
Classical	Phong	Local	Lighting	Model	at	a	Point,	Q,	on	a	Surface	
	

‡	if	Li,xyzw=(x,	y,	z,	1);	§	if	Li,xyzw=(x,	y,	z,	0);	Alpha	(translucency)	appended,	if	applicable,	to	fragColor	in	fragment	shader.	

Term	 Type	 Variable	in	shader	 Notes	(All	points,	vectors,	and	computations	are	in	EC)	

Q	 point	 pvaIn.ecPosition Point	at	which	lighting	model	is	to	be	evaluated.	

ka	 rgb	 uniform vec3 ka Fraction	of	incident	ambient	light	that	is	reflected;	oftentimes	ka	=	kd	

kd	 rgb uniform vec3 kd Fraction	of	incident	light	that	is	diffusely	reflected	

ks	 rgb uniform vec3 ks Fraction	of	incident	light	that	is	specularly	reflected	

La	 rgb	 uniform vec3 La Amount	of	ambient	light	in	the	environment	

Li	 rgb	 uniform vec3
lightStrength[max] Strength	of	ith	light	source	

fi(Q)	 float	 float atten(i, Q) Your	shader	function	that	computes	the	attenuation	for	light	source	i	at	point	Q.	

	 vector	 vec3 ec_nHat Local	variable	computed	from	pvaIn.ecUnitNormal.	(It	is	conditionally	negated.)	

Li,xyzw	 xyzw	 uniform vec4
p_ecLightPos[max] Projective	space	description	of	light	source	placement.	

	 vector vec3 liHat Computed	unit	normal	to	source	i:	 ‡	or	 §	

	 vector vec3 riHat Computed	unit	vector	in	primary	reflection	direction	for	light	source	i	

	 vector vec3 vHat
Computed	unit	vector	towards	the	eye;	if	perspective,	 ,	where	
O=(0,0,0);	else	 ,	where	M	is	ec_lds.	

m	 scalar	 uniform float m Specular	coefficient	(m>0;	m<10	è	only	slightly	glossy;	m>25	è	fairly	glossy)	
	

IQ= ka*La+ fi Q
⎛

⎝⎜
⎞

⎠⎟
Li kd* n̂⋅ l̂i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ks* r̂i ⋅v̂

⎛

⎝
⎜

⎞

⎠
⎟

m⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪i

∑

n̂

l̂i l̂i = normalize Li,xyz −Q() l̂i = normalize Li,xyz()
r̂i

v̂ 			v̂ = normalize(O−Q)

		v̂ = normalize(−M02 /M00 ,−M12 /M11 ,1)

