EECS 360 – SIGNAL AND SYSTEM ANALYSIS LABORATORY SYLLABUS SPRING 2014

Instructor:

Prof. Victor Frost Email: <u>frost@eecs.ku.edu</u>

Teaching Assistant:

Ghaith Shabsigh Office: 2029 Eaton Hall Office hours: Wednesday 1:00PM – 3:00PM Email: <u>g492s378@ku.edu</u>

Schedule:

Tuesday 2:30PM – 4:45PM Thursday 2:30AM – 4:45PM 1005A Eaton Hall.

Lab web page: http://people.eecs.ku.edu/~esp/class/S14_360/lab/

Labs: (Note – Lab schedule and contents might be changed with regards to the lecture).

Session 1	Session 2	
01/21/2014	01/23/2014	Lab 1: Introduction to MATLAB
01/28/2014	01/29/2014	Lab 2: MATLAB Functions
02/04/2014	02/06/2014	Lab 3: Loops in MATLAB
02/11/2014	02/13/2014	Lab 4: Discrete Time Convolution
02/18/2014	02/20/2014	Lab 5: Fourier Series
02/25/2014	02/27/2014	Lab 6: Continuous Time Fourier Series
03/04/2014	03/06/2014	Lab 7: Audio Filtering
03/11/2014	03/13/2014	Lab 8: Approximation of CTFT
03/25/2014	03/27/2014	Lab 9: DFT and FFT
04/01/2014	04/03/2014	Lab 10: Sampling and Signal Reconstruction
04/08/2014	04/10/2014	Lab 11: Sampling and Aliasing
04/15/2014	04/17/2014	Lab 12: Laplace Transform
04/22/2014	04/24/2014	Lab 13: Z-Transform
04/29/2014	05/01/2014	Lab 14: Simulink

Requirements and Grading:

• The grading is based on your performance during the lab session and your lab report (maximum grade for each report is 20)

- Each person is required to submit a paper report for every lab session. Each lab report is due at the beginning of the next lab session.
- No plagiarizing.
- Lab reports will not be graded if they are turned in late; exceptions might be considered with a notice ahead of time.
- There will be a quiz either on lab 6 or lab 7.

Note: You can use the lab report format attached below as a reference.

Lab Report Format:

In general, your lab report should consist of the following sections:

- 1. Cover page: Lab title, date submitted, and name. Make sure lab number is correct.
- 2. <u>Objective</u>: A few lines describing the goal of the lab.
- 3. <u>Description</u>: *Provide a short background on the topic discussed. Provide detailed description of the problem, and your approach to solving it.*
- 4. <u>Results</u>: Include all your graphs, derivations, answers to questions, etc. Comment on your result.
- 5. Conclusion.
- 6. <u>Appendix</u>: *MATLAB* code goes here. If the lab handout contains several sections, divide the appendix accordingly.

Note: The plots generated by MATLAB can be copied into MS Word.

Date Submitted: 25/01/2014

EECS 360 INTRODUCTION TO MALTAB Lab Report #0

Student Name KUID: 1234567

OBJECTIVE:

In this report, the general format of the EECS 360 lab report is provided.

DESCRIPTION:

Organize your report:

- 1. Provide a short background on the topic discussed in the lab.
- 2. Mention the sequence of steps used to achieve the objectives.
- 3. Use numbering if needed.

RESULTS:

Provide your results in the form of graphs and answers to both questions given during the lab and questions in the lab handout. Give a detailed analysis of your results. This is a good place to note and explain interesting and/or important observations.

CONCLUSION:

Conclusions and main points learned by the student.

APPENDIX

Code:

```
% Using comments makes your code easy to read.
stingVariable = 'Give meaningful names to your variables';
```