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Abstract

In this paper we assume that data are
presented in the form of decision ta-
bles, incomplete when some attribute
values are missing.  Two main cases of
missing attribute values are considered:
lost (the original value was erased) and
"do not care" conditions (the original
value was irrelevant).  This paper uses,
as the main tool, attribute-value pair
blocks.  These blocks are used to con-
struct characteristic sets, characteristic
relations, and lower and upper approx-
imations for decision tables with miss-
ing attribute values.  For such tables
three different definitions of lower and
upper approximations may be applied:
singleton, subset, and concept.
A modified version of the LEM2 rule
induction algorithm, accepting input
data with both lost values and "do not
care" conditions, is described.  Results
of experiments on some real-life in-
complete data, in which all missing at-
tribute values were considered to be
either lost or "do not care" conditions
are presented as well.  A conclusion is
that an error rate for classification is
smaller when missing attribute values
are considered to be lost.

Keywords.  Rough set theory, incom-
plete data, missing attribute values, in-
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1.  Introduction

In real-life data some attribute values are fre-
quently missing.  There are two main reasons
for attribute values to be missing: either they
are lost (e.g., were erased) or they are "do not
care" conditions (i.e., the original values were
not recorded at all since they were irrelevant,
and the decision to which concept a case
belongs was taken without that information).
Other interpretations of missing attribute
values than lost and "do not care" conditions
were presented in [4].  Decision tables with all
missing attribute values that are lost were
studied, within rough set theory, in [6], where
two algorithms for rule induction from such
data were presented.  This approach was
studied later, see, e.g., [11–13], where the
indiscernibility relation was generalized to
describe such incompletely specified decision
tables.  On the other hand, the first attempt to
study "do not care" conditions using rough set
theory was presented in [2], where a method
for rule induction was introduced in which
missing attribute values were replaced by all
values from the domain of the attribute.  "Do
not care" conditions were also studied later,
see, e.g., [8, 9], where the indiscernibility
relation was again generalized, this time to
describe incomplete decision tables with "do
not care" conditions.

This paper uses, as the main tool, attribute-
value pair blocks.  These blocks are used to
construct characteristic sets, characteristic rela-
tions, and lower and upper approximations



Table 1.  An example of an incomplete decision table

Attributes Decision

Age Hypertension Complications Delivery

1 ? * none fullterm

2 20..29 yes obesity preterm

3 20..29 yes none preterm

4 20..29 no none fullterm

5 30..39 yes ? fullterm

6 * yes alcoholism preterm

7 40..50 no ? fullterm

for decision tables with missing attribute values
[4, 5].  We are assuming that the same decision
table may contain both types of missing at-
tribute values: lost and "do not care" condi-
tions.  A characteristic relation is a generaliza-
tion of the indiscernibility relation.
For such tables three different definitions of
lower and upper approximations may be ap-
plied: singleton, subset, and concept [4, 5].
Similar three definitions of lower and upper
approximations, though not for incomplete
decision tables, were studied in [14–16].

A rule induction algorithm LEM2 (Learning
from Examples Module, version 2), a compo-
nent of LERS (Learning from Examples based
on Rough Sets), [1, 3], is also based on the
idea of attribute-value pair blocks, hence it was
natural to modify LEM2 to accommodate de-
cision tables with missing attribute values.

Some experiments with real-life incomplete
data were conducted using the MLEM2 algo-
rithm, a modified version of LEM2.  Our ob-
jective was to compare different approaches to
missing attribute values.  The conclusion is
that for these data lower error rate may be ac-
complished by assuming that missing attribute
values are lost.

2. Blocks of attribute-value pairs,
characteristic sets, and characteristic
relations

An example of an incomplete decision table,
taken from [5], is presented in Table 1.

Rows of the decision table represent cases,
while columns represent variables.  The set of
all cases is denoted by U.  In Table 1, U = {1,
2, ..., 7}.  Independent variables are called at-
tributes and a dependent variable is called a
decision and is denoted by d.  The set of all
attributes will be denoted by A.  In Table 1, A
= {Age, Hypertension, Complications}.  Any
decision table defines a function ρ that maps
the direct product of U and A into the set of all
values.  For example, in Table 1, ρ(1, Age) =
20..29.  A decision table with an incompletely
specified (partial) function ρ will be called in-
completely specified, or incomplete.  For the
rest of the paper we will assume that all deci-
sion values are specified, i.e., they are not
missing.  Also, we will assume that all missing
attribute values are denoted either by "?" or by
"*", lost values will be denoted by "?", "do not
care" conditions will be denoted by "*".
Additionally, we will assume that for each case
at least one attribute value is specified.

One of the fundamental ideas of rough set
theory is an indiscernibility relation. For B ⊆
Α  and x, y ∈ U , the indiscernibility relation



IND(B) is a relation on U defined as follows

(x, y) ∈  IND(B) if and only if ρ(x, a) = ρ(y, a)
for all a ∈  B.

The indiscernibility relation IND(B) is an
equivalence relation.  Equivalence classes of
IND( B) are called elementary sets and are
denoted by [x]B.  Elementary sets may be
computed by using attribute-value pair blocks.
Let a ∈  A and let v be a value of a for some
case.  For complete decision tables if t = (a, v)
is an attribute value pair, then a block of t,
denoted [t], is a set of all cases from U that for
attribute a have value v.

Incomplete decision tables are described by
characteristic relations instead of indiscernibil-
ity relations.  Also, elementary sets are re-
placed by characteristic sets.  An example of
an incomplete table, again taken from [5], is
presented in Table 1.

For incomplete decision tables the definition
of a block of an attribute-value pair must be
modified.  If for an attribute a there exists a
case x such that ρ(x, a) = ?, i.e., the corre-
sponding value is lost, then the case x should
not be included in any block [(a, v)] for all
values v of attribute a.  If for an attribute a
there exists a case x such that the correspond-
ing value is a "do not care" condition, i.e., ρ(x,
a) = *, then the corresponding case x should
be included in all blocks [(a, v)] for every
possible value v of attribute a [4, 5].  This
modification of the definition of the block of
attribute-value pair is consistent with the inter-
pretation of missing attribute values, lost and
"do not care" condition.  Thus, for Table 1

[(Age, 20..29)] = {2, 3, 4, 6},

[(Age, 30..39)] = {5, 6},

[(Age, 40..50)] = {6, 7},

[(Hypertension, yes)] = {1, 2, 3, 5, 6},

[(Hypertension, no)] = {1, 4, 7},

[(Complications, none)] = {1, 3, 4},

[(Complications, obesity)] = {2},

[(Complications, alcoholism)] = {6}.

The characteristic set KB(x) is the intersection
of blocks of attribute-value pairs (a, v) for all
attributes a from B for which ρ(x, a) is speci-
fied and ρ(x, a) = v [4, 5].  For Table 1 and B
= A,

KA(1) = {1, 3, 4},

KA(2) = {2, 3, 4, 6} ∩ {1, 2, 3, 5, 6} ∩ {2}

= {2},

KA(3) = {2, 3, 4, 6} ∩ {1, 2, 3, 5, 6} ∩ {1, 3, 4}

= {3},

KA(4) = {2, 3, 4, 6} ∩ {1, 4, 7} ∩ {1, 3, 4} =

{4},

KA(5) =  {5, 6} ∩ {1, 2, 3, 5, 6} = {5, 6},

KA(6) =  {1, 2, 3, 5, 6} ∩ {6} = {6},

and

KA(7) =  {6, 7} ∩ {1, 4, 7} = {7}.

Characteristic set KB(x) may be interpreted as
the smallest set of cases that are indistinguish-
able from x using all attributes from B, using a
given interpretation of missing attribute values.
Thus, KA(x) is the set of all cases that cannot
be distinguished from x using all attributes.

The characteristic relation R(B)  is a relation
on U defined for x, y ∈  U as follows:

(x, y) ∈  R(B) if and only if y  ∈  KB(x).

We say that R(B) is implied by its characteristic
sets KB(x), x ∈  U.  The characteristic relation
R(B) is reflexive but—in general—does not
need to be symmetric or transitive.

3. Lower and upper approximations

For completely specified decision tables lower
and upper approximations are defined on the
basis of the indiscernibility relation.  Any fi-
nite union of elementary sets, associated with
B, will be called a B-definable set.  Let X be
any subset of the set  U of all cases.  The set X
is called a concept and is usually defined as
the set of all cases defined by a specific value
of the decision.    In general, X is not a B-de-
finable set.  However, set X may be approxi-



mated by two B-definable sets, the first one is
called a B-lower approximation of X, denoted
by _BX and defined as follows

{ x ∈  U | [x]B ⊆  X }.

The second set is called a B-upper approxima-

tion of X, denoted by 
_
BX and defined as

follows

{ x ∈  U | [x]B ∩ X ≠ Ø }.

The above shown way of computing lower and
upper approximations, by constructing these
approximations from singletons x, will be
called the first method.  The B-lower approx-
imation of X is the greatest B-definable set,
contained in X.  The B-upper approximation
of X is the smallest B-definable set containing
X.

As it was observed in [10], for complete deci-
sion tables we may use a second method to
define the B-lower approximation of X, by the
following formula

∪  {[ x]B  | x ∈  U, [x]B ⊆  X},

and the B-upper approximation of x may de
defined, using the second method, by

∪{ [x]B  | x ∈  U, [x]B ∩ X ≠ Ø).

For incompletely specified decision tables
lower and upper approximations may be de-
fined in a few different ways.  First, the defini-
tion of definability should be modified.  Any
finite union of characteristic sets of B is called
a B-definable set [5].  Three different defini-
tions of lower and upper approximations may
be used [4, 5].  Again, let X be a concept, let B
be a subset of the set A of all attributes, and let
R(B) be the characteristic relation of the in-
complete decision table with characteristic sets
K(x), where x ∈  U.  Our first definition uses a
similar idea as in the previous articles on in-
completely specified decision tables [8, 9, 11–
13], i.e., lower and upper approximations are
sets of singletons from the universe U satisfy-

ing some properties.  Thus, lower and upper
approximations are defined by analogy with
the above first method, by constructing both
sets from singletons.  We will call these defini-
tions singleton.  A singleton B-lower approxi-
mation of X is defined as follows:

_BX = {x ∈  U | KB(x) ⊆ X }.

 A singleton B-upper approximation of X is

_
BX = {x ∈  U | KB(x) ∩ X ≠ Ø }.

In our example of the decision presented in
Table 1 let us say that B = A.  Then the single-
ton A-lower and A-upper approximations of
the two concepts: {1, 4, 5, 7} and {2, 3, 6} are:

_A{1, 4, 5, 7} = {4, 7},

_A{2, 3, 6} = {2, 3, 6},
_
A{1, 4, 5, 7} = {1, 4, 5, 7},
_
A{2, 3, 6} = {1, 2, 3, 5, 6}.

Note that the set {1, 4, 5, 7} is not A-definable
(this set cannot be presented as a union of in-
tersections of attribute-value pair blocks).
Therefore singleton approximations are not
useful.  The second method of defining lower
and upper approximations for complete deci-
sion tables uses another idea: lower and upper
approximations are unions of elementary sets,
subsets of U.  Therefore we may define lower
and upper approximations for incomplete de-
cision tables by analogy with the second
method, using characteristic sets instead of el-
ementary sets. There are two ways to do this.
Using the first way, a subset B-lower approxi-
mation of X is defined as follows:

_BX = ∪ { KB(x) | x ∈  U, KB(x) ⊆ X }.

A subset B-upper approximation of X is

_
BX = ∪ { KB(x) | x ∈  U, KB(x) ∩ X ≠ Ø }.

Since any characteristic relation R(B) is reflex-
ive, for any concept X, singleton B-lower and
B-upper approximations of X are subsets of
the subset B-lower and B-upper approxima-



tions of X, respectively.  For the same decision
table, presented in Table 1, the subset A-lower
and A-upper approximations are

_A{1, 4, 5, 7} = {4, 7},

_A{2, 3, 6} = {2, 3, 6},
_
A{1, 4, 5, 7} = {1, 3, 4, 5, 6, 7},
_
A{2, 3, 6} = {1, 2, 3, 4, 5, 6}.

The second possibility is to modify the subset
definition of lower and upper approximation
by replacing the universe U  from the subset
definition by a concept X.  A concept B-lower
approximation of the concept X is defined as
follows:

_BX = ∪ { KB(x) | x ∈  X, KB(x) ⊆ X }.

Obviously, the subset B-lower approximation
of X is the same set as the concept B-lower ap-
proximation of X .  A concep t B - u p p e r
approximation of the concept X is defined as
follows:

_
BX = ∪ { KB(x) | x ∈  X, KB(x) ∩ X ≠ Ø } =

∪ { KB(x) | x ∈  X}.

The concept B-upper approximation of X is a
subset of the subset B-upper approximation of
X.  Besides, the concept B-upper approxima-
tions are truly the smallest sets containing X.
For the decision presented in Table 1, the con-
cept A-lower and A-upper approximations are

_A{1, 4, 5, 7} = {4, 7},

_A{2, 3, 6} = {2, 3, 6},
_
A{1, 4, 5, 7} = {1, 3, 4, 5, 6, 7},

_
A{2, 3, 6} = {2, 3, 6}.

Note that for complete decision tables, all three
definitions of lower approximations, singleton,
subset and concept, coalesce to the same def-
inition.  Also, for complete decision tables, all
three definitions of upper approximations coa-
lesce to the same definition.  This is not true
for incomplete decision tables, as our example

shows.

4.  Rule induction

For the inconsistent input data, LERS com-
putes lower and upper approximations of all
concepts.  Rules induced from the lower ap-
proximation of the concept certainly describe
the concept, so they are called certain.  On the
other hand, rules induced from the upper ap-
proximation of the concept describe the con-
cept only possibly (or plausibly), so they are
called possible [3].

The same idea of blocks of attribute-value
pairs is used in a rule induction algorithm
LEM2 [1, 3].  LEM2 explores the search space
of attribute-value pairs.  Its input data file is a
lower or upper approximation of a concept, so
its input data file is always consistent.  In gen-
eral, LEM2 computes a local covering [3] and
then converts it into a rule set.

In our experiments we used MLEM2, a modi-
fied version of the algorithm LEM2.  The
original algorithm LEM2 needs discretization,
a preprocessing, to deal with numerical at-
tributes.  The algorithm MLEM2 can induce
rules from incomplete decision tables with
numerical attributes.  Its previous version  in-
duced certain rules from incomplete decision
tables with missing attribute values interpreted
as lost and with numerical attributes.  Recently,
MLEM2 was further extended to induce both
certain and possible rules from a decision table
with some missing attribute values being lost
and some missing attribute values being "do
not care" conditions, while some attributes may
be numerical.

Since all characteristic sets KB(x), where x ∈  U,
are intersections of blocks of attribute-value
pairs, for attributes from B, and for subset and
concept definitions of B-lower and B-upper
approximations are unions of sets of the type
KB(x), it is the most natural to use an algorithm
based on blocks of attribute-value pairs, such
as MLEM2 [1, 2] for rule induction.

The set of certain rules, induced from Table 1



Table 2.  Error rates

Approaches

Data set 1 2 3 4 5 6

Breast cancer 29.02 30.42 30.42 29.37 30.42 30.42

Hepatitis 16.79 17.43 17.43 20.63 17.43 17.43

House 7.35 5.75 5.29 35.11 12.17 6.44

Primary tumor 68.45 60.19 63.14 72.87 63.44 63.44

for concept lower approximations is

(Hypertension, no) & (Age, 40..50) ->

(Delivery, fullterm)

(Hypertension, no) & (Age, 20..29) ->

(Delivery, fullterm)

(Age, 20..29) & (Hypertension, yes) ->

(Delivery, preterm)

and the corresponding possible rule set,
induced form concept upper approximations
is:

(Age, 30..39) -> (Delivery, fullterm)

(Hypertension, no) -> (Delivery, fullterm)

(Complications, none) -> (Delivery, fullterm)

(Age, 20..29) & (Hypertension, yes) ->

(Delivery, preterm)

5.  Experiments

Different rough set approaches to rule induc-
tion from incomplete data were tested experi-
mentally on real-life data.  Four data sets were
selected.

The breast cancer data set was obtained from
the University Medical Center, Institute of
Oncology, Ljubljana, Yugoslavia, due to dona-

tions from M. Zwitter and M. Soklic.  Breast
cancer is one of three data sets provided by the
Oncology Institute that has repeatedly ap-
peared in the machine learning literature.
There are nine out of 286 examples contain-
ing unknown attribute values.

The hepatitis data set was donated by G. Gong,
Carnegie-Mellon University, via Bojan Cestnik
of Jozef Stefan Institute.  There were 75 out of
155 examples that contain unknown attribute
values in this data set.

The house data set, which has 203 examples
that contain unknown attribute values, consists
of votes of 435 congressmen in 1984 on 16
key-issues (yes or no).

The primary-tumor data set was obtained from
the University Medical Center, Institute of
Oncology, Ljubljana, Yugoslavia.  The data set
primary-tumor has 21 concepts and 17 at-
tributes, and 207 out of 339 examples contain
at least one missing value.

In our experiments we used two interpretations
of missing attribute values: either we assumed
that all missing attribute values were lost
(denoted by "?") or that all of them were "do
not care" conditions (denoted by "*").
Moreover, we tested two approaches to
approximations: subset and concept.  Finally,
both cer ta in  ru les ( f rom lower
approximations) and possible rules (from
upper approximations) were induced.  Since
subset lower approximations, for any concept,



are equal to concept lower approximations, we
ended up with six approaches:

1) missing attribute values interpreted as lost,
concept definition of lower approximations,

2) missing attribute values interpreted as lost,
subset definition of upper approximations,

3) missing attribute values interpreted as lost,
concept definition of upper approximations,

4) missing attribute values interpreted as "do
not care" conditions,  concept definition of
lower approximations,

5) missing attribute values interpreted as "do
not care" conditions, subset definition of upper
approximations,

6) missing attribute values interpreted as "do
not care" conditions, concept definition of up-
per approximations.

The algorithm MLEM2 was used for rule in-
duction and the LERS classification system
was used to classify testing data against rules
induced by MLEM2.  For computing the error
rate we used two-fold cross validation.  All
four data sets were divided into two halves and
kept the same through testing all six ap-
proaches.  Two-fold cross validation may be
not the best tool to estimate the real error rate,
but our objective was only to compare differ-
ent approaches to missing attribute values.
Results are presented in Table 2.

6. Conclusions

The idea of an attribute-value pair block, the
main tool for data mining used in this paper, is
both simple and useful.  It is especially useful
for incomplete decision tables, since it is used
to determine characteristic sets, characteristic
relations, lower and upper approximations,
and, finally, it is used in rule induction.

We tested experimentally six different rough
set approaches to missing attribute values.  As
follows from Table 2, the obvious conclusion
is that interpreting missing attribute values as

lost provides better results (smaller error rate)
then interpreting missing attribute values as
"do not care" conditions.  However, is not that
clear whether better are certain or possible
rules and whether better are subset and con-
cept approximations.  There are other possible
strategies to use certain and possible rule sets,
e.g., using certain rules first and then possible
rules, using both rule sets in parallel, etc. [7],
so further research is required to explore these
possibilities.
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