
Sampling and Signal 
Reconstruction 

Lab 10 



Continuous Signals 𝑥(𝑡) 



Sampling 
𝑋 𝑛𝑇𝑠 → 𝑥 𝑛  



Nyquist Sampling Theorem 

Remember this result? It says that when you sample 
a signal every 𝑇𝑠 in the time domain the frequency 
domain is periodic (it repeats every 𝑓𝑠). The “copies” 
that occur every multiple of ±𝑓𝑠 are called aliases. 

∴ 𝑥 𝑡 𝛿𝑇𝑠   
ℱ
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𝑇𝑠
𝛿𝑓𝑠 ∗ 𝑋 𝑓   



Reconstruction 

In some instances we would like to reconstruct the 
original signal.  

 

 

 

 

 

This may not yield a signal that even remotely 
resembles the original signal! 

 

𝑥 𝑛  →  𝑋 𝑛𝑇𝑠  



Nyquist in terms of Reconstruction 

If the sampling rate, 𝑓𝑠, is not large enough (larger 
than twice the bandlimit, 𝑓𝑚) then the aliases will 
overlap: an effect known as Aliasing. 

 

 

 

If and only if a signal is sampled at this frequency (or 
above) can the original signal be reconstructed in the 
time-domain. 

𝑓𝑠 > 2𝑓𝑚 



Reconstruction 
Methods 



Zeroth-Order Interpolation 

Zeroth-Order Interpolation means we accept the 
value on the discrete sample for the time window 
that the sample was taken from originally. 

 

This is basically just approximating each time window 
with a constant. 



Zeroth-Order Code 
clc,clear,close all 

deltat=0.01;  %time window 

n=0:deltat:1;  %time index 

N=length(n);  %number of sampled points 

x=cos(20*pi*n); %signal 

ta=0:0.001:1;  %reconstruction time 

y1=[]; 

for i=1:N-1 

    y1=[y1 ones(1,10)*x(i)]; 

end 

y1=[y1 x(end)];  %it was one element too short 



Zeroth- Order Interpolation 



Zeroth-Order Code 
clc,clear,close all 

deltat=0.01;  %time window 

n=0:deltat:1;  %time index 

N=length(n);  %number of sampled points 

x=cos(20*pi*n); %signal 

ta=0:0.001:1;  %reconstruction time 

y1=[]; 

for i=1:N-1 

    y1=[y1 ones(1,10)*x(i)]; 

end 

y1=[y1 x(end)]; 

y1=[y1(5:end) x(1:4)]; 

 

Phase correction, this works 
because the signal is periodic! 



Zeroth-Order Interpolation – With phase correction 



rectpuls() 

Matlab has a function which does this zeroth-order 
interpolation. It’s called rectpuls(). 

 

This function operates by multiplying each sampled 
amplitude by a shifted and compressed rectangle 
pulse signal. 



Code using rectplus() 
Ts=0.01;   %time window 

n=0:Ts:1;   %time index 

Fs=1/Ts;   %sample rate 

N=length(n);   %number of sampled points 

x=cos(20*pi*n);  %original signal 

ta=0:0.001:1;   %reconstruction time 

 y=zeros(N,length(ta)); %reconstruction vector 

for i=1:N 

    y(i,:)=x(i)*rectpuls(Fs*ta-i+1); 

end 

plot(ta,sum(y)) compression 

time shift 



Same result as Zeroth-Order Approximation! 



Matrix Operations instead of For-Loop 

Ts=0.01;   %time window 

n=0:Ts:1;   %time index 

Fs=1/Ts;   %sample rate 

N=length(n);   %number of sampled points 

x=cos(20*pi*n);  %original signal 

 

ta=0:0.001:1;   %reconstruction time 

Na=length(ta);   %reconstruction length 

 

y=x*rectpuls(Fs*(ones(N,1)*ta-n'*ones(1,Na))); 



Left for your report 

Reconstruct the signal using tripuls() and 
sinc(). 



Higher-Order Methods 



Cubic Spline Interpolation 

There is a higher order polynomial interpolation 
known as the spline method.  

 

 

 

 

 

This approximation is used a lot as it results in a 
very smooth curve. 

𝑌𝑖 𝑡 = 𝑎𝑖 + 𝑏𝑖𝑡 + 𝑐𝑖𝑡
2 + 𝑑𝑖𝑡
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Spline Code 

Ts=0.01;   %time window 

n=0:Ts:1;   %time index 

x=cos(20*pi*n);  %sampled signal 

ta=0:0.001:1;  %reconstruction time 

 

 

y=spline(n,x,ta); 

 

Sampled Amplitudes 

Reconstruction Indexes 

Sampled Indexes 



Cubic Spline Interpolation 

Why is 
there 
only 
one? 


