The Kronig-Penney one-dimensional model

Purpose: to demonstrate that in solids, where many atoms stay
closely, the interference between atoms will create allowed and
forbidden bands of energy for electrons.

To simplify the analysis, we only consider a one-dimensional
system where atoms are aligned and equally spaced. This
constructs a one-dimensional potential function:
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Where Vj is the value of potential barrier; aand b are lattice
constant, represent distance between atoms.

For an electron traveling in the x-direction in free-space, the
general solution of the wave equation is,

 (x) = exp(jikx)

Now, within this periodic potential structure, the solution should
be modified,

v (x) = u(x) exp(jkx)
Bring this assumed solution back to the Schrodinger equation,
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In region I, where V(x) = O, we have,
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where o =2mE | h*

In region IT, where V(x) = Vo, we have,
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Equations (1) and (2) are two new equations for envelop ui(x) and
uz(x) in regions I and II, respectively.

The general solutions for (1) and (2) is,

u,(x) = Ae’ @ 4 Bem /(@0 For region I (0 < x < a)
Uy (x) = Ce’ ™% 4 De /P For region IT (-b < x <
0)
Boundary conditions:
Field continuity u;(0) =u,(0)
du, du?
drl o, dxl,

Periodic structure  u;(a) =u,(=D)
du| _du2
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This results in 4 equations for coefficients A, B, C, and D,
A+B-C-D=0
(x—k)A—(a+k)B—(-k)C+(B-k)D=0
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In order to have nontrivial solutions for A, B, C, and D, the
determinant must be zero. That is
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This is equivalent to,

_ % sin(ow) sin( 3b) + cos(oa) cos(b) = cosk(a + b)

We are mostly interested in the case of Vi > E (electrons are
bounded inside the crystal structure). In this case,
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where yis real and,

(722;; ) sin(aa)sinh(3) + cos(e)cosh (1) = cos(a+b)

To further simplify the analysis, we assume 3-type potential
barriers with ¥, =<0, b=0and Vob = u, which is a constant,
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Therefore, we have,
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+ cos(oa) = cos(ka)
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or, M + cos(oa) = cos(ka) (3)
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where M = hg

On the right-hand-side of equation (3),
—1<cos(ka)<1
While on the left-hand-side of equation (3), the value of
sin(oa)
o

M +¢08(01) is not bounded within +1.

Therefore, in order to have non-trivial solution of equation (3),

the parameter & =+ 2mkE / W or ultimately the electron energy E
only has certain allowed values, while other values are forbidden.

This gives an explanation of allowed and forbidden energy bands:
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Allowed energy band: M o +cos(om) =1
sin(oa)

Forbidden energy band: (M +cos(ou) > 1
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Although M +cos(au) = cos(ka) ¢an be solved

numerically, we only look at two extreme cases:
(1) No periodic potential barrier Vo = 0 or Vob = 0 and M=0,

Equation (3) becomes, cos(ou) = cos(ka)



Therefore o =k

2mE k*h?
e —— =k E =
that is, h o 2m K J

Obviously any E-value is allowed, no
restriction.

(2) Very high periodic potential barrier Vob >> 1 and therefore, M

» 1.
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Equation (3) becomes, M = cos(ka)

Since M >>1, the solutions can only be found around sin(oa) =0,
or,
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Obviously, E has only discrete values. o |
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