EECS 360 – Signal and System Analysis Laboratory Syllabus Spring 2013

Instructor: Dr. Victor Frost Email: <u>frost@eecs.ku.edu</u>

Teaching Assistant: Ghaith Shabsigh Office: 2029 Eaton Hall Office hours: Monday 1:00PM – 3:00PM Email: <u>g492s378@ku.edu</u>

Schedule: Tuesday 2:30PM – 4:45PM, and Thursday 2:30PM – 4:45PM; 1005A Eaton Hall.

Lab web page: <u>http://people.eecs.ku.edu/~esp/class/S13_360/lab/</u>

Labs: (Note – Lab schedule and contents might be changed with regards to the lecture).

Session 2	
01/24/2013	Lab 1: Introduction to MATLAB
01/31/2013	Lab 2: MATLAB Functions
02/07/2013	Lab 3: Loops in MATLAB
02/14/2013	Lab 4: Discrete Convolution
02/21/2013	Lab 5: Fourier Series
02/28/2013	Lab 6: Audio Filtering
03/07/2013	Lab 7: Continuous Time Fourier Series
03/14/2013	Lab 8: Approximation of CTFT
03/28/2013	Lab 9: DFT and FFT
04/04/2013	Lab 10: Sampling and Signal Reconstruction
04/11/2013	Lab 11: Sampling Frequency and Aliasing
04/18/2013	Lab 12: Laplace Transform
04/25/2013	Lab 13: Z-Transform
05/02/2013	Lab 14: Simulink
	Session 2 01/24/2013 01/31/2013 02/07/2013 02/14/2013 02/21/2013 02/28/2013 03/07/2013 03/14/2013 03/28/2013 04/04/2013 04/04/2013 04/11/2013 04/18/2013 04/25/2013 05/02/2013

Requirements and Grading:

The grading is based on your performance during the lab session and your lab report. Each person is required to submit a paper report (NO plagiarizing). Each lab report is due the following week before the lab sessions. Lab reports will not be graded if it is turned in late; exceptions might be considered with the notice ahead of time. Expect a quiz.

Note: You can use the lab report format attached below as a reference.

Lab Report Format:

In general, your lab report should consist of the following sections:

- 1. Cover page: Lab title and number, date submitted, name.
- 2. Objective: Brief description of what you are trying to do in this lab.
- 3. Description: Description of your approach to solve the problem.

4. Results: Analysis of your results (include all your graphs, derivations, etc.). Answering all given questions.

5. Conclusion.

Note: Most of the plots generated by MATLAB can be copied into MS Word.

Date Submitted: 01/09/2012

EECS 360 INTRODUCTION TO MALTAB Lab Report #1

Student Name KUID: 1234567

OBJECTIVE:

Brief problem statement. Example - In this lab, we learn how to create simple MATLAB functions to solve engineering problems.

DESCRIPTION:

Sequence of steps and the MATLAB code used to achieve the objectives.

- 1. Use numbering if needed.
- 2. Organize your report.

Code:

// Add comments to your code so that it becomes more readable.
String_var = 'Give meaningful names to your variables';

RESULTS:

Provide your results in the form of graphs and answers to both the questions given during the lab and the questions in the lab handout. Give a detailed analysis of your results. Good place to identify and explain interesting and important phenomena.

CONCLUSION:

Conclusions and lessons learned by student.