Classical Phong Local Lighting Model at a Point, Q, on a Surface

$$
I_{Q}=k_{a}^{*} L_{a}+\sum_{i} f_{i}(Q) L_{i}\left\{k_{d} *\left(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}_{i}\right)+k_{s} *\left(\hat{\mathbf{r}}_{i} \cdot \hat{\mathbf{v}}\right)^{m}\right\}
$$

Term	Type	Variable in shader	Notes (All points, vectors, and computations are in EC)
Q	point	pvaIn.ecPosition	Point at which lighting model is to be evaluated.
k_{a}	$r g b$	uniform vec3 ka	Fraction of incident ambient light that is reflected; oftentimes $k_{a}=k_{d}$
k_{d}	$r g b$	uniform vec3 kd	Fraction of incident light that is diffusely reflected
k_{s}	$r g b$	uniform vec3 ks	Fraction of incident light that is specularly reflected
L_{a}	rgb	uniform vec3 La	Amount of ambient light in the environment
L_{i}	$r g b$	uniform vec3 lightStrength [max]	Strength of $i^{\text {th }}$ light source
$f_{i}(Q)$	float	float atten(i, Q)	Your shader function that computes the attenuation for light source i at point Q.
n	vector	vec3 ec_nHat	Local variable computed from pvaIn.ecUnitNormal. (It is conditionally negated.)
$L_{i, x y z w}$	xyzw	$\begin{gathered} \text { uniform vec4 } \\ \text { p_ecLightPos [max] } \end{gathered}$	Projective space description of light source placement.
$\hat{\mathbf{1}}_{i}$	vector	vec3 liHat	Computed unit normal to source $i: \hat{\mathbf{l}}_{i}=\operatorname{normalize}\left(L_{i, x y z}-Q\right) \neq \underline{\text { or }} \hat{\mathbf{l}}_{i}=\operatorname{normalize}\left(L_{i, y z z}\right)$ §
$\hat{\mathbf{r}}_{i}$	vector	vec3 riHat	Computed unit vector in primary reflection direction for light source i
$\hat{\mathbf{v}}$	vector	vec3 vHat	Computed unit vector towards the eye; if perspective, $\hat{\mathbf{v}}=$ normalize $(O-Q)$, where $O=(0,0,0)$; else $\hat{\mathbf{v}}=$ normalize $\left(-\mathbf{M}_{02} / \mathbf{M}_{00},-\mathbf{M}_{12} / \mathbf{M}_{11}, 1\right)$, where \mathbf{M} is ec_lds .
m	scalar	uniform float m	Specular coefficient ($m>0 ; m<10 \rightarrow$ only slightly glossy; $m>25 \rightarrow$ fairly glossy)

[^0]
[^0]: ${ }^{\ddagger}$ if $L_{i, x y z w}=(x, y, z, 1)$; § if $L_{i, x y z w}=(x, y, z, 0)$; Alpha (translucency) appended, if applicable, to fragColor in fragment shader.

