
Local and Global Approximations for

Incomplete Data

Jerzy W. Grzymala-Busse1,2 and Wojciech Rzasa3 ⋆

1 Department of Electrical Engineering and Computer Science University of Kansas,
Lawrence, KS 66045, USA

2 Institute of Computer Science, Polish Academy of Sciences,
01–237 Warsaw, Poland

3 Institute of Mathematics, University of Rzeszow,
35–310 Rzeszow, Poland

Abstract. For completely specified decision tables, where lower and up-
per approximations are unique, the lower approximation is the largest
definable set contained in the approximated set X and the upper ap-
proximation of X is the smallest definable set containing X. For incom-
plete decision tables the existing definitions of upper approximations
provide sets that, in general, are not minimal definable sets. The same
is true for approximations based on relations that are generalizations of
the equivalence relation. In this paper we introduce two definitions of
approximations, local and global, such that the corresponding upper ap-
proximations are minimal. Local approximations are more precise than
global approximations. Global lower approximations may be determined
by a polynomial algorithm. However, algorithms to find both local ap-
proximations and global upper approximations are NP-hard.

1 Introduction

Recently we observed intensive research activity in two areas: rough set ap-
proaches to handle incomplete data, mostly in the form of decision tables with
missing attribute values, and attempts to study generalizations of the standard
indiscernibility relation. In the latter area concerned relations are not equivalence
relations. Our paper contributes to both research areas.

Initially rough set theory was applied to complete data sets (with all attribute
values specified). Recently rough set theory was extended to handle incomplete
data sets (with missing attribute values) [1–9, 17–20].

We will distinguish two types of missing attribute values. The first type of
missing attribute value will be called lost. A missing attribute value is lost when
for some case (example, object) the corresponding attribute value was mistak-
enly erased or not entered into the data set.

The second type of missing attribute values, called ”do not care” conditions,
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are based on an assumption that missing attribute values were initially, when
the data set was created, irrelevant. The corresponding cases were classified even
though the values of these attribute were not known. A missing attribute value
of this type may be potentially replaced by any value typical for that attribute.

For incomplete decision tables there are two special cases: in the first case, all
missing attribute values are lost, in the second case, all missing attribute values
are ”do not care” conditions. Incomplete decision tables in which all attribute
values are lost, from the viewpoint of rough set theory, were studied for the first
time in [6], where two algorithms for rule induction, modified to handle lost at-
tribute values, were presented. This approach was studied later, e.g., in [18, 19],
where the indiscernibility relation was generalized to describe such incomplete
data. Furthermore, an approach to incomplete data based on relative frequencies
was presented in [19]. Another approach, using fuzzy set ideas, was presented in
[1].

On the other hand, incomplete decision tables in which all missing attribute
values are ”do not care” conditions, from the view point of rough set theory,
were studied for the first time in [2], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally such values were replaced by all values
from the entire domain of the attribute, later, by attribute values restricted to
the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being ”do not care
conditions”, were extensively studied in [8, 9], including extending the idea of
the indiscernibility relation to describe such incomplete decision tables.

In general, incomplete decision tables are described by characteristic rela-
tions, in a similar way as complete decision tables are described by indiscerni-
bility relations [3–5].

In rough set theory, one of the basic notions is the idea of lower and upper
approximations. For complete decision tables, once the indiscernibility relation
is fixed and the concept (a set of cases) is given, the lower and upper approxi-
mations are unique.

For incomplete decision tables, for a given characteristic relation and con-
cept, there are three important and different possibilities to define lower and
upper approximations, called singleton, subset, and concept approximations [3].
Singleton lower and upper approximations were studied in [8, 9, 16, 18, 19]. Note
that similar three definitions of lower and upper approximations, though not for
incomplete decision tables, were studied in [10–12,21–24].

Our main objective is to study two novel kinds of approximations: local and
global. The local approximations are defined using sets of attribute-value pairs
called complexes, while the global approximations are formed from characteris-
tic sets. Additionally, lower approximations, local and global, are the maximal
sets that are locally and globally definable, respectively, and contained in the
approximated set X . Similarly, upper approximations, local and global, are the
minimal sets that are locally and globally definable, respectively, containing the
approximated set X .
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Note that some other rough-set approaches to missing attribute values were
presented in [1, 2] as well.

2 Blocks of Attribute-Value Pairs

We assume that the input data sets are presented in the form of a decision

table. An example of a decision table is shown in Table 1. Rows of the deci-

Table 1. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high ? no yes

2 very high yes yes yes

3 ? no no yes

4 high yes yes yes

5 high ? yes yes

6 normal yes no yes

7 normal no yes no

8 * yes * no

sion table represent cases, while columns are labeled by variables. The set of all
cases will be denoted by U . In Table 1, U = {1, 2, ..., 8}. Independent vari-
ables are called attributes and a dependent variable is called a decision and is
denoted by d. The set of all attributes will be denoted by A. In Table 1, A =
{Temperature, Headache, Nausea}. Any decision table defines a function ρ that
maps the direct product of U and A into the set of all values. For example, in
Table 1, ρ(1, T emperature) = high. A decision table with completely specified
function ρ will be called completely specified, or, for the sake of simplicity, com-

plete. In practice, input data for data mining are frequently affected by missing
attribute values. In other words, the corresponding function ρ is incompletely
specified (partial). A decision table with an incompletely specified function ρ will
be called incomplete. Function ρ describing Table 1 is incompletely specified.

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that lost values will be denoted
by ”?” and ”do not care” conditions by ”*”. Additionally, we will assume that
for each case at least one attribute value is specified.

An important tool to analyze complete decision tables is a block of the
attribute-value pair. Let a be an attribute, i.e., a ∈ A and let v be a value
of a for some case. For complete decision tables if t = (a, v) is an attribute-value
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pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v. For incomplete decision tables, a block of an attribute-value pair
must be modified in the following way:

– If for an attribute a there exists a case x such that ρ(x, a) =?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks[(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is a ”do not care” condition, i.e., ρ(x, a) = ∗, then the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

Thus,

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a and
its value ρ(x, a),

– If ρ(x, a) =? or ρ(x, a) = ∗ then the set K(x, a) = U .

For Table 1 and B = A,

KA(1) = {1, 4, 5, 8} ∩ U ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 8} ∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7, 8} ∩ {2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},
KA(7) = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = U ∩ {2, 4, 6, 8} ∩ U = {2, 4, 6, 8}.

Characteristic set KB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes. In [22] KA(x) was called a successor
neighborhood of x, see also [10–12,16, 21, 23, 24].

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).
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The characteristic relation R(B) is reflexive but—in general—does not need to
be symmetric or transitive. Also, the characteristic relation R(B) is known if we
know characteristic sets KB(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7),
(8, 2), (8, 4), (8, 6), (8, 8)}. The most convenient way to define the characteristic
relation is through the characteristic sets.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in [18], see also, e.g., [17, 19].

For decision tables where all missing attribute values are ”do not care” con-
ditions a special characteristic relation was defined in [8], see also, e.g., [9].

3 Definability

Let B ⊆ A. For completely specified decision tables, any union of elementary
sets of B is called a B-definable set [14]. Definability for completely specified
decision tables should be modified to fit into incomplete decision tables. For
incomplete decision tables, a union of some intersections of attribute-value pair
blocks, in any such intersection all attributes should be different and attributes
are members of B, will be called B-locally definable sets. A union of characteristic
sets KB(x), where x ∈ X ⊆ U will be called a B-globally definable set. Any set
X that is B -globally definable is B -locally definable, the converse is not true.
In the example of Table 1, the set {7, 8} is A-locally-definable since it is equal
to the intersection of [(Temperature, normal)] and [(Nausea, yes)]. Nevertheless,
{7, 8} is not A-globally-definable.

Obviously, if a set is not B-locally definable then it cannot be expressed by
rule sets using attributes from B. This is why it is so important to distinguish
between B-locally definable sets and those that are not B-locally definable.

4 Local Approximations

Let X be any subset of the set U of all cases. The set X is called a concept

and is usually defined as the set of all cases defined by a specific value of the
decision. In general, X is not a B-definable set, locally or globally. A set T of
attribute-value pairs, where all attributes are distinct and in B, will be called a
B-complex. For a set T of attribute-value pairs, the intersection of blocks for all
t from T will be denoted by [T ].

For incomplete decision tables lower and upper approximations may be de-
fined in a few different ways, see, e.g., [3–5]. In this paper we introduce a new
idea of optimal approximations that are B-locally definable. Let B ⊆ A. The
B-local lower approximation of the concept X , denoted by LBX , is defined as
follows

∪{[T ] | T is a B−complex of X , [T ] ⊆ X }.

The B-local upper approximation of the concept X , denoted by LBX , is a
set with the minimal cardinality containing X and defined in the following way
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∪{[T ] | ∃ a family T of B−complexes T of X with ∀ T ∈ T , [T ] ∩ X 6= ∅}.

Obviously, the B-local lower approximation of X is unique and it is the max-
imal B-locally definable set contained in X . Any B-local upper approximation
of X is B-locally definable, it contains X , and is, by definition, minimal.

For Table 1

LA{1, 2, 3, 4, 5, 6} = [(Headache, no)] ∩ [(Nausea, no)] = {3},

so one complex, {(Headache, no), (Nausea, no)}, is sufficient to describe
LA{1, 2, 3, 4, 5, 6},

LA{7, 8} = [(Temperature, normal)] ∩ [(Nausea, yes)] = {7, 8},

so again, one complex, {(Temperature, normal), (Nausea, yes)}, describes LA{7, 8},

LA{1, 2, 3, 4, 5, 6} =

[(Temperature, high)]∪ [(Headache, yes)] ∪ [(Nausea, no)] =

{1, 2, 3, 4, 5, 6, 8},

therefore, to describe LA{1, 2, 3, 4, 5, 6} three complexes are necessary:
{(Temperature, high)}, {(Headache, yes)}, and {(Nausea, no)}. Finally,

LA{7, 8} = [(Temperature, normal)] ∩ [(Nausea, yes)] = {7, 8}.

For the incomplete decision table from Table 1 the local lower approxima-
tions for both concepts, {1, 2, 3, 4, 5, 6} and {7, 8}, as well as the upper local
approximations for these concepts, are unique. Though the local lower approxi-
mations are always unique, the local upper approximations, in general, are not
unique. For example, let us consider an incomplete decision table from Table 2.

For Table 2

[(Age, <25)] = {1, 4, 6},
[(Age, 25..35)] = {1, 4, 7},
[(Age, >35)] = {1, 2, 3, 4, 5},
[(Complications, alcoholism)] = {1},
[(Complications, obesity)] = {2, 3},
[(Complications, none)] = {4, 5, 6, 7},
[(Hypertension, mild)] = {1}.
[(Hypertension, severe)] = {2}.
[(Hypertension, no)] = {4, 5, 6, 7}.

Moreover, for Table 2

LA{1, 2, 3, 4} =

[(Complications, alcoholism)]∪ [(Complications, obesity)] =

{1, 2, 3},
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Table 2. An incomplete decision table

Attributes Decision

Case Age Complications Hypertension Delivery

1 * alcoholism mild pre-term

2 >35 obesity severe pre-term

3 >35 obesity ? pre-term

4 * none none pre-term

5 >35 none none full-term

6 <25 none none full-term

7 25..35 none none full-term

LA{5, 6, 7} = ∅,

However,

LA{1, 2, 3, 4}

is not unique, any of the following sets

[(Age, > 35)] = {1, 2, 3, 4, 5},

[(Age, < 25)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 6},

or

[(Age, 26..35)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 7}.

may serve as local upper approximations of {1, 2, 3, 4}.
Lastly,

LA{5, 6, 7} = [(Complications, none)] = {4, 5, 6, 7}.

Algorithms to compute local lower or upper approximations are NP-hard,
since the corresponding problems may be presented in terms of prime implicants,
monotone functions, and minimization. A similar result for reducts of complete
decision tables is well known [15].

5 Global Approximations

Again, let B ⊆ A. Then B-global lower approximation of the concept X , denoted
by GBX , is defined as follows
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∪{KB(x) | x ∈ X, KB(x) ⊆ X}.

Note that the definition of global lower approximation is identical with the
definition of subset (or concept) lower approximation [3–5]. The B-global upper

approximation of the concept X , denoted by GBX , is a set with the minimal
cardinality containing X and defined in the following way

∪{KB(x) | ∃ Y ⊆ U, x ∈ Y, KB(x) ∩ X 6= ∅}.

Similarly as for local approximations, a global lower approximation for any
concept X is unique. Additionally, both B-global approximations, lower and
upper, are B-globally definable. On the other hand, global upper approximations
do not need to be unique. For Table 1,

GA{1, 2, 3, 4, 5, 6} = KA(3) = {3},

GA{7, 8} = KA(7) = {7},

GA{1, 2, 3, 4, 5, 6} =

KA(1) ∪ KA(2) ∪ KA(3) ∪ KA(5) ∪ KA(6) = {1, 2, 3, 4, 5, 6, 8}.

Furthermore,

GA{7, 8}

may be computed in four different ways:

(1) as KA(1) ∪ KA(7) = {1, 7, 8},

(2) as KA(2) ∪ KA(7) = {2, 7, 8},

(3) as KA(4) ∪ KA(7) = {4, 7, 8},

(4) or as KA(6) ∪ KA(7) = {6, 7, 8},

all four sets are global upper approximations of the concept {7, 8}.
In general, local approximations are more precise than global approximations.

For any concept X and a subset B of A,

LBX ⊇ GBX

and

LBX ⊆ GBX.

It is not difficult to find a simple algorithm to compute global lower approx-
imations in polynomial time. Nevertheless, algorithms to compute global upper
approximations are NP-hard as well.
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6 Conclusions

In this paper we introduced two new kinds of approximations: local and global.
These approximations describe optimally approximated sets (lower approxima-
tions are maximal, upper approximations are minimal and, at the same time,
local approximations are locally definable while global approximations are glob-
ally definable).

Note that our global approximations may be used to describe behavior of
systems defined by relations that are not equivalence relations, as in [10–12, 16,
21–24].

As a final point, optimality comes with the price: algorithms to compute both
local upper approximations and global upper approximations are NP-hard.
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