
Sampling and Signal
Reconstruction

Lab 10

Continuous Signals 𝑥(𝑡)

Sampling
𝑋 𝑛𝑇𝑠 → 𝑥 𝑛

Nyquist Sampling Theorem

Remember this result? It says that when you sample
a signal every 𝑇𝑠 in the time domain the frequency
domain is periodic (it repeats every 𝑓𝑠). The “copies”
that occur every multiple of ±𝑓𝑠 are called aliases.

∴ 𝑥 𝑡 𝛿𝑇𝑠
ℱ

1

𝑇𝑠
𝛿𝑓𝑠 ∗ 𝑋 𝑓

Reconstruction

In some instances we would like to reconstruct the
original signal.

This may not yield a signal that even remotely
resembles the original signal!

𝑥 𝑛 → 𝑋 𝑛𝑇𝑠

Nyquist in terms of Reconstruction

If the sampling rate, 𝑓𝑠, is not large enough (larger
than twice the bandlimit, 𝑓𝑚) then the aliases will
overlap: an effect known as Aliasing.

If and only if a signal is sampled at this frequency (or
above) can the original signal be reconstructed in the
time-domain.

𝑓𝑠 > 2𝑓𝑚

Reconstruction
Methods

Zeroth-Order Interpolation

Zeroth-Order Interpolation means we accept the
value on the discrete sample for the time window
that the sample was taken from originally.

This is basically just approximating each time window
with a constant.

Zeroth-Order Code
clc,clear,close all

deltat=0.01; %time window

n=0:deltat:1; %time index

N=length(n); %number of sampled points

x=cos(20*pi*n); %signal

ta=0:0.001:1; %reconstruction time

y1=[];

for i=1:N-1

 y1=[y1 ones(1,10)*x(i)];

end

y1=[y1 x(end)]; %it was one element too short

Zeroth- Order Interpolation

Zeroth-Order Code
clc,clear,close all

deltat=0.01; %time window

n=0:deltat:1; %time index

N=length(n); %number of sampled points

x=cos(20*pi*n); %signal

ta=0:0.001:1; %reconstruction time

y1=[];

for i=1:N-1

 y1=[y1 ones(1,10)*x(i)];

end

y1=[y1 x(end)];

y1=[y1(5:end) x(1:4)];

Phase correction, this works
because the signal is periodic!

Zeroth-Order Interpolation – With phase correction

rectpuls()

Matlab has a function which does this zeroth-order
interpolation. It’s called rectpuls().

This function operates by multiplying each sampled
amplitude by a shifted and compressed rectangle
pulse signal.

Code using rectplus()
Ts=0.01; %time window

n=0:Ts:1; %time index

Fs=1/Ts; %sample rate

N=length(n); %number of sampled points

x=cos(20*pi*n); %original signal

ta=0:0.001:1; %reconstruction time

 y=zeros(N,length(ta)); %reconstruction vector

for i=1:N

 y(i,:)=x(i)*rectpuls(Fs*ta-i+1);

end

plot(ta,sum(y)) compression

time shift

Same result as Zeroth-Order Approximation!

Matrix Operations instead of For-Loop

Ts=0.01; %time window

n=0:Ts:1; %time index

Fs=1/Ts; %sample rate

N=length(n); %number of sampled points

x=cos(20*pi*n); %original signal

ta=0:0.001:1; %reconstruction time

Na=length(ta); %reconstruction length

y=x*rectpuls(Fs*(ones(N,1)*ta-n'*ones(1,Na)));

Left for your report

Reconstruct the signal using tripuls() and
sinc().

Higher-Order Methods

Cubic Spline Interpolation

There is a higher order polynomial interpolation
known as the spline method.

This approximation is used a lot as it results in a
very smooth curve.

𝑌𝑖 𝑡 = 𝑎𝑖 + 𝑏𝑖𝑡 + 𝑐𝑖𝑡
2 + 𝑑𝑖𝑡

3

Spline Code

Ts=0.01; %time window

n=0:Ts:1; %time index

x=cos(20*pi*n); %sampled signal

ta=0:0.001:1; %reconstruction time

y=spline(n,x,ta);

Sampled Amplitudes

Reconstruction Indexes

Sampled Indexes

Cubic Spline Interpolation

Why is
there
only
one?

