
Using a Software Framework to Enhance
Online Teaching of Shader-Based OpenGL

James R. Miller
Electrical Engineering and Computer Science

1520 W. 15 Street; 2001 Eaton Hall
University of Kansas; Lawrence, KS 66045

1-785-864-7384

jrmiller@ku.edu

ABSTRACT
Shader-based OpenGL is a powerful and exciting tool for
individuals with data visualization needs, interests in gaming, a
need to create and manipulate synthetic environments, and a
variety of other high-performance tasks. It is well-known that
shader-based OpenGL is difficult to learn for programmers with
no prior graphics API experience – some have even claimed it’s
impossible to teach to individuals without such prior exposure. In
this paper, we report on our experiences developing an
educational approach that we believe has contributed to the base
of evidence that it is not only possible, but also desirable to do so.
Our overriding goal has been to learn and exploit the extent to
which mastering a complex graphics API like modern shader-
based OpenGL can be enhanced by using a software design
framework into which relevant concepts can be placed, thus
facilitating more rapid assimilation and mastery of the concepts.
We have been using this technique in our Introduction to
Computer Graphics course in which we have two primary goals:
teach shader-based OpenGL to students who have no prior
experience using a graphics API, and present a framework to
students that will scale up to medium and large scale applications,
both in terms of code size as well as data size. We do not in any
way suggest that our architecture is the “best” for all advanced
graphics applications, or even for teaching. Instead we simply
claim that use of such a framework helps students master complex
OpenGL concepts and develop nontrivial interactive 3D
applications. Once students fully understand the basics, they
should find it easy to migrate to other perhaps quite different
architectures.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education
– distance learning

K.3.2 [Computers and Education]: Computer and Information
Science and Education – computer science education; self-
assessment

General Terms
Design, Experimentation, Languages.

Keywords
Computer-aided Learning; Educational Technology; Computer-
Graphics; Self-paced learning; Mastering Shader-Based OpenGL.

1. INTRODUCTION
OpenGL [4] has regained its status as the preeminent interactive
3D modeling and rendering API for scientific, engineering, and
gaming applications. It has done so in part by changing the nature
of how graphics data are specified, processed, and rendered,
explicitly exposing an intimate cooperation between the CPU and
the GPU. In so doing, the learning curve for so-called shader-
based OpenGL has become a little steeper. So much so, in fact,
that many have opined that it is not practical to teach to
introductory students at the undergraduate level without at least
some exposure to the older, simpler version of the API. See, for
example, [1] in which this prevailing opinion is cited, but
rebutted. We agree with the rebuttal, and the purpose of this paper
is to present the approach we have adopted to make it work.

We have been teaching shader-based OpenGL in our introductory
computer graphics course since the Fall of 2011 when [1] first
appeared. This course is targeted towards senior undergraduate
computer science and computer engineering majors, although we
frequently attract several graduate students as well since the
material serves as a prerequisite to several graduate courses in
visualization and modeling. Moreover, graduate students are
allowed to apply this course towards their graduate degree.

While the Fall 2011 semester was a bit rocky, we have developed
an approach based on the use of a consistent software architectural
framework that allows students to progressively learn increasingly
sophisticated aspects of OpenGL, in part by relating them to the
framework. The bulk of the material is online and is embodied in
an increasingly sophisticated set of examples that share the
framework. Packaged with each example is a detailed description
of the new features introduced in the example along with
complete source code so that students can run, modify, and
experiment with the example programs.

The framework we use serves a dual purpose. Obviously the main
purpose is that it helps students organize their growing
understanding of how portions of the OpenGL system operate and
cooperate. Secondarily, it is a C++ object-oriented framework that
serves as a realistic example of several advanced C++/OO design

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCSE’14, March 5–8, 2014, Atlanta, Georgia, USA.
Copyright © 2014 ACM 978-1-4503-2605-6/14/03…$15.00.
http://dx.doi.org/10.1145/2538862.2538892

603

patterns that students have typically only seen previously in
unrealistically small abstract contexts, if they have even seen them
at all.

A major goal is to present a framework that will scale up to
medium and large scale applications, both in terms of code size as
well as data size. However we also recognize and emphasize to
students that this framework is not intended to represent the “best”
architecture for all advanced graphics applications. Indeed, very
different architectural styles and organizational methods may well
be needed in different application contexts. Our philosophy is
instead that this is a useful framework with which to master
OpenGL concepts and develop nontrivial interactive 3D
applications. Once students fully understand the basics, they will
be well-prepared to migrate their expertise into other
architectures.

2. RELATED WORK
There are online tools developed to aid students in mastering
complex concepts related to interactive 3D modeling and
rendering. The Exploratories project [2], for example, offers a
wealth of free software and tools for teaching fundamental
concepts including color theory, viewing in 3D, illumination
models, and others. Standalone applications illustrating such
concepts are available as well as component tools to help
developers with basic tasks like drawing axes and 3D shapes
(boxes, cylinders, etc.). These are high-quality tools that serve an
important purpose, but one that is somewhat different from what
we are trying to accomplish here.

Most existing standard graphics textbooks focus on teaching the
theoretical concepts of computer graphics modeling and rendering
and then relating them to a concrete API like OpenGL (e.g., [1]).
This is unquestionably an important and valuable function, and we
definitely exploit that fact in our course by using such a textbook
for readings on those underlying graphics concepts. Again, we
believe our contribution is best seen as serving a companion, but
orthogonal purpose: namely the development of a software
architectural framework that both helps students organize their
new knowledge and lets them develop skills that will help them
design and implement large scale applications that make effective
use of the graphics functionality they are learning to solve real-
world problems in data visualization and other areas.

Talton and Fitzpatrick describe their rationale and approach to
teaching GLSL in the introductory computer graphics course [6].
They argue that exposing introductory students to GLSL is
ultimately an advantage, in part because it forces them to come to
grips with the internal mathematics, algorithms, and data
structures required while removing the “black box” aspect of the
process. They go on to state their belief that students getting this
exposure are “more likely to produce visually and technologically
impressive course projects than those who are taught to use only
the fixed-function OpenGL API.” Since their paper appeared, the
entire fixed-function pipeline to which they allude has been
deprecated as has a large portion of the basic geometry definition
API. These developments appeared in OpenGL 3.3 released in
March 2010, and they have reinforced the steep learning curve,
making the issue much more critical.

3. MODEL-VIEW-CONTROLLER
Our basic framework is based on a simplified version of the well-
known Model-View-Controller (MVC) design pattern. We begin
by briefly explaining the motivation for and use of the MVC

pattern in general, and especially its popularity for interactive
modeling and rendering applications. We then observe that in
introductory graphics applications such as the ones they will
develop in this course, it is frequently the case that the “model”
will not really have a use outside the context of the graphics
program itself. Indeed, there may not even be a standalone
representation of the model aside from its implicit representation
in code and data declarations. Hence we introduce a simplification
of the MVC pattern by proposing two generic classes: a combined
“ModelView” and a “Controller”. Since there really is no
separable “Model”, our merged ModelView makes sense because
we only access the model in the context of generating a view of it.
This simplified pair of classes then forms the core of the
framework we develop for the course.
An OpenGL program can produce and interact with images in
multiple windows, and each window is managed by a single
Controller. Multiple models (i.e., ModelView instances) can be
created; each can be added to one or more Controllers and hence
rendered in the corresponding windows.

4. MAIN CONTRIBUTIONS OF THIS
EFFORT
We believe the approach to teaching the introductory computer
graphics course described here accomplishes several useful goals:

• Students get significant experience with the common MVC
design pattern (albeit a somewhat simplified version of it).
They get the big picture while using our simplified ModelView
– Controller architecture for projects.

• Of course the primary goal is to master the somewhat complex
art of shader-based OpenGL, including getting significant
experience with cooperative CPU-GPU software design,
development, and debugging issues. Students see how to
exploit the massively parallel GPU for their rendering code, and
we now very briefly introduce them to general-purpose GPU-
based computation between frame refreshes via OpenGL’s
Compute Shaders. Included is an introduction to the idea that
large numbers of GPU program instances simultaneously
receive and process “work assignments”, the common paradigm
for data parallel computational models.

• Students gain practical experience with several intermediate-
level object-oriented concepts, such as class hierarchy design,
and the need to understand, embrace, and exploit the
differences between instance and class methods as well as
between instance and class variables. Students typically have
been minimally exposed to these ideas to various extents, but
they typically have not yet seen realistic examples of where and
how they can be effectively used. We are exploiting a synergy
here: learning graphics in the context of a useful software
architecture helps students master the graphics concepts;
conversely, employing useful software design patterns in a
realistic setting helps them become more comfortable with
sophisticated design patterns, and hence better software
engineers.

• Students find it both a blessing and a curse that they gain
experience studying and understanding an established design
and code infrastructure inside of which they will build their
own projects. Some have expressed a lack of enthusiasm for
reading and studying existing code bases, but the
counterargument is that that is more representative of what they
will be doing in industry than is starting a program from scratch

604

every few weeks. Moreover, the established code base they
must understand in order to do the course projects is small.

• Once they have mastered the framework itself, students can
focus more attention on “normal” graphics issues such as how
to build, manipulate, illuminate, render, and interact with large
2D and 3D models.

• All the examples, code, and explanatory information are on the
web site (http://people.eecs.ku.edu/~miller/Courses/OpenGL/
OpenGL.html), hence students can – to a certain extent –
proceed through the material at their own pace. Specifically, if
a student is eager and wants to move faster than our in-class
discussions are proceeding, they are certainly able to do that.

5. PROGRESSION THROUGH THE
ONLINE PORTION OF THE COURSE
The primary online web site for the shader-based material just
cited above is structured generally as follows. There are initial
pages that describe the relevant background and history of
OpenGL as well as the general architecture of an OpenGL
program. Following a review of the overall course goals, an initial
“Hello, OpenGL” application is presented which simply defines
and renders a triangle. In spite of the simplicity of this example,
students see the bulk of the control and communication patterns
that are used throughout the course. Following this simple
example, we briefly summarize review the primary OpenGL
“draw modes”, relating them to the order in which points are
placed in buffers sent to the GPU.

Following this overview, the primary online materials that
develop the software framework are presented as a succession of
increasingly sophisticated example programs organized into
“Sample Program Sets”. Each introduces two or three new
concepts, the first by extending “Hello, OpenGL” so that students
do not have to start from scratch understanding a new model.

5.1 Hello, OpenGL
We begin by explaining the high-level execution model employed
by our ModelView–Controller architecture (Fig. 1). The main
program is very small, basically just creating a Controller (and
hence its window on the screen) and a ModelView. It then adds
the ModelView to the Controller’s list of managed models and
hands off to the event handling loop of OpenGL’s window system
interface GLUT [4]. The following briefly summarizes the key
concepts introduced in each step.

Figure 1: Basic Communication and Control Flow.

Step 1 creates the Controller along with its Rendering Context
(RC – an encapsulation of OpenGL state in a window). Event
handling in OpenGL is based on event callback registration.
Client code registers a function in the OpenGL RC that is to be
invoked when a given event occurs. OpenGL is not object-
oriented, hence only external functions (as opposed to, say, class
instance methods) can be registered. C++ class methods can be
registered as callback functions since they are called in a manner
identical to that for regular C functions. This observation allows
us to illustrate a common pattern to students for translating non-
object-oriented API callbacks to object-oriented instance methods.
In the simplest case, for example, a Controller class method is
registered as the callback function, and a Controller class variable
is used to remember the last Controller instance created. When the
class method is called in response to a registered event, it uses the
saved Controller class variable pointer to hand off responsibility
for processing the event to the appropriate Controller instance
method.

The following captures the essence of the idea as presented to the
students:
Controller* Controller::theController = NULL;
Controller::Controller()
{
 …
 theController = this;
}
// A class method registered with GLUT:
void Controller::anEventCallback(…)
{
 if (theController != NULL)
 theController->handleEvent(…);
}
// The instance method to handle the event:
void Controller::handleEvent(…)
{
 …
}

While this simple scheme of translating class methods registered
as callback functions to instance methods works in single-window
(and hence single Controller) applications, alternative designs are
discussed with students that are capable of handling multiple
Controller situations. The typical solution is to use a mapping
from GLUT window IDs retrievable during event processing to
the corresponding Controller pointer.

The second step in this generic execution model creates one or
more ModelView instances. From the perspective of teaching core
shader-based OpenGL concepts, we need to reinforce the
distinction between what happens at model creation and/or
modification time as opposed to rendering time. Model data is
copied to buffer objects on the GPU; storage for these objects
must be managed in much the same way normal dynamically
allocated storage is on the CPU. The ModelView constructor is
responsible for dynamically allocating GPU buffer storage and
initializing it with the required model data. The destructor is then
responsible for releasing this buffer storage. If model
modifications are performed (typically in response to events),
other ModelView methods are used to rewrite all or part of the
data in the buffers stored on the GPU. It is clear to students that
these creation and modification operations are performed
infrequently as compared to the much simpler operations
performed to support dynamic updates such as animation, which
we shall revisit below in steps 5 and 6.

605

Core rendering is performed using shader programs written in
OpenGL’s GLSL GPU shader language. These programs must be
explicitly compiled, linked, stored on the GPU, and executed on
demand by the host CPU program. Typically several instances of
a ModelView class will share the same shader program(s), so we
use this as an opportunity to illustrate how class variables can be
used to manage the storage and variable location data for the
shader programs, allowing a single compiled and linked shader
program to be shared among all the instances. We illustrate how a
reference counting scheme can also be used so that – when the last
ModelView instance has been deleted – the storage associated
with the common compiled and linked program can be released.

Step 3 simply registers the ModelView(s) with the Controller so
that each instance can be located for rendering during display
callbacks. Step 4 then transfers control to the main GLUT event
monitoring loop.

When the GLUT recognizes the need to recreate the display in a
window, it calls the registered display callback (a class method in
Controller). That callback delegates to an instance method as
discussed above which in turn invokes a render method of each
ModelView instance registered with the Controller. Here students
observe that very little CPU-GPU communication is required –
typically just simple directives involving minimal CPU-GPU data
transfer that establish values for certain attributes and trigger the
rendering of data stored in buffers already on the GPU.

This simple framework and mode of operation will require only
minor extensions to get through the bulk of the introductory
online material that needs to be conveyed to students during the
first half of the course. Following this basic introductory example
students progress through a series of sample program sets, a brief
summary of which follows.

5.2 Sample Program Set Structure
Once we have completed discussion of “Hello, OpenGL”, we
move on to the portion of the web site that contains a series of
increasingly sophisticated example applications. Each sample
program has the same MVC structure, of course, and this allows
us to focus on just the new features being considered in each
example. Each set is presented in a web page in which each
example of the set is introduced using the common general
format, a portion of which is illustrated in Fig. 2.

Figure 2: Introducing Example 2 of Sample Program Set 1

The description contains a textual overview of the example,
beginning with a short list of new features presented followed by
a brief narrative of each new feature. Links to all source files for
the examples are given, and a thumbnail of the generated output is
presented. Each sample program set also contains a link to a
master tar file that contains the source code for all examples in
that program set.

5.3 Sample Program Set 1
Using programs that continue to generate only small numbers of
triangles, this set introduces, in turn, the following important
concepts:

• Coordinate system issues including generalized
communication between the Controller and its several
managed ModelView instances in which each ModelView
instance reports its spatial extent to the Controller; the
Controller uses this information to maintain a master spatial
extent that can then be used to map from world coordinate
data to logical (and later physical) coordinates on the device.

• Aspect ratio preservation, including when it is and is not
appropriate.

• Attributes – both “per-primitive” and “per-vertex” attributes.

• General event handling schemes including inverse coordinate
mapping that allows pixel coordinates to be mapped back to
world coordinates.

• Program design patterns illustrating different common
approaches to how responsibility for geometry and
appearance generation can be divided between the CPU
program and the GLSL
shader program running on
the GPU. Included is a
glimpse into how procedural
modeling in GLSL can be
used to completely determine
the appearance of geometry
stored in buffers on the GPU.
For example, Fig. 3 is a
screen shot from a
demonstration program
showing how two simple
triangles can be rendered in a half dozen very different ways
based strictly on choices made in the GLSL fragment shader
program.

5.4 Other Sample Program Sets
The remaining online sample sets continue to add to the students’
repertoires by introducing concepts involving fonts, general color
space and color modeling issues, simple animation using timer
callbacks, and modeling techniques. We use a font library based
on utilities developed by George Sealy [5], slightly modified to
work in the context of our execution environment. It is the general
modeling techniques introduced at this stage that merit the most
attention here.

While certain variations can be reasonably introduced in different
ModelView instances, students quickly run into limitations as
they attempt more elaborate scenes. Our first approach to
overcome these limitations is to convert ModelView to an abstract
base class. Keeping ModelView simple – basically preserving
only those interfaces needed to communicate effectively with the
Controller and factoring out a few common tools required by all
concrete ModelView subclass instances – we quickly arrive at a
modified design that allows multiple unique instances of models
to be maintained and rendered in this environment. Our first
example of such a scene results in a “mountain village” as shown
in Fig. 4.

Three concrete subclasses of ModelView are used: House, Tree,
and Mountain. Each can be parameterized on creation with

Figure 3: Two Triangles

606

different relative and absolute sizes, labels, etc. Students see how
different subclasses can have their own GLSL shader programs
for rendering their instances. For example, the House subclass
render method sends to its GLSL program information describing
the part of the house being rendered, and the GLSL program is
then responsible for creating an appropriate rendered appearance.

Figure 4: A Mountain Village.

5.5 Moving to 3D
Making the transition from 2D to 3D is always difficult. Of course
3D coordinate data is required; 3D normal vector descriptions and
material reflectance properties are required as well to support
lighting models. Students must cope with a more complex
viewing model involving line of sight, field of view, etc. The good
news is that neither a new nor an expanded set of APIs is required
with shader-based OpenGL. It is of course necessary to explain
the mathematical aspects and discuss what computations must be
performed and where (e.g., on the CPU or on the GPU using
GLSL). But no new APIs are required in order to render a 3D
scene with a given lighting environment. Once students know
what needs to be done and what data needs to be sent to the GPU,
they simply use interfaces they have been using all along to make
that happen. Even implementation of dynamic 3D viewing
operations like rotations, panning, and zooming can all be
accomplished using APIs they are now well on the path towards
mastering.
This base familiarity with the core API means we can also begin
to back away from presenting complete running examples,
focusing instead on conceptual material and code snippets that
introduce new modeling and rendering techniques. We include
focused code samples where needed, but expect the students to
exercise their understanding of the overall structure so as to be
able to incorporate these into shader programs and/or CPU code
as needed.

Subsequent online and in-class materials continue to develop
more advanced 3D modeling techniques. Some new APIs are
required along the way for certain advanced techniques, most
notably texture mapping. Given their overall familiarity with the

architecture and the OpenGL API, we find that students are able
to simply focus on mastering the concepts while plugging
implementations of the new functionality they are learning into
the architecture as needed.

Figures 5 and 6 below show examples of student-generated
projects from the last time the course was offered. In addition to
the 3D scenes, it was a requirement to support walking through or
otherwise exploring the 3D environments, and students generally
had few problems doing so.

6. DISCUSSION
As mentioned in the Introduction, a very common perception is
that it is impractical to teach pure shader-based OpenGL
programming without first exposing students to required
introductory concepts using the older, simpler, and now
deprecated interface. There are a number of problems with this
approach that makes seeking ways to avoid that initial experience
worth pursuing. One obvious problem is that students must learn
two different APIs. Somewhat worse is the fact that two overlap
considerably, so when “making the move” to the pure non-
deprecated shader-based OpenGL API, they must pay careful
attention to what they can (and in fact must) still use as opposed
to functionality they must eschew. It was the goal of the online
material briefly introduced here to help fast-track students into an
adequate comfort level with shader-based OpenGL so that they
could demonstrate solid skills by the end of a single semester.

It should come as no surprise that the first time through the course
was a bit rough. Students struggled as I tried to identify the best
order in which to cover the various required concepts. Exam
scores were noticeably lower than usual. Submitted student
projects were much less sophisticated and more quirky and buggy
than those in previous semesters.

Typical comments from the first offering of the course included:

• “Don’t know if he realizes how difficult some of the stuff is
for beginners.”

• “More frequent smaller projects would help build a better
understanding.”

These comments along with my general observations and
experiences from the first offering led to several modifications
including a significant restructuring and reordering of the online
topics covered, better up-front explanations of high-level
concepts, and more and smaller projects.

By the second – and especially the third – offering of the course in
this new format, significant improvements were noticed as
evidenced by all measures noted above. Submitted student
projects were less buggy and much more sophisticated (see Fig. 5
and 6 below), many including elaborate indoor or outdoor scenes.
Performance on exams was markedly better, and end-of-semester
course evaluations reflected a higher level of satisfaction. For
example:

• “This is the most challenging and one of the most rewarding
classes I have taken.”

To be sure, many students still commented that the material was
quite difficult and that they struggled. But the overall sense was
much more positive than that from the first offering.

607

7. FUTURE DIRECTIONS
The jump to 3D has always been a difficult one – even when
teaching the older deprecated API. It continues to be a significant
hurdle for students when using pure shader-based OpenGL. It is
my sense, however, that we have reached the point where the
primary difficulties have reverted to those that are intrinsic to 2D
versus 3D rather than being unique to the use of pure shader-
based OpenGL. Primary difficulties encountered by students in
this class include conceptual issues surrounding (i) 3D modeling
and (ii) generating appropriate views of 3D scenes. Problems
surrounding the latter are heavily related to visualizing the
relationships among the various coordinate systems that APIs like
OpenGL use. Specifically, coordinates are mapped in turn across
a series of 3D coordinate systems: modeling coordinates to world
coordinates to viewing (“eye”) coordinates to logical device space
coordinates and ultimately to pixel coordinates. Students must
fully understand these different coordinate systems and know
which they are dealing with at various points in time when
creating and manipulating data on either the CPU or in GLSL on
the GPU. We continue to use our metaview to help students
master these concepts [3].

Figure 5: Student project: Garden with thatched roof hut.

Our future plans to address the other ongoing concerns are
multifaceted. We plan to incorporate specific “Modeling 101”
materials to both the online web site as well as in-class
discussions. While especially needed for 3D modeling, such
materials will also be helpful in 2D, and the 2D materials can be
constructed in such a way as to feed into the 3D version of
“Modeling 101”.

We would also like to find a way to incorporate at least
introductory material on some of the other programmable stages.
For example, geometry and tessellation shaders could be
introduced, and possibly even the new compute shaders. The
course is fairly tightly packed, however, so some of these
advanced topics might be relegated to “optional extensions” status
of some sort and/or used by follow-on advanced graphics courses.

8. SUMMARY
We have discussed our approach to the teaching of pure shader-
based OpenGL, an approach that has evolved over the past couple
of years. We have found that teaching the concepts in the context
of a useful software architecture – specifically, a simplified
version of the well-known Model-View-Controller architecture –

has allowed us to present material typically found by
undergraduate students to be quite complex in an incremental
style that most find to be manageable, albeit still challenging.

This approach has also been found to have several additional
benefits, for example:

• exposure to certain intermediate and advanced object-
oriented concepts in a realistic setting.

• experience with the common and useful Model-View-
Controller design pattern. They use our simplified version,
but also learn enough of the complete pattern so that they
should be able to recognize and comfortably move to this
pattern if and when appropriate.

• experience with data-parallel GPU programming, GPU work
assignments, and CPU-GPU coordination and
communication.

Figure 6: Student project: Castle basement with trunk.

9. ACKNOWLEDGMENTS
I am most indebted to the students who enrolled in the first couple
of offerings of this new shader-based version of the graphics
course. In spite of my warnings at the start of the class, their
willingness to be a part of this grand adventure was truly
appreciated, and their comments were taken to heart.

REFERENCES
[1] Angel, E. and Shreiner, D., 2012. Interactive Computer

Graphics: A Top-Down Approach With Shader-Based
OpenGL. Addison-Wesley, Boston, MA. (6th edition).

[2] Brown. 2013. Exploratories. Retrieved August 8, 2013 from
http://www.cs.brown.edu/exploratories.

[3] Miller, J. R. metaview: A Tool for Learning About Viewing
in 3D, SIGCSE ’12: Proceedings of the ACM Conference on
Computer Science Education, Feb-March 2012, pp. 135-140.

[4] Schreiner, D., Sellers, G., Kessenich, J. and Licea-Kane, B.,
2013. OpenGL Programming Guide. Addison-Wesley,
Boston, MA. (8th ed.).

[5] Sealy, G., 2013. Adding Font Support in OpenGL, Retrieved
August 20, 2013 from
http://acornheroes.com/2009/04/adding-font-support-in-
opengl/.

[6] Talton, J. O. and Fitzpatrick, D., Teaching Graphics with the
OpenGL Shading Language, SIGCSE ’07: Proceedings of
the ACM Conference on Computer Science Education,
March 2007, pp. 259-263.

608

