Projection Matrix Summary
0. Recall, we build all 4x4 matrices here as a product: Mec.jas = Muy * Mproj where:
M., does the window-viewport map into the -1..+1 logical device space of OpenGL
M,ro; does the 3D to 2D projection with preservation of (at least relative) depth.

1. Orthogonal (Given: Xmin, Xmax, Ymin Ymax, Zmin, Zmax, all specified in eye coordinates with
Xmin<Xmax; Ymin<Ymax; and Zmin<Zmax)

M, is the identity matrix since there is nothing that needs to be done. M,y simply maps
(Xmin, Xmax, Ymin, Ymax, Zmin, Zmax) to (-1, 1,-1, 1,1, -1). (Note the reversal in the z direction.)

This yields three pairs of equations with two unknowns:

ax +b=-landax +b =1
ay i +by =-1and aY o +by =1
az +b=1andaz +b =-1
Solving for ay, by, ay, by, a;, and b,, we get:
@, =2 (X = X)5 b = = (X + X)/ (s = o)
, = 2/ (Vs = Yuin)3 0y == (Vo + Yoin)/ (Vax = Vi) (1)
;= 2/ (Zye = Zoin)3 b, = (Zanae + Zain)/ (Zon = Zoin)

Hence
a 0 0 b,
M - 0 a 0 b
Tl 0 0 a b
0 0 0 1

Finally; Mec.1as = vaMproj = My = My,

2. Oblique (Given: zpp, Xmin, Xmax, Ymin, Ymax, Zmin, Zmax, and d=(dx, dy, d;), the common direction
of projection, all specified in eye coordinates with Xmin<Xmax; Ymin<Vmax; Zmin<Zmax; and d,#0)

M,rj can be shown to be:

10 _dx/dz prd-\‘/dz
Mproj = 0 1 - y/ d, prdy / d,

0 0 1 0

0 0 0 1

Clearly My, is the same for oblique as for orthogonal, hence:

Projection Matrix Summary Page 1

- d
a 0 ad az,d, b,
: a a
-ad, az,d
M w=MM,;=| 0 a dy " ;p ~+b,
0 0 az bz
0 O 0

where ay, by, ay, by, a;, and b; are as given in equation (1) above.

Xmin<Xmax; Ymin<Ymax; Zmin<Zmax<0; and pr<0)

Perspective (Given: zpp, Xmin, Xmax, Ymin, Ymax, Zmin, Zmax, all specified in eye coordinates with

We derive M, (and, in particular, the portions of the transformation involving the eye
coordinate z direction) so that mapping to the z range of LDS space is included in Mpy;.

Thus we get:
a, 0 0 b, Z, 0 0 0
M, - 0 a 0 b M, = 0 ¢z, 0 O
0 0 1 O 0 0 o B
0 0 0 1 O 0 1 0

where ay, b, ay, and by are as given in equation (1) above. The ¢ and S, terms can be

shown to be:

Z . +Z
min m

O(Z =— i ax ; ﬁz — min__max
Zmax - Zmin Zmax - Zmin
Finally:
a, 0 0 b) 2, 0O 0 0 az
0 0 0 0
Mec‘flds = MWVMproj = 0 ay 0 by ZPP —
0 0 10 0 0 a 8B 0

. 0 b 0
ay ZPP by O

0 o B,

0 1 O

In principle, this matrix should be fine, but there is a clipping issue we will discuss that
forces us to use the negated version of this matrix. Basically we need to be sure that the w
component that results when this matrix is used is positive for any points in the view
frustum. Since this matrix will set w=z, all visible points will have negative w. Negating the

matrix prevents that without altering how points are projected since

negating all 16

elements will just produce a different (but projectively equivalent) point. Hence:

az,, 0 -b. 0

M, = ~h _by 0
0 0 -0, P,

0 -1 0

Projection Matrix Summary

Page 2

