Classical Phong Local Lighting Model at a Point, Q, on a Surface

 $I_{Q} = k_{a} * L_{a} + \sum_{i} f_{i} \left(Q \right) L_{i} \left\{ k_{d} * \left(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}_{i} \right) + k_{s} * \left(\hat{\mathbf{r}}_{i} \cdot \hat{\mathbf{v}} \right)^{m} \right\}$

Term	Туре	Variable in shader	Notes (All points, vectors, and computations are in EC)
Q	point	pvaIn.ecPosition	Point at which lighting model is to be evaluated.
ka	rgb	uniform vec3 ka	Fraction of incident ambient light that is reflected; oftentimes $k_a = k_d$
<i>k</i> _d	rgb	uniform vec3 kd	Fraction of incident light that is diffusely reflected
ks	rgb	uniform vec3 ks	Fraction of incident light that is specularly reflected
La	rgb	uniform vec3 La	Amount of ambient light in the environment
Li	rgb	uniform vec3 lightStrength[max]	Strength of <i>i</i> th light source
$f_i(Q)$	float	float atten(i, Q)	Your shader function that computes the attenuation for light source <i>i</i> at point <i>Q</i> .
ĥ	vector	vec3 ec_nHat	Local variable computed from <pre>pvaIn.ecUnitNormal</pre> . (It is conditionally negated.)
L _{i,xyzw}	xyzw	uniform vec4 p_ecLightPos[max]	Projective space description of light source placement.
$\hat{\mathbf{l}}_i$	vector	vec3 liHat	Computed unit normal to source <i>i</i> : $\hat{\mathbf{l}}_i = \text{normalize}(L_{i,xyz} - Q)^{\ddagger} \underline{\text{or}} \hat{\mathbf{l}}_i = \text{normalize}(L_{i,xyz})^{\$}$
$\hat{\mathbf{r}}_i$	vector	vec3 riHat	Computed unit vector in primary reflection direction for light source <i>i</i>
ŷ	vector	vec3 vHat	Computed unit vector towards the eye; if perspective, $\hat{\mathbf{v}} = \text{normalize}(O-Q)$, where $O = (0,0,0)$; else $\hat{\mathbf{v}} = \text{normalize}(-\mathbf{M}_{00}, -\mathbf{M}_{12}, -\mathbf{M}_{11}, 1)$, where \mathbf{M} is ec_lds.
m	scalar	uniform float m	Specular coefficient ($m>0$; $m<10 \rightarrow$ only slightly glossy; $m>25 \rightarrow$ fairly glossy)

[‡] if $L_{i,xyzw}=(x, y, z, 1)$; § if $L_{i,xyzw}=(x, y, z, 0)$; Alpha (translucency) appended, if applicable, to fragColor in fragment shader.