical to provide an exhaustive list of
related textbooks, examples of standard graphics texts with
relevant material include the appendix of Computer Graphics:
Principles and Practice,4 appendices B and C of Interactive Computer
Graphics: A Top-Down Approach With OpenGL,5 appendix A of
Computer Graphics,6 and chapter 7 of Computer Graphics.7 Such
material tends to be covered earlier and used more extensively in
many texts on curves and surfaces. Again, an exhaustive list is
impractical, but examples include chapters 1 and 2 of NURB Curves
and Surfaces: From Projective Geometry to Practical Use8 and chapter
2 of Curves and Surfaces for Computer-Aided Geometric Design.9
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swing set exists independent of either of our back doors;
the doors merely provide two equally convenient refer-
ence frames to describe the location of the swing set.
Similarly, points do not “belong” in any sense to any
coordinate system; we merely describe their positions
by reference to such systems.

By contrast, a vector has no location. Rather, it’s
defined solely as a direction and a length. Like the point,
we describe its direction numerically with respect to some
coordinate system, but—also like the point—this numer-
ic description differs in different coordinate systems.

The fact that a vector has no position means that we
can draw the visual representation of a vector anywhere.

We can also drag such a visual representation anywhere
we wish.

One advantage of carefully preserving the distinction
between points and vectors is that we can derive very
general expressions and algorithms for important oper-
ations independent of the geometry’s position and ori-
entation with respect to any particular coordinate
system. While generality often comes with increased
overhead and cost, it turns out in this case that computer
code based on vector geometric analyses often exhibits
improved computational speed, better numerical relia-
bility, and simplicity of implementation. I’ll give exam-
ples supporting these claims as we proceed through this
article and its companion.1

Considering the example below gives a quick sense
for why we must distinguish between points and vec-
tors. We’ll see that addition of points is meaningless,
whereas addition of vectors is meaningful (not to men-
tion useful).

In Figure 1a, notice two points (P and Q) and two ref-
erence coordinate systems (S1 and S2). As measured in
S1, P = (−1, 2.5) and Q = (1, 2.5). Similarly, in S2, 
P =(−1.5, 6) and Q = (−1.5, 4). So what do we get if we
add P and Q? Using their representation in S1, we get 
R1 = P + Q = (0, 5). Using their representation in S2,
we get R2 = P + Q = (−3, 10). What’s going on? The
results differ. (We needed two different dots for R1 and
R2.) So what does this mean? Well, we started with two
points in space, a concept independent of any coordi-
nate system. Then we added the points and obtained
answers that depended on which coordinate system we
used to describe them. This is exactly the problem.

To be well defined, an operation must produce results
independent of any coordinate system when given inputs
that are coordinate system independent. Clearly, addi-
tion of points fails this test. It’s easy to construct similar
examples illustrating why multiplication of points by
arbitrary scalars (such as “2 * P”) is meaningless.

Now let’s see how these problems do not exist with
vectors. Figure 1b shows the same two coordinate sys-
tems with two vectors u and v. As measured in S1, the
vector u = (1, 1) and v = (0.5, 1.5). Similarly, in S2,
u = (1, −1) and v = (1.5, −0.5). So what do we get if we
add u and v? Using their representation in S1, we get 
w1 = u + v = (1.5, 2.5). Using their representation in
S2, we get w2 = u + v =(2.5, −1.5). As with the previ-
ous example, the numbers differ. However, unlike the
previous example, the vector is the same in either case.
To see this, drag the tail of the visual representation of
w1 to the tail of that of w2. (Recall that since vectors have
no position—they describe a relative quantity—we can
drag their visual representations wherever we wish.) The
vectors are the same; that is, we get the same result when
using either (or, in general, any) coordinate system.

In summary, what we get when we add two points or
multiply a point by a scalar depends on the coordinate
system in which we choose to work. This is bad. What
we get when we add two vectors or multiply a vector by
a scalar remains independent of the coordinate system
in which we choose to work. This is good. Together these
two observations demonstrate that points and vectors
are indeed different concepts and should be treated as
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such. Many other examples will show the importance
of differentiating between points and vectors.

We cannot quite leave this example yet, because it
leaves us with a problem. Consider what happens if we
divide R1 and R2 in the example above by two. We get
R1/2 = (0, 2.5) in S1, and R2/2 = (−1.5, 5) in S2. These
two points—labeled R in Figure 1c—are now the same.
(As with the vector example, the coordinates still differ,
but the points are indeed the same.) Of course, this
should not surprise us. Adding two points and then divid-
ing by two gives us the midpoint, an operation certainly
well defined independent of any coordinate system.

Thus we seem to have two conflicting results: since
addition and scalar multiplication are not well defined
in general, it would appear that our midpoint operation
cannot be justified. But of course we know that it can be.
So the question arises, what is special about the mid-
point calculation? And do other “special” operations
exist? How can we characterize them in general?

To address these and other questions, we must for-
malize our understanding of the spaces in which points
and vectors live. In the following section, I therefore intro-
duce vector spaces, affine spaces, and others. Once you
have an understanding of these spaces and the operations
defined in them, you can answer the questions just raised.

Spaces
So far we have focused on points and vectors—our

performers—but not the spaces in which they live. Turn-
ing our attention to these spaces, we will immediately
see other differences between points and vectors. We
will also see new ways to understand the relationships
between them.

Definition: An n-dimensional vector space consists
of a set of vectors and two operations: addition
and scalar multiplication. The vector space is
closed under these two operations: addition of
two vectors yields a vector in the vector space;
multiplication of a vector by a scalar also produces
a vector in the vector space. Finally, there exists a
distinguished member of the set called the zero
vector 0 with the properties that a ⋅ 0 = 0 for all
scalars a, and 0 + v = v + 0 = v for all vectors v.

We can interpret adding two vectors visually by posi-
tioning the tail of one at the head of the other. The vec-
tor from the tail of the first to the head of the second
represents the vector sum. Multiplying a vector by a
scalar scales the length of the vector by the absolute
value of the scalar. The direction does not change for
positive scale factors; the direction flips for negative
scale factors.

Definition: An n-dimensional affine space consists
of a set of points, an associated n-dimensional
vector space, and two operations: subtraction of
two points in the set and addition of a point in the
set and a vector in the associated vector space.
The former produces a vector in the associated
vector space, and the latter produces another
point in the affine space. Unlike a vector space,

which has the distinguished vector 0, an affine
space does not include a distinguished point.

Notice that this definition does not permit addition
of points or multiplication of points by arbitrary scalars.
This should not surprise us—the examples from the pre-
vious section illustrated that such operations were not
well defined, since they produced coordinate-system-
dependent results.

Armed with these two definitions, let’s now return to
the questions left dangling at the end of the previous sec-
tion. At first glance, the results of the examples we con-
sidered there would lead us to believe that for arbitrary
scalars, points, and vectors (ai, Pi, and vi, respectively),

but

The problem is that we know of one specific example
where such a linear combination of points is valid: mid-
point computation. To resolve this apparent problem, let
us rewrite our problematic linear combination of points:

(1)

where 

is a constant.
From the definition of affine spaces, we know that

subtracting two points yields a well-defined vector.
Therefore the summation on the second line of Equa-
tion 1 will always yield a well-defined vector, since it’s
just a linear combination of vectors. Hence the original
summation is well defined if and only if we choose α
such that αP0 is well defined. (Recall I said earlier only
that multiplication of points by arbitrary scalars was not
well defined. Perhaps we can find particular scalars that
produce well-defined results when used to multiply
points. Indeed we can.)

Observe that if α = 1, αP0 is well defined in the sense
that we have considered so far. That is, 1 ⋅ P0 yields the
same point regardless of the coordinate system in which
we measure P0. Since midpoint computation is simply
an operation in which n = 1 and a0 = a1 = 1/2 (that is,
α = 1), we now understand why that operation “works.”

Next observe that if α = 0, αP0 yields the n-tuple 
(0, …, 0). If we interpret this n-tuple as a point at the ori-
gin, then the result obviously depends on the coordinate
system, hence it’s meaningless. However, if we instead
interpret this n-tuple as the zero vector in the associated
vector space, the result remains independent of the coor-
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dinate system. Therefore, we say that multiplying a point
by “0” yields the zero vector, independent of the coordi-
nate system used. In the context of Equation 1, then, the
second line takes the form “vector + vector” when α = 0.

No other choices exist for α. That is, for a scalar α and
a point P, we can prove that αP is well defined if and only
if α equals either 0 or 1. I leave the proof as an exercise.

Collecting these facts, we can now state that

(2)

Not only does this characterization tell us what’s
allowed in terms of expressions involving points and vec-
tors, it also gives us a check of sorts for derivations we
perform. That is, we can check the “reasonableness” of
some derivation by summing the coefficients on all the
points in the expression. If they do not sum identically to
0 or 1, our formula cannot be correct. If they do, then we
know the result is, respectively, a vector or a point. Based
on this characterization, for example, we can state that,
given points P, Q, R, and S, “2P − Q − R + S” describes a
well-defined point, but “P − Q + R + S” is undefined.

Note that we have switched fairly casually between
two subtly different types of arithmetic operations. Our
definitions specify an allowed type: vector spaces permit
addition and scalar multiplication (u + v and av); affine
spaces define subtraction of points and addition of a
point and a vector (P − Q and P + v). When we write one
of the two valid forms of the second line of Equation 1,

(3)

or

(4)

we use only these permitted operations. That is, every
individual instance of an addition, subtraction, or mul-
tiplication operator in Equations 3 and 4 is formally jus-
tifiable from the definitions. However, when we write
the algebraically equivalent summation on the left-hand
side of the first line of Equation 1 (or any specific exam-
ple thereof, like “2 P − Q − R + S”), we employ individ-
ual operations that, technically speaking, aren’t
permitted. For example, the multiplication of P by 2 isn’t
by itself a valid operation. Yet the expression as a whole
is well defined.

So what are the practical implications of this? As
graphics and modeling programmers, we generally
derive geometric expressions that we then implement
in our programs. It’s typically inconvenient to express
desired formulas using only the “sanctioned” affine and

vector space operations, and we would certainly not
want our programming tools to force us to do so. How-
ever, this implies that the onus stays on us to ensure that
expressions we implement in computer code remain
valid from the perspective of Equation 2.

DeRose formalized this concept in a geometric pro-
gramming language that systematically performs vari-
ous kinds of type checking using this characterization.3

A broader and deeper theoretical treatment of this mate-
rial appears elsewhere.4,5

Now let’s resume our study of spaces. I stated earlier
that a direction and a length characterized a vector, yet
no operation or other mechanism in a vector space pro-
vides us with an absolute measure of length. (We can
only say that one vector’s length equals some multiple of
another’s length.) Furthermore, no tools associated with
affine spaces allow us to talk about the strongly related
notion of the absolute distance between two points.
Euclidean spaces remedy this situation.

Definition: A Euclidean space is an affine space
with the additional concept of distance.

The primary additional operation applicable to vec-
tors in a Euclidean space is the dot product (or inner
product). I’ll discuss the definition, properties, and var-
ious applications of the dot product later. Here I simply
point out that we can define the length of a vector u in
terms of the dot product as

(The vertical bars around u denote “length of u”.) Since
we can characterize the distance between two points as
the length of the vector between them, the dot product
also gives us a way to measure distances between points
in an affine space. Specifically, the distance between
points P and Q is 

We all grew up with affine and Euclidean spaces and
feel reasonably comfortable with them. Now let’s get
uncomfortable. Imagine that the affine space we know is
actually a plane inside of a space with a dimension of one
greater than the affine space. For example, consider the
conventional 2D xy affine plane; suppose that it’s really
the w = 1 plane of a 3D xyw coordinate space. We call this
“larger” space a projective space and say that our affine
space is embedded in the projective space. (This rela-
tionship superficially resembles the way that 2D affine
space relates to 3D affine space. That is, the xy coordinate
plane simply lives on the z = 0 plane of 3D space. How-
ever, the superficial similarity ends there, as you’ll see.)

The following definitions formalize these notions.

Definition: An (n + 1)-dimensional projective
space is the space in which the points of an 
n-dimensional affine space are embedded. We
denote the extra coordinate dimension as w and
say that the affine points lie in the w = 1 plane
of the projective space.

  
P Q P Q P Q− = − ⋅ −( ) ( )

 
u u u= ⋅

  
a P Pi

i

n

i

=
∑ −

0

0( )

  
P a P Pi

i

n

i0

0

0+ −
=
∑ ( )

  

a P

a

ai i

i

n

i

i

n

i

i

n

=

=

=
∑

∑

∑=

=

=

















0

0

0

1

0

point if

vector if

undefined otherwise

Tutorial

70 May/June 1999



Definition: All projective space points on the line
from the projective space origin through an
affine point on the w = 1 plane are said to be
projectively equivalent to the affine space point.

Returning to 2D affine space as an example, every
point (x, y) in the affine space is actually a point (x, y, 1)
in the projective space. (See Figure 2.) Furthermore, all
projective space points (wx, wy, w) where w ≠ 0 are pro-
jectively equivalent to the point (x, y). Stated in another
way, corresponding to every point (x, y) in affine space
there exists the line in projective space that passes
through (0, 0, 0) and (x, y, 1).

The same relationship holds between 3D affine space
and projective xyzw space. That is, our 3D world lives
on the w = 1 plane of projective xyzw space. Obviously,
this is harder to visualize. Classical references for trying
to understand geometry in dimensions greater than
three include the nineteenth century book Flatland6 and
more recent publications.7,8

To this point, we have considered general n-dimen-
sional spaces, using 2D and 3D spaces as specific exam-
ples. For the remainder of this tutorial, we’ll focus on
3D vector and affine spaces—the domain of traditional
computer graphics systems.

Affine maps
We have seen the importance of coordinate system

transformations to the internal operation of graphics
systems. We can view such a transformation as a func-
tion X that maps a point’s coordinates as measured in
one coordinate system into that point’s coordinates as
measured in another.

In dealing with points in affine spaces, we restrict X
to the family of affine maps. X is an affine map if it takes
the form

X(Q) = MQ + t

where M represents a 3 × 3 matrix and t a vector in the
associated vector space.9 We can use any combination
of translation, rotation, scaling, and shear in an affine
transformation, and it’s well known that you can com-
pose any affine map using some combination of these.9

Affine maps preserve parallelism (for example, two
parallel line segments remain parallel following trans-
formation by an affine map), and they preserve ratios
of signed distances between collinear points.9 As a con-
sequence of these properties, it’s meaningful to apply
the 3 × 3 matrix M of an affine map to a vector w in the
associated vector space. To see this, choose an arbitrary
pair of points P and Q such that w = P − Q. Now if we
apply our affine transformation individually to P and Q,
then form the vector between the resulting transformed
points, we obtain 

X(P) − X(Q) = (MP + t) − (MQ + t)
= M(P − Q) = Mw

Hence, to apply an affine transformation to a vector in
the associated vector space, we ignore t and multiply
the vector by M.

Common vector operations
Two particularly powerful operations that come with

Euclidean spaces are the dot product and the cross prod-
uct of vectors. We’ll use these operations extensively in
our derivations.

For two arbitrary vectors u and v, we define their dot
product as the scalar

u ⋅ v = |u||v| cos θ

where θ (0 ≤ θ ≤ π) represents the angle between the
two vectors when drawn “tail to tail.” Given two specif-
ic vectors u and v, we compute a numerical value for the
dot product as

u ⋅ v = uxvx + uyvy + uzvz

For two arbitrary vectors u and v, we define their
cross product as a vector whose length is

|u × v| = |u||v| sin θ

We define the direction of the cross product vector as
perpendicular to both u and v with sense determined
by the right-hand rule. (See Figure 3.) Given two spe-
cific vectors u and v, we compute a numerical value for
the cross product using determinants as

Coordinate versus vector geometric
approaches to analysis

Before considering how we apply the tools we’ve seen
to this point, I’ll briefly review two major approaches to
the mathematical analysis employed in graphics and
modeling systems: coordinate-based and vector geomet-
ric. While both approaches have sufficient power for our
needs, you’ll see that they have complementary strengths.
Each will emerge as ideal for different situations.

Coordinate-based methods refer to mathematical
analyses based directly on the relationship of geometry
to some specific coordinate system. For example, I might
ask how the z coordinates of two points compare. By
contrast, vector geometric methods focus on relation-
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ships between geometric entities, not their individual
positions and orientations with respect to some partic-
ular coordinate system. For example, I might compute
the vector between two points and find its length in the
direction of some other relevant unit vector.

You may argue at this point: “But how can you compute
the vector and find its length in the specified direction
without using coordinates of the points?” It’s absolutely
correct that to carry out these operations on a computer,
you need to use coordinates. However, the level of abstrac-
tion used in the mathematical analysis remains focused
on points and vectors in Euclidean spaces. We’ll see several
examples of the benefit of this higher level of abstraction
as we proceed. For example, coordinate-based approach-
es to constructing matrices for general rotations must
employ numerically sensitive tests to determine whether
intermediate floating-point values are zero or close to it.
By contrast, the vector-geometric approach that we’ll
derive requires only one initial test to ensure that the pro-
grammer has not given us a zero vector as a rotation axis.
Not only will we need just this one test, but it’s also easier
to make it numerically robust.

With respect to a typical graphics pipeline, we find
that vector geometric approaches work best when deriv-
ing transformations for the pipeline’s early stages (such
as various modeling and view orientation transforma-
tions). But then the situation changes. The view orien-
tation transformation is typically constructed so as to
produce a viewing coordinate system that possesses cer-
tain important relationships with respect to the graph-
ics display device. Not only do these relationships
simplify (both for the end user and the graphics pro-
grammer) the subsequent specification of projection
data, they also can be exploited to simplify the analysis
required to develop subsequent transformations and
other viewing operations. Hence, we can accomplish
this subsequent analysis most expediently using coor-
dinate-based schemes that exploit the special proper-
ties “built into” these viewing coordinate systems.

Coordinate-based approaches
Coordinate-based approaches in effect force us to use

a particular coordinate system as an intermediary when
asking questions about the relationship between two
objects. For example, instead of directly specifying a
query between two entities A and B, I must first look at
property p of A with respect to the coordinate system
and compare the result to property p of B with respect to
the same coordinate system. Based on the comparison,
I must try to determine an answer to the original ques-
tion. If I’m lucky—if A and B happen to be described in
a convenient coordinate system—everything’s OK. Oth-
erwise it gets tricky.

When this approach works, it generally works well.
As an example, suppose we have transformed two points
into an eye coordinate system, and now we need to know
which is closer to the eye so that we’ll know which is vis-
ible. The eye coordinate system is constructed so that
distance from the eye relates directly to the z coordinate.
Hence we use the z coordinate as property p and can
answer our original question simply by comparing the
two z coordinates. Nothing could be simpler.

On the other hand, suppose we have two arbitrary vec-
tors u and v, and want the matrix that rotates u onto v.
Since we can’t assume any special relationships among
u, v, and the coordinate system, a coordinate-based
approach would have to determine the series of trans-
formations that would map each vector onto, say, the z
axis. The desired transformation would then result from
concatenating the transformations for u followed by the
inverse of the transformations for v. This gets even more
complicated than it sounds to implement correctly.2

Vector geometric approaches
Vector geometric approaches free us from the need to

use coordinate systems as intermediaries when perform-
ing geometric operations or querying the relationship
between objects. Instead they let us derive relevant expres-
sions independent of any particular coordinate system.

Two primary considerations with respect to typical
geometric analysis make the ability to define and manip-
ulate expressions in this manner desirable:

� In general, no special relationships exist between the
entities with respect to a given coordinate system that
we can exploit to make the derivation easier.

� While in general no special relationship exists that we
can exploit, there may coincidentally exist some spe-
cial relationship that a coordinate-based algorithm
would have to detect and handle.

Let’s examine this second point more closely by again
considering the example of rotating u onto v. Suppose
we just consider the first part of that process, namely
computing the matrix that rotates u onto the z-axis. Fol-
lowing the development in Foley et al.,10 the required
matrix would be the product

The difficulty arises because the denominators in the
second matrix may be zero or nearly zero. Geometri-
cally, this means that u lies parallel to (or nearly paral-
lel to) the positive or negative y-axis direction.
Therefore, an implementation of this coordinate-based
algorithm would have to first check for this special case
rather than simply computing the product of the two
matrices. This proves unsatisfactory because whether
u lies parallel to some coordinate axis is totally irrele-
vant to the operation ultimately desired, namely rotat-
ing u onto v. When computing the analogous two
matrices for v, similar problems of course arise. Finally,
the matrix for rotating u onto v is computed as the prod-
uct of four matrices: the two matrices shown above and
the inverse of the two v matrices.

By contrast, a vector geometric approach to this oper-
ation would simply compute directly the matrix that
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rotates about the vector w (where w = u × v) by the
acute angle between u and v. (Refer again to Figure 3.)
We can easily determine the sine and cosine of this angle
from the formulas presented in the section “Common
vector operations.” In Part 2 of this tutorial1 we’ll see a
formula for the desired matrix that requires only w, the
sine, and the cosine.

Having derived appropriate formulas, we must of
course use some coordinate system so that we can gen-
erate internal numerical representations to drive our
computer programs. The choice of coordinate system
becomes irrelevant at that point—we’ll get the same
answer regardless of the coordinate system chosen.

Summary
After reviewing the basic operations in common inter-

active graphics pipelines, we discussed two different
styles of analysis: vector geometric and coordinate-
based. The former prove most applicable in situations
where we can make no assumptions about how geome-
try relates to coordinate systems. Not only do our vector
geometric expressions not rely upon special configura-
tions of the geometry with respect to each other or to the
coordinate system, they also don’t require special-case
handling when such special relationships occur.

As evidenced by these observations, mathematical
derivations based on vector geometric analyses often-
times prove simpler, stay free of annoying coordinate-
system-dependent special cases, and produce results
never worse and almost always better in terms of effi-
ciency of implementation. Consequently, we see very
real and quantifiable differences in the resulting code:

� more compact
� more computationally efficient
� more robust
� fewer, if any, special cases

Most special cases in vector geometric approaches are
trivially detected before the algorithm begins. By con-
trast, coordinate-based methods commonly require spe-
cial-case detection at intermediate steps of the algorithm
based on quantities derived after a series of numerical
computations. General rotations (or the example of
rotating an arbitrary vector u onto another arbitrary
vector v) offer excellent examples of this.

However, in some situations it’s useful to transform
geometry into special coordinate systems where we can
exploit the system’s orientation to dramatically simplify
and accelerate certain types of imaging operations. Exam-
ples include clipping algorithms, visible line and visible
surface determination, and intensity depth cueing.

Part 2 of this tutorial presents specific algorithms and
techniques derived using these ideas.1 I’ll also show sam-
ple C++ code written using tools that implement the
basic vector geometric operations discussed here. �
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