
The Kronig-Penney one-dimensional model 
Purpose: to demonstrate that in solids, where many atoms stay 
closely, the interference between atoms will create allowed and 
forbidden bands of energy for electrons. 

To simplify the analysis, we only consider a one-dimensional 
system where atoms are aligned and equally spaced. This 
constructs a one-dimensional potential function: 

 

 

 

 

 

Where V0 is the value of potential barrier; a and b are lattice 
constant, represent distance between atoms. 

For an electron traveling in the x-direction in free-space, the 
general solution of the wave equation is, 

( )jkxx exp)( =!  

Now, within this periodic potential structure, the solution should 
be modified, 
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Bring this assumed solution back to the Schrodinger equation, 
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In region I, where V(x) = 0, we have, 
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where 22 /2 mE=α  

In region II, where V(x) = V0, we have, 
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Equations (1) and (2) are two new equations for envelop u1(x) and 
u2(x) in regions I and II, respectively. 

The general solutions for (1) and (2) is, 
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Boundary conditions: 
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This results in 4 equations for coefficients A, B, C, and D, 
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In order to have nontrivial solutions for A, B, C, and D, the 
determinant must be zero. That is 
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This is equivalent to, 
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We are mostly interested in the case of V0 > E (electrons are 
bounded inside the crystal structure). In this case, 
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where γ is real and, 
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To further simplify the analysis, we assume δ-type potential 
barriers with ∞=0V , 0=b and V0b = u, which is a constant, 
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Therefore, we have, 
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On the right-hand-side of equation (3),  
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While on the left-hand-side of equation (3), the value of 
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Therefore, in order to have non-trivial solution of equation (3), 

the parameter 2/2 mE=α or ultimately the electron energy E 
only has certain allowed values, while other values are forbidden.  

This gives an explanation of allowed and forbidden energy bands: 
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 can be solved 

numerically, we only look at two extreme cases: 

(1) No periodic potential barrier V0 = 0 or V0b = 0 and M=0, 

Equation (3) becomes, )cos()cos( kaa =α  
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Obviously any E-value is allowed, no 
restriction. 

 

 

(2) Very high periodic potential barrier V0b >> 1 and therefore, M 
>> 1. 

Equation (3) becomes, )cos()sin( ka
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Since M >>1, the solutions can only be found around 0)sin( =aα , 
or, 
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  with n = 1, 2, 3….  
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Obviously, E has only discrete values. 
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