## Projection Matrix Summary

0. Recall, we build all $4 \times 4$ matrices here as a product: $\mathbf{M}_{e c-I d s}=\mathbf{M}_{w v} * \mathbf{M}_{\text {proj }}$ where:
$\mathbf{M}_{w v}$ does the window-viewport map into the -1..+1 logical device space of OpenGL
$\mathbf{M}_{\text {proj }}$ does the 3D to 2D projection with preservation of (at least relative) depth.
1. Orthogonal (Given: $x_{\min }, x_{\max }, y_{\min }, y_{\max }, Z_{\min }, Z_{\max }$, all specified in eye coordinates with $x_{\text {min }}<x_{\text {max }} ; y_{\text {min }}<y_{\text {max }}$; and $z_{\text {min }}<z_{\text {max }}$ )
$\mathbf{M}_{p r o j}$ is the identity matrix since there is nothing that needs to be done. $\mathbf{M}_{w v}$ simply maps ( $x_{\text {min }}, x_{\max } y_{\min }, y_{\max } z_{\min }, z_{\max }$ ) to $(-1,1,-1,1,1,-1$ ). (Note the reversal in the $z$ direction.)
This yields three pairs of equations with two unknowns:

$$
\begin{aligned}
& a_{x} x_{\min }+b_{x}=-1 \text { and } a_{x} x_{\max }+b_{x}=1 \\
& a_{y} y_{\min }+b_{y}=-1 \text { and } a_{y} y_{\max }+b_{y}=1 \\
& a_{z} z_{\min }+b_{z}=1 \text { and } a_{z} z_{\max }+b_{z}=-1
\end{aligned}
$$

Solving for $a_{x}, b_{x}, a_{y}, b_{y}, a_{z}$, and $b_{z}$, we get:

$$
\begin{align*}
& a_{x}=2 /\left(x_{\max }-x_{\min }\right) ; b_{x}=-\left(x_{\max }+x_{\min }\right) /\left(x_{\max }-x_{\min }\right) \\
& a_{y}=2 /\left(y_{\max }-y_{\min }\right) ; b_{y}=-\left(y_{\max }+y_{\min }\right) /\left(y_{\max }-y_{\min }\right)  \tag{1}\\
& a_{z}=-2 /\left(z_{\max }-z_{\min }\right) ; b_{z}=\left(z_{\max }+z_{\min }\right) /\left(z_{\max }-z_{\min }\right)
\end{align*}
$$

Hence

$$
\mathbf{M}_{w v}=\left(\begin{array}{cccc}
a_{x} & 0 & 0 & b_{x} \\
0 & a_{y} & 0 & b_{y} \\
0 & 0 & a_{z} & b_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Finally, $\mathbf{M}_{e c-l d s}=\mathbf{M}_{w v} \mathbf{M}_{\text {proj }}=\mathbf{M}_{w v} \mathbf{I}=\mathbf{M}_{w v}$.
2. Oblique (Given: $z_{p p}, x_{\min }, x_{\max } y_{\min ,} y_{\max } z_{\min }, z_{\max }$, and $\mathbf{d}=\left(d_{x}, d_{y}, d_{z}\right)$, the common direction of projection, all specified in eye coordinates with $x_{\min }<x_{\max } ; y_{\min }<y_{\max } ; z_{\min }<z_{\max } ;$ and $d_{z} \neq 0$ ) $\mathbf{M}_{\text {proj }}$ can be shown to be:

$$
\mathbf{M}_{p r o j}=\left(\begin{array}{cccc}
1 & 0 & -d_{x} / d_{z} & z_{p p} d_{x} / d_{z} \\
0 & 1 & -d_{y} / d_{z} & z_{p p} d_{y} / d_{z} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Clearly $\mathbf{M}_{w v}$ is the same for oblique as for orthogonal, hence:

$$
\mathbf{M}_{e c-l d s}=\mathbf{M}_{w v} \mathbf{M}_{p r o j}=\left(\begin{array}{cccc}
a_{x} & 0 & \frac{-a_{x} d_{x}}{d_{z}} & \frac{a_{x} z_{p p} d_{x}}{d_{z}}+b_{x} \\
0 & a_{y} & \frac{-a_{y} d_{y}}{d_{z}} & \frac{a_{y} z_{p p} d_{y}}{d_{z}}+b_{y} \\
0 & 0 & a_{z} & b_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $a_{x}, b_{x}, a_{y}, b_{y}, a_{z}$, and $b_{z}$ are as given in equation (1) above.
3. Perspective (Given: $z_{p p}, X_{\min } x_{\max } y_{\min } y_{\max } z_{\min ,} z_{\max }$, all specified in eye coordinates with $x_{\text {min }}<x_{\text {max }} ; y_{\text {min }}<y_{\max } ; z_{\min }<z_{\max }<0$; and $z_{p p}<0$ )
We derive $\mathbf{M}_{\text {proj }}$ (and, in particular, the portions of the transformation involving the eye coordinate $z$ direction) so that mapping to the $z$ range of LDS space is included in $\mathbf{M}_{\text {proj }}$. Thus we get:

$$
\mathbf{M}_{w v}=\left(\begin{array}{cccc}
a_{x} & 0 & 0 & b_{x} \\
0 & a_{y} & 0 & b_{y} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{M}_{p r o j}=\left(\begin{array}{cccc}
z_{p p} & 0 & 0 & 0 \\
0 & z_{p p} & 0 & 0 \\
0 & 0 & \alpha_{z} & \beta_{z} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

where $a_{x}, b_{x}, a_{y}$, and $b_{y}$ are as given in equation (1) above. The $\alpha_{z}$ and $\beta_{z}$ terms can be shown to be:

$$
\alpha_{z}=-\frac{z_{\min }+z_{\max }}{z_{\max }-z_{\min }} ; \beta_{z}=\frac{2 z_{\min } z_{\max }}{z_{\max }-z_{\min }}
$$

Finally:

$$
\mathbf{M}_{e c-l d s}=\mathbf{M}_{w v} \mathbf{M}_{p r o j}=\left(\begin{array}{cccc}
a_{x} & 0 & 0 & b_{x} \\
0 & a_{y} & 0 & b_{y} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
z_{p p} & 0 & 0 & 0 \\
0 & z_{p p} & 0 & 0 \\
0 & 0 & \alpha_{z} & \beta_{z} \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{cccc}
a_{x} z_{p p} & 0 & b_{x} & 0 \\
0 & a_{y} z_{p p} & b_{y} & 0 \\
0 & 0 & \alpha_{z} & \beta_{z} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

In principle, this matrix should be fine, but there is a clipping issue we will discuss that forces us to use the negated version of this matrix. Basically we need to be sure that the $w$ component that results when this matrix is used is positive for any points in the view frustum. Since this matrix will set $w=z$, all visible points will have negative $w$. Negating the matrix prevents that without altering how points are projected since negating all 16 elements will just produce a different (but projectively equivalent) point. Hence:

$$
\mathbf{M}_{e c-l d s}=\left(\begin{array}{cccc}
-a_{x} z_{p p} & 0 & -b_{x} & 0 \\
0 & -a_{y} z_{p p} & -b_{y} & 0 \\
0 & 0 & -\alpha_{z} & -\beta_{z} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

