View Orientation Matrix Summary

Given:

1. Position of the eye, E
2. Position of the "center of attention", C
3. A vector, up, not parallel to $(E-C)$

All measured in model coordinates.

Compute:

The 4×4 matrix, $\mathbf{M}_{m c-e}$, that maps coordinates of points in model coordinates to their representation in the eye coordinate system.

Method:

1. Compute: $\hat{\mathbf{w}}=\operatorname{normalize}(E-C)$.
2. Compute: $\hat{\mathbf{v}}=\operatorname{normalize}\left(\mathbf{u p}_{\perp, \hat{\mathbf{w}}}\right)=\operatorname{normalize}(\mathbf{u p}-(\mathbf{u p} \cdot \hat{\mathbf{w}}) \hat{\mathbf{w}})$.
3. Compute: $\hat{\mathbf{u}}=\hat{\mathbf{v}} \times \hat{\mathbf{w}}$.
4. Construct: $\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z}\end{array}\right)$
5. Compute: $\mathbf{t}=-\mathbf{M}_{3 \times 3} E$
6. Finally, the 4x4 view orientation matrix is: $\mathbf{M}_{m c-e c}=\left(\begin{array}{ccc} & & t_{x} \\ & \mathbf{M}_{3 x 3} & t_{y} \\ & & \\ 0 & 0 & 0 \\ t_{z} \\ & & 1\end{array}\right)$

cryph utility:

```
Matrix4x4 Matrix4x4::lookAt(const AffPoint& eye,
    const AffPoint& center, const AffVector& up);
```

