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Projection	Matrix	Summary	

0.	 Recall,	we	build	all	4x4	matrices	here	as	a	product:	Mec-lds	=	Mwv	*	Mproj	where:	
Mwv	does	the	window-viewport	map	into	the	-1..+1	logical	device	space	of	OpenGL	

Mproj	does	the	3D	to	2D	projection	with	preservation	of	(at	least	relative)	depth.	
1.	 Orthogonal	(Given:	xmin,	xmax,	ymin,	ymax,	zmin,	zmax,	all	specified	in	eye	coordinates	with	

xmin<xmax;	ymin<ymax;	and	zmin<zmax)	

Mproj	is	the	identity	matrix	since	there	is	nothing	that	needs	to	be	done.	Mwv	simply	maps	
(xmin,	xmax,	ymin,	ymax,	zmin,	zmax)	to	(-1,	1,	-1,	1,	1,	-1).			(Note	the	reversal	in	the	z	direction.)	

This	yields	three	pairs	of	equations	with	two	unknowns:	

		

ax xmin +bx = −1	and	axxmax +bx =1
ay ymin +by = −1	and	ay ymax +by =1
azzmin +bz =1	and	azzmax +bz = −1

	

Solving	for	ax,	bx,	ay,	by,	az,	and	bz,	we	get:	

ax = 2 xmax − xmin( ); bx = − xmax + xmin( ) xmax − xmin( )
ay = 2 ymax − ymin( ); by = − ymax + ymin( ) ymax − ymin( )
az = −2 zmax − zmin( ); bz = zmax + zmin( ) zmax − zmin( ) 	

Hence

	
Mwv =

ax 0 0 bx
0 ay 0 by
0 0 az bz
0 0 0 1
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Finally,	Mec-lds	=	MwvMproj	=	MwvI	=	Mwv.	
	

2.	 Oblique	(Given:	zpp,	xmin,	xmax,	ymin,	ymax,	zmin,	zmax,	and	d=(dx,	dy,	dz),	the	common	direction	
of	projection,	all	specified	in	eye	coordinates	with	xmin<xmax;	ymin<ymax;	zmin<zmax;	and	dz≠0)	

Mproj	can	be	shown	to	be:	

M proj =

1 0 −dx dz zppdx dz
0 1 −dy dz zppdy dz
0 0 1 0
0 0 0 1
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Clearly	Mwv	is	the	same	for	oblique	as	for	orthogonal,	hence:	

(1)	
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Mec−lds =MwvM proj =

ax 0 −axdx
dz

axzppdx
dz

+ bx

0 ay
−aydy
dz

ayzppdy
dz

+ by

0 0 az bz
0 0 0 1
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where	ax,	bx,	ay,	by,	az,	and	bz	are	as	given	in	equation	(1)	above.	
3.	 Perspective	(Given:	zpp,	xmin,	xmax,	ymin,	ymax,	zmin,	zmax,	all	specified	in	eye	coordinates	with	

xmin<xmax;	ymin<ymax;	zmin<zmax<0;	and	zpp<0)	

	 We	derive	Mproj	(and,	in	particular,	the	portions	of	the	transformation	involving	the	eye	
coordinate	z	direction)	so	that	mapping	to	the	z	range	of	LDS	space	is	included	in	Mproj.	
Thus	we	get:	

Mwv =

ax 0 0 bx
0 ay 0 by
0 0 1 0
0 0 0 1
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	 	 M proj =

zpp 0 0 0

0 zpp 0 0

0 0 α z βz

0 0 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
	

where	ax,	bx,	ay,	and	by	are	as	given	in	equation	(1)	above.	The	αz	and	βz	terms	can	be	
shown	to	be:	

		
α z = −

zmin + zmax
zmax − zmin

;		βz =
2zminzmax
zmax − zmin

		

Finally:	

Mec−lds =MwvM proj =

ax 0 0 bx
0 ay 0 by
0 0 1 0
0 0 0 1
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zpp 0 0 0

0 zpp 0 0

0 0 α z βz

0 0 1 0
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=

axzpp 0 bx 0

0 ayzpp by 0

0 0 α z βz

0 0 1 0
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In	principle,	this	matrix	should	be	fine,	but	there	is	a	clipping	issue	we	will	discuss	that	
forces	us	to	use	the	negated	version	of	this	matrix.	Basically	we	need	to	be	sure	that	the	w	
component	that	results	when	this	matrix	is	used	is	positive	for	any	points	in	the	view	
frustum.	Since	this	matrix	will	set	w=z,	all	visible	points	will	have	negative	w.	Negating	the	
matrix	prevents	that	without	altering	how	points	are	projected	since	negating	all	16	
elements	will	just	produce	a	different	(but	projectively	equivalent)	point.	Hence:	

Mec−lds =

−axzpp 0 −bx 0

0 −ayzpp −by 0

0 0 −α z −βz

0 0 −1 0
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