
QFilter: Fine-Grained Run-Time XML Access 
Control via NFA-based Query Rewriting 

Bo Luo, Dongwon Lee, Wang-Chien Lee, Peng Liu 
The Pennsylvania State University, University Park, PA 16802, USA 

bluo@ist.psu.edu, dongwon@psu.edu, wlee@cse.psu.edu, pliu@ist.psu.edu 

 

ABSTRACT 
At present, most of the state-of-the-art solutions for XML access 
controls are either (1) document-level access control techniques 
that are too limited to support fine-grained security enforcement; 
(2) view-based approaches that are often expensive to create and 
maintain; or (3) impractical proposals that require substantial 
security-related support from underlying XML databases. In this 
paper, we take a different approach that assumes no security 
support from underlying XML databases and examine three 
alternative fine-grained XML access control solutions, namely 
primitive, pre-processing and post-processing approaches. In 
particular, we advocate a pre-processing method called QFilter 
that uses Non-deterministic Finite Automata (NFA) to rewrite 
user's query such that any parts violating access control rules are 
pruned. We show the construction and execution of a QFilter and 
demonstrate its superiority to other competing methods.  

Categories and Subject Descriptors 
H.2.7 [Database Management]: Database Administration – 
security, integrity, and protection 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
XML security, Data security and privacy, Query rewriting 

1. INTRODUCTION 
The eXtensible Markup Language (XML) [2] has emerged as the 
de facto standard for storing and exchanging information in the 
Internet Age. As the distribution and sharing of information over 
the World Wide Web becomes increasingly important, the needs 
for efficient yet secure access of XML data naturally arise. It is 
necessary to tailor information in XML documents for various user 
and application requirements, preserving confidentiality and 
efficiency at the same time. Thus, it is critical to specify and 
enforce access control over XML data to ensure that only 
authorized users have an access to the portion of the data they are 
allowed to. An intuitive approach, employed by many current web 

systems (e.g. Apache), is to allow specification and control of data 
access at the document (or file) level. However, this simple 
solution is not sufficient for today's XML applications, where data 
access needs to be performed at a finer granularity (such as data 
content at the element and attribute level).  

To remedy these shortcomings, various proposals in support of 
fine-grained XML access controls have recently appeared. 
However, most of them are either view-based [1,4,5] or require 
significant security-related support from the underlying XML 
database [3, 13]. An inherited issue of using views for data access 
control is that the specification and maintenance of views are 
labour-intensive and time/resource-consuming. It is not scalable 
for administrators to (manually) create views on fine-grained data 
for a large number of users [21]. On the other hand, requiring 
security-related support from underlying databases, one may have 
difficulty to implement XML access controls using today’s off-the-
shelf XML products (to our best knowledge, none of the recent 
developments in [1,4,5,3,13] are adopted to XML database 
products). Additionally, as RDBMSs have been frequently used to 
manage XML data in the real world, they may not be able to 
handle fine-grained XML access control policies [10]. The goal of 
this study is to provide pragmatic solutions for implementing fine-
grained XML access controls that not only are view-independent 
but also require no-security support from underlying databases. 

In this paper, we examine three different approaches, namely, 
primitive, pre-processing and post-processing, to achieve our goal. 
Especially, we advocate a practical and scalable solution, called 
Query Filter (QFilter). As an XML access control pre-processor 
external to the database engine, the QFilter checks XPath queries 
against access control policies. Instead of simply filtering out 
queries that do not satisfy access control policies and deferring the 
rest of queries to XML query engines for further checking and 
processing (as [13] does), QFilter takes extra steps to rewrite 
queries in combination of related access control policies before 
passing the revised queries to underlying XML query engine for 
processing. As we will show later, QFilter not only achieves 
security for (almost) free, but also enjoys a faster query evaluation 
time through query re-writing.  

Our contributions are three-fold: (1) we identify the need and 
potential of non-view based XML access controls, and examine 
three different approaches to implement XML access control 
enforcement mechanisms. (2) We present the design and 
implementation of QFilter using Non-deterministic Finite 
Automata (NFA); (3) we conduct an extensive performance 
evaluation on the QFilter and other approaches. Experimental 
result shows that QFilter is very efficient in terms of query 
execution time and is scalable to the number of access control rules 
specified in the system. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
CIKM’04, November 8–13, 2004, Washington, DC, USA. 
Copyright 2004 ACM 1-58113-874-1/04/0001…$5.00. 

543



2.   RELATED WORK 
Models. Several XML access control models are recently proposed. 
In [16], authorizations are specified on portions of HTML 
documents, but no semantic context similar to that provided by 
XML can be supported. In [5], a specific authorization sheet is 
associated with each XML document/DTD expressing the 
authorizations on the document. In [4], the model proposed in [5] 
is extended by enriching the authorization types supported by the 
model, providing a complete description of the specification and 
enforcement mechanism. Among comparable proposals, in [1], an 
access control environment for XML documents and some 
techniques to deal with authorization priorities and conflict 
resolution issues are proposed. Moreover, general purpose access 
control policy languages are developed in such efforts as XACL by 
IBM [9] and XACML by OASIS [8]. Finally, the use of 
authorization priorities with propagation and overriding, which is 
an important aspect of XML access control, may recall approaches 
in the context of object-oriented databases, like [7] and [15]. 
Although our proposal is based on existing XML authorization 
models such as [4], ours is not tightly-coupled to one model, and 
thus can be easily applied to other models.  

Enforcement Mechanisms. Most of the existing XML access 
control methods are either view-based or relying on the XML 
engine to enforce access control at the node-level of XML trees. 
The idea of view-based enforcement [4, 5] is to create and 
maintain a separate view for each user who is authorized to access 
a specific portion of an XML document. The view contains exactly 
the set of data nodes that the user is authorized to access. After 
views are constructed, during run time, users can simply run their 
queries against the views without worrying about security 
enforcements. Although views can be prepared offline, in general, 
view-based enforcement schemes suffer from high maintenance 
and storage costs, especially for a large number of roles [21]: (1) a 
virtual or physical view is created and stored for each role; (2) 
whenever a user prompts update operation on the data, all views 
that contain the corresponding data needs to be synchronized. To 
tackle this problem, [20] proposes a method using compressed 
XML views to support access controls. However, view-
independent enforcement mechanisms are often more desirable.  [3] 
Addresses the issue of secure XML query evaluation by avoiding 
unnecessary security checks. Our work is complementary to [3]. 

To our best knowledge, [13] is the only work comparable to 
our QFilter approach. [13] performs a static analysis that simply 
classifies a XML query to be either “entirely” authorized or 
“entirely” prohibited before submitting it to an XML engine. For 
the “partially” authorized XML queries, [13] relies on the XML 
engine to filter out the data nodes that users do not have 
authorizations to access. Our QFilter removes this problem by 
carefully filtering out those conflicting portions from the input 
query (by re-writing) so that any off-the-shelf XML databases can 
be used. In addition, the QFilter has a much better performance 
than [13] (see Section 5). Finally, compared with various 
researches on the equivalence/containment/re-writing of XML 
queries [11, 12], our approach is NFA-based and security-driven. 

[22], independently developed, bears some similarity to our 
QFilter approach: [22] uses NFA to process streaming XML data 
for access control. Each NFA captures Q ∩ ACR, while QFilter’s 
NFA only captures ACR. Furthermore, in [22] the input of an NFA 
is XML streaming data and the output is also XML data, while in 
our approach both the input and output of a NFA is an XML query. 

3. XML ACCESS CONTROL MECHANISMS 
In this paper, we adopt an XML  access control model similar to [4] 
and incorporate role-based access control (RBAC) [17] to make 
ours more pragmatic. In our model, users are assigned with roles 
and thus can exercise certain access rights characterized by their 
roles. An XML document can be represented as a hierarchy of 
nested nodes (i.e., elements and attributes) so that fine-grained 
access controls at node level are established. XPath is used for 
specification of queries as well as identification of nodes. Our 
node-level authorization is specified via 5-tuple access control 
rules (ACR):  ACR = {subject, object, action, sign, type}, where (1) 
subject is to whom an authorization is granted (i.e., role); (2) object 
is part of an XML data specified by an XPath expression; (3) 
action consists of read, write, and update; (4) sign∈{+, −} refers to 
either access “granted” or “denied”, respectively; and (5) type 
∈{LC, RC} refers to either local check (i.e., authorization is 
applied to nodes in context only) or recursive check (i.e., 
authorization is applied to current nodes and propagated to all their 
descendants), respectively. In general, all nodes whose 
authorizations are not specified, either explicitly (via LC rules) or 
implicitly (via RC rules), are considered to be “access denied”. It is 
possible for a node to have more than one relevant rules. If conflict 
occurs between + and - rules, - rule takes precedence.1  

An XPath expression of ACR returns a set of nodes as answers, 
where the nodes are said projection nodes. For instance, the 
projection node of //dept//budget[@type=’public’] is “budget” 
since the expression returns <budget> as answers, not <dept> nor 
@type. Furthermore, we differentiate two different notions of 
answer models: (1) “Answer-as-nodes”: answers are only 
projection nodes themselves; and (2) “Answer-as-subtrees”: 
answers are projection nodes and their descendents. The former 
can be viewed as an intermediate answer model of the latter. That 
is, when a query “/a/b” is evaluated, typical XML query processors 
quickly find the node IDs matching “/a/b” pattern, then return  
actual <b> nodes and their subtrees as the final answer to users. 
Since the answer-as-subtrees model may contain unauthorized data 
in their subtrees, it is more complex to deal with than the answer-
as-nodes model (details are in section 3.1). Therefore, in this paper, 
we primarily focus on the answer-as-nodes model. If it is always 
assured that the returned answers do not contain any data that 
violate access control policies, then they are called a safe answers, 
and otherwise un-safe answers. Likewise, if a query is assured to 
retrieve only safe answers, it is called a safe query, and otherwise 
an un-safe query. Table below summarizes the notations that we 
use through the remainder of the paper. 

Term Meaning 
Q User’s input query in XPath expression 
Q’ Re-written query from Q  
D XML data 

SD / UD Safe / un-safe XML data 
                                                           
1 Note that our conflict resolution is different from the one based 
on the nearest ancestor (e.g., [3]). For instance, if - rule limits the 
access of “/a/b” nodes (and descendents), but + rule grants the 
access of “/a/b/c” nodes, then in our model, users cannot access 
any nodes under “/a/b” since – rule takes precedence. However, in 
the nearest ancestor based resolution scheme, the conflict at the 
/a/b/c level is resolved through its nearest ancestor, “/a/b/c” itself, 
whose access is granted by + rule, and thus the access is granted. 
We plan to investigate the issue of handling the nearest ancestor 
conflict resolution scheme in future. 

544



R A 5-tuple access control rule 
R+ / R- R that has sign  + / −, respectively 
ACR [R1, …, Rn], a list of access control rules 

ACR+ / ACR- All R+ / R- of ACR 

Our Goal: to devise practical and scalable XML access control 
mechanisms without using any security features of underlying 
DBMS. Given a list of access control rules, ACR, and a user 
query, Q, such an XML access control mechanism answers Q by 
returning only safe data that do not violate ACR.   

We consider the following three different approaches: 

1. Primitive: In this approach, ACR is somehow “merged” to 
query Q to yield a new query Q’ = Q ∩ ACR, to be submitted 
to a DBMS. Then, only safe answers that satisfy both the 
constraints in Q as well as in ACR are returned. 

2. Post-processing: Q is processed by a DBMS as a regular query 
to produce (unsafe) answers. Then, this intermediate answers 
go through post-filtering process to prune out those data that 
violate the ACR. 

3. Pre-processing: Some parts of the Q that have conflicts with 
ACR are pre-pruned to yield Q’. Then Q’ is processed by a 
DBMS as usual to return only safe answers. 

 
Figure 1 illustrates the current practice of XML query processing 
(i.e., without access control) and the three approaches described 
above. In the figure, Galax [19] serves as the underlying database. 
QFilter and AFilter are used for pre-processing of queries and pos-
processing of answers (details to be presented later). In this paper, 
we advocate the QFilter approach. Thus, in the following, we first 
introduce the primitive and post-processing approaches and go into 
detail of the pre-processing approach in the next section. 

 
3.1   Primitive Approach 
The idea of the primitive approach is to view both user's query and 
security policies written in ACR as two constraints to satisfy.  
Therefore, security enforcement is assured by somehow “merging” 
two constraints to form tighter constraints. For instance, a manager 
“John” is to access ‘HR’ dept’s budget with the following query, 
Q:/dept[name=’HR’]//budget, and ACR has the following five 
rules about the ‘manager’ role (i.e., three LC and two RC rules): 

    R1:(manager, /dept//salary, read, +, LC) 
    R2:(manager, /dept[year=2004]//budget, read, +, LC) 

    R3:(manager, /dept[year=2003]//budget, read, −, LC) 
    R4:(manager, /dept/south, read, +, RC) 
    R5:(manager, /dept/north, read, −, RC) 
    R6:(manager, /dept[name=’HR’]//budget/secret, read, −, RC) 

The meta-semantics of Q and a rule R with + sign is that users are 
allowed to access the regions scoped by “Q INTERSECT R”. 
Conversely, that of Q and a rule R with – sign is “Q EXCEPT R.” 
Note first that R1,  R4, R5 have incompatible projection nodes from 
Q. Q looks for <budget> as answers while, for instance, R1  returns 
<salary> as answers. Therefore, any traditional set operators 
between two answers would not make sense since it is analogous 
to comparing apples and oranges. Therefore, when a rule has the 
LC type and has incompatible projection nodes in its XPath 
expression from Q, the rule can be safely ignored.  However, when 
the rule has the RC type, the rule cannot be ignored. Consider R4 
who has the same + sign as Q, but whose expression /dept/south 
has incompatible projection nodes from Q (i.e., south vs. budget). 
If there happens to be a descendent with a path 
/dept/south/1/2/budget, then “John” should get a grant to access 
this budget since R4 indicates /dept/south and all its descendents 
should be readable by managers. Therefore, when one merges Q 
and R4, one has to use “Q INTERSECT R4//budget” to ensure 
domain compatibility of intersection operator. Next, consider rules 
whose XPath expressions have the compatible projection nodes 
with Q. Both R2 and R3 have + and – signs, respectively. Therefore, 
“John” can read budget scoped by R2, but not the budget scoped by 
R3: Q’ = Q INTERSECT R2 EXCEPT R3. Then, the final safe 
query Q’ can be: Q’ = Q INTERSECT (R2 UNION R4//budget) 
EXCEPT (R3 UNION R5//budget).  The formal algorithm, 
Primitive, is given below: 

Algorithm: Primitive 
Input: Q, ACR;      Output: Q’ 

N := projection nodes of Q;  
S := all rules in ACR having the same “role” as Q; 
For all s in S 
        If s has incompatible projection nodes from Q 
                If s has LC type, then remove s from S;  
                If s has RC type, then append “//N” to s; 
P:= rules in S with + sign, P1, …, Pi; 
M := rules in S with – sign, M1, …, Mj; 
Q’ = Q INTERSECT (P1 UNION … UNION Pi) EXCEPT (M1 
UNION … UNION  Mj); 

Note that the final safe query Q’ contains no special operator to 
ensure security. Any XML databases supporting XPath and set 
operators would suffice. 

Lemma 1: Time complexity of the Primitive algorithm is O(n), 
where n is the size of ACR (i.e., the number of rules) . ■ 

Note that the above Primitive algorithm is correct with respect to 
the “answer-as-nodes” model, but not for the “answer-as-subtrees” 
one. To demonstrate the reason, consider the following rule:  

    R6:(manager, /dept[name=’HR’]//budget/secret, read, −, RC) 

The characteristic of R6 is that its scope is “contained” by that of Q. 
Therefore, the correct semantics of Q and R6  together is to let Q 
access all <budget> elements and their descendents, except 
<secret> elements and their descendants. However, this notion 
cannot be precisely captured by using the set-difference operator 
like in “Q EXCEPT R”, nor by the Primitive algorithm like in “Q 

(a) No security support 

(b) Primitive 

(c) Pre-processing 

(d) Post-processing 
Figure 1: Ways to support XML access control without 

using security features of DBMS 

QFilter Galax Q’ Q SD 

Galax Q UD 

Galax Q ∩ ACR SD 

Galax Q UD AFilter SD 

545



EXCEPT R//budget”. To correctly handle this case, we need a new 
notion of “bite” operator like in “Q bitten-by R”, pruning subtrees 
of denied parts of R from accepted parts of Q. That is, in the 
answer-as-subtrees model, when a node N is evaluated to be 
accessible, that does not automatically imply that the subtree of N 
be accessible. In this case, those violating descendents in the 
subtree of N must be “bitten” by some post-filtering. However, the 
bite operator is not currently supported in any known XML 
algebras or engines. This problem occurs in both primitive and pre-
processing approaches when answer-as-subtree model is used. We 
leave the study of the answer-as-subtree model and its support via 
the bite operator as future work, and do not consider the issue 
anymore; all the following algorithms and experimentations are 
presented and conducted only for answer-as-nodes model. 

3.2   Post-Processing Approach  
The post-processing strategy extends regular query processing by 
going through a “post-filtering” stage, named as AFilter, to filter 
out un-safe answers. Despite their potential inefficiency for 
unnecessarily carrying un-safe data till the last step, this approach 
is simple to implement. Moreover, when ACR and data are stored 
separately in some distributed environment (e.g., database-as-a-
service model), this approach may be useful. However, despite the 
simple look on the surface, its implementation needs to overcome 
the following technical issue. Consider Q:/dept//budget and 
R1:(User, /dept/south/budget, read/write, −, LC). When Q is first 
evaluated against an XML document D, Q projects out only the tag 
<budget> without its ancestor tags. Therefore, in the post-filtering 
stage, when R1 is to be evaluated against these intermediate 
answers having only <budget> tags, it cannot check whether the 
<budget> satisfies /dept/south or not. However, if underlying XML 
database can produce <budget> as well as all its ancestor tags (e.g., 
using a recursive function of XQuery), then the post-processing 
approach can be applied without any further security support from 
databases. In our experiments, we used YFilter [6] as an 
implementation of the AFilter concept, and used an external script 
to recover ancestor tags. However, in the experimental comparison, 
this extra time to recover ancestor tags is not included. 

4.   PRE-PROCESSING APPROACH 
The two approaches introduced above are relatively simple to 
implement, and thus can be considered as practical solutions. 

However, the overall performance may suffer from their naïveness. 
To remedy this problem, here, we detail the pre-processing 
approach, which shares the similar idea as primitive approach, but, 
instead of producing a potentially complicated (and thus 
expensive) query Q’, it handles the set operations in a more 
efficient way (e.g., early-pruning). Consider the query 
Q:/dept[year<2004]//budget and a rule R1:(manager, //south/budget, 
read/update, +, LC). Primitive approach would have generated Q’ 
= /dept[year<2004]//budget INTERSECT //south/budget. However,  
by filtering out a portion of the Q judiciously, a re-written query 
Q”:/dept[year<2004]/south/budget would satisfy both Q and R1 
while it is likely to be processed much faster than Q’. Similarly, for 
R2:(manager, /dept//*, read, −, RC), all the contents that Q is 
asking for are forbidden by R2, thus pre-processing approach could 
simply return null to user outright. However, in the primitive 
approach, a query “/dept[year<2004]//budget EXCEPT 
/dept//*//budget” would have been submitted to the underlying 
database, potentially wasting substantial amount of time. 

The challenge is, therefore, to devise a Query Filter (named as 
QFilter here) that is capable of quickly filtering out conflicting or 
redundant parts from the original query Q to yield a new query Q’ 
while ensuring: (1) Q and Q’ is equivalent (i.e., producing the 
same answers); and (2) Q’ is evaluated faster than Q.  

4.1   QFilter at a Glance 
The QFilter reads as input query Q, access control rules ACR, and 
(optional) schema S, then returns a modified query Q’ as output:  
 Q’ := QFilter(Q, ACR, S)  
QFilter has three types of operations: (1) Accept: If answers of Q 
are contained by that of ACR+ (i.e., Q asks for answers granted by 
ACR+) and disjoint from that of ACR-  (i.e., Q does not ask for 
answers blocked by ACR-), then QFilter accepts the query as it is: 
Q’ = Q; (2) Deny: If answers of Q are disjoint from that of ACR+ 

(i.e., no answers to Q are granted by ACR+) or  contained by that 
of ACR-  (i.e., all answers to Q are blocked by ACR-), then QFilter 
rejects the query outright: Q’ = {}; (3) Rewrite: if only partial 
answer is granted by ACR+ or partial answer is blocked by ACR- , 
QFilter rewrites Q into the ACR-obeying output query Q’. For 
instance, consider the following access control rules (individually) 
and queries: 

R1: (role, /people/person/name, read, −, LC) 

“categories” 

“regions” 

“people” 

ε  

* “item” 

“location” 

“description” 

“person” 

“quantity” 

“name” 

“name” 

“address” 

“emailaddress” 

2 

1 
5 6 

7 
8 

9 

10 

11 

12 

13  

14 

ε 
15 

 

16 
 

17 / 18 

3 / 4 

“site” 
0 

Figure 2. State transition map and NFA of the QFilter  

* 

14

10

11
12 13 15

16
17 18

regions 
1

2

5

3 4

7

categories 

people 

* 

* ε 

6* item 
9

8

person 

emailaddress 

address 
name 

* 
ε 

location 

quantity 

description 

0
site 

name 

546



R2: (role, /people//address//*, read/update, +, RC) 
R3: (role, /regions/namerica/item/name, read, +, LC) 
Q1: /people/person/address/street 
Q2:/people/person/creditcard 
Q3:/regions//* 

Then, Q1 is accepted by both R1 and R2, denied by R3. Similarly, 
Q2 is accepted by R1, denied by both R2 and R3; and Q3 is accepted 
by R1, denied by R2, and rewritten to /regions/namerica/item/name 
by R3.  In sections 4.2 and 4.3, we show how QFilter is constructed 
and executed for the rules with “+” sign and “LC” types, and later 
in sections 4.4, 4.5 and 4.6, we extend this basic QFilter to cover 
more complex cases.  

4.2   QFilter Construction 
We consider XPath expressions of ACR as compositions of “four” 
basic building blocks: /x, /*, //x, and //*. Complex XPath 
expressions with predicates (e.g., /x[y=’c’]) can also be handled 
and are further described in Section 4.4. The NFA fragment 
construction for each building block is illustrated below: 

Element State transition NFA construct 

/x 
  

/*   

//x 
  

//* 
  

For a complete XPath expression, NFA fragments are constructed 
upon path elements and then linked in sequence. For a set of rules 
that form the ACR, NFA for each rule is constructed and all the 
NFAs are combined in the way that identical states are merged. 
The processing is similar to regular NFA construction. We now 
give an example to illustrate the process. Consider the following 
eight XPath expressions that are the object parts of access control 
rules (now we ignore their type or action parts for simplicity):  

R1: /site/categories//* 
R2: /site/regions/*/item/location 
R3: /site/regions/*/item/quantity 
R4: /site/regions/*/item/name 
R5: /site /regions/*/item/description 
R6: /site /people/person/name 
R7: /site /people/person/address//* 
R8: /site /people/person/emailaddress 

We construct the QFilter starting from R1. For element /site, we 
create state 0 and a transition on token “site” to state 1. Then a 
transition on token “categories” is created on element /categories. 
For element //*, transition from state 2 to 3 and then 4 is created as 
shown in Figure 2 (left). Transition from state 3 to 4 requires at 
least 1 token after the ε transition. We use the “next-token-driven ε 
transition” in the NFA execution, thus state 3 and 4 could be 
merged in the NFA and set as acceptable state. The remaining 
access control rules are processed accordingly. Finally, the state 
transition map and the NFA corresponding to the above eight 
access control rules are shown in Figure 2. 

BuildNFA, the algorithm to construct an NFA from ACR, as 
illustrated above, is straightforward and omitted. It is not difficult 
to see that the time complexity of this algorithm is O(n), where n is 
the size of ACR (i.e., the number of rules). Both of Q and R consist 
of the four basic elements as described above. Next we provide 
detailed discussion of the NFA execution in those four cases: (1) 
only /x in both Q and NFA; (2) only /x in Q while /*, //x, and //* 
exist in NFA; (3) /* exists in Q; and (4) //x and //* exist in Q. 
4.3   QFilter Execution  
Given a query Q as input to the QFilter constructed as above, the 
output is a filtered query Q’. The filtering principle consists of: (1) 
if ACR allows all data that Q requests, keep Q as it is; (2) if what 
Q asks for is entirely prohibited by ACR, then reject Q; and (3) 
otherwise, modify Q such that Q’ returns a precise “intersection” 
of Q and ACR (or precise “difference” for − sign). The filtering 
process becomes complicated when either Q or ACR has non-
deterministic operators such as “//” and “*”, which can match 
multiple branches in the NFA.   
1. Deterministic transitions: There is only one deterministic 
transition, “/x”, among four basic elements. In this case, the 
QFilter works exactly like regular NFA; an incoming query is 
either accepted or denied by the automaton, and the output of 
filtering is either the incoming query itself (if accepted) or empty 
string (if denied). For instance, when a query 
/site/people/person/name is executed, it passes through state 0→1
→12→13 of the state transition diagram in Figure 2 and is finally 
accepted at state 14. Similarly, a query 
/site/people/person/creditcard passes through state 0→1→12 and 
rejected. 
2. Non-deterministic transitions: This occurs when there is only 
direct child expressions (/x) in Q but more than one possible 
outgoing transitions (i.e., * and ε transitions) exist besides 
deterministic ones. We follow all possible transition paths through 
the NFA. Particularly, the //x and //* states are recursively 
processed (e.g., the underlined states 3/4 and 17/18 shown in 
Figure 2, right). If any of the paths ends at an accept state (i.e., the 
query is acceptable by at least one of ACR), the original query is 
passed through the NFA. For example, a query 
/site/regions/namerica/item/name passes through state 1→5 to state 
6 since wildcard “*” accepts token “namerica”.  
3. Query rewriting at wildcard *: A query with wildcard “*” 
normally matches more than one state transitions. Taking Q:/site/* 
as an example, it moves from state 1 (/site) to state 2 
(/site/categories), state 5 (/site/regions), and state 12 (/site/people). 
Here wildcard “*” means it can transit from the current state to any 
of its directly subsequent states. At any state, if the next input 
token in the query is “/*”, we break the query into several branches 
in accordance with all the direct children of the current state. In 
each branch, we rewrite the “*” operator in Q with the 
corresponding path transition token, e.g., the /site/* is broken into 
three branches at state 1, and for instance, the branch transiting to 
state 2 is rewritten into /site/categories. “*” operator is kept only if 
a corresponding “*” transition exists, thus we mark this branch as 
the original query. We go on executing each branch of the query. If 
a branch of the original query exists and ends at an accepted state, 
the output of QFilter is the Q itself. Otherwise, the output is the 
union of all the accepted branches of the Q. 
4. Query rewriting at “//” state: Both “//x” and “//*” in Q mean 
the state transition from the current state to all its subsequent states. 
In this case, the query is broken into branches that continue at each 

ε * 
1   2 

*
*

ε 1 2 3

x
*

ε 1 2 3

1 2*

ε x 
1   2 

*

x1 2x 

547



of the subsequent states of the current state. Such a query needs to 
be rewritten. Generally speaking, we rewrite first slash of the //x or 
//* token with the path from the current state to the destination 
state (where the branch continues to be executed). Each branch of 
the QFilter execution restarts from the second slash. A mapping 
table can be created to make these rewriting faster. As an example, 
given a query Q:/site/people//name, /site/people starts the state 
transition like 0→1→12. Then, when it encounters the “//”, it 
breaks Q into the following branches 6 branches: 

1. /site/people/name restarting at state 12 
2. /site/people/person/name restarting at state 13  
3. /site/people/person/name/name restarting at state 14 
4. /site/people/person/address/name restarting at state 15 
5. /site/people/person/emailaddress/name restarting at state 16 
6. /site/people/person/address//name restarting at state (17/18) 

The next input token of the query at each branch is /name. 
Obviously only the branches 2 and 6 are accepted. Thus the final 
output is: Q’ = /site/people/person/name UNION 
/site/people/person/address//name. In order to speed up the 
traversal of all the sub-states of the current state, we build a look-
up table for each state. It is an index to all the sub-states, together 
with the replacing string. As an example, the look-up table of state 
12 is as follows: 

Start  Destination  Rewrite Query 
12  
13 /person 
14 /person/name 
15 /person/address 
16 /person/emailaddress 

12 

17/18 /person/address/ 

4.4   Handling Predicates  
In Section 4.3, the QFilter execution algorithm is based on the 
simple case where “predicates” (e.g., “[b=10]” in //a/[b=10]/c) are 
not used in Q or ACR. Here, we extend this to handle predicates. 
First, when input query has predicates in it, they are simply kept, 
and whenever a path token of the query is accepted or rewritten, 
the predicate (if any) is appended to it; otherwise, if a path token is 
rejected, the predicate is also rejected. Second, when predicates 
exist in ACR, the handling step needs a bit more elaboration: (1) 
predicate locating and (2) predicate merging. 

Predicate Locating is to locate the “corresponding” predicates of 
ACR and Q.  In QFilter execution, path elements from queries are 
matched with elements from rules (rewritten is regarded as a 
special matching). Predicates of matching path elements are called 
“corresponding” predicates. For instance, if we apply security 
check ignoring the predicates, R: “/site/*/*/item[name]/location” 
accepts Q: “/site/*/*/item[@quantity>5]/location”. In this case, the 
path element “/item” in Q matches “/item” in R, thus their 
predicates “[name]” and “[@quantity>5]” are called corresponding 
predicates. A path element without predicate is treated as empty 
predicate; an actual predicate may correspond to an empty 
predicate.  

QFilter processes query strings via extended NFA, which 
essentially conducts token matching. We further match their 
corresponding predicates using the predicate processing states. 
Different from a regular QFilter state, which conducts matching 
operation, a predicate processing state has the following properties: 
(1) token from the predicate of input query string is not going to 
“match” the token of the predicate processing state; the processing 

in the state is not accept/rewrite/deny; rather, it is “Predicate 
Merging”; (2) different predicate processing states at the same 
location are not exclusive; route of input query is broken into 
different branches upon different predicate processing states.  

For instance, from the example of section 4.2, suppose we 
replace R4 by the new R4: “/site/regions/*/item[description]/name”. 
Then the QFilter shown in figure 2 is re-constructed as shown in 
figure 3 (each state with children carries an empty predicate 
processing state (“φ”), but omitted for simplicity.) When an input 
query “/site/regions/*/item[@quantity>0]/name” is processed, it 
goes through states 0→1→5→6. After token “item” is accepted at 
state 6, the route breaks into two branches: (1) the predicate 
[@quantity>0] of the query is corresponded with φ predicate, a 
predicate merging operation is conducted, and QFilter execution 
continues at state 7.1 with token “name”; (2) “[@quantity>0]” is 
corresponded with “[description]” and they are merged, QFilter 
execution continues at state 7.2 with token “name”. 

 
Figure 3. QFilter with predicate processing states 

Predicate Merging is to merge the corresponding predicates 
located in the previous step. In QFilter, two strings are simply 
connected. For query “/site/regions/*/item[@quantity>0]/name” in 
the previous example, its route breaks into two branches at state 6: 
(1) “[@quantity>0]” merges with φ yielding “[@quantity>0]” 
itself; (2) “[@quantity>0]” merges with “[description]” yielding 
predicate “[@quantity>0][description]”. Branch 1 is denied at state 
7.1 while branch 2 is accepted at state 11. Thus, the final output is: 
“/site/regions/*/item[@quantity>0][description]/name”. 

Some other optimizations are possible on the merged 
predicates (which are better off handled by query optimizer.) E.g., 
(1) [@quantity>0][@quantity>5] can be fused as [@quantity>5]; 
and (2) query /*/*/person[@id=“1”][@id=“2”] should be rejected.  

4.5   Handling Rules with RC Type or – Sign 
So far, we have discussed the QFilter when ACR has only rules 
with + sign and LC type. In this section, let us extend QFilter to 
include rules with – sign and RC type. First, as first proposed in 
[13], all rules with RC type are equivalent to three rules with LC 
type. For instance, /x with RC type is semantically equivalent to 
three expressions: /x, /x//*, /x//@* with LC type. Therefore, by re-
writing all rules with RC type into equivalent ones with LC type, 
QFilter can be constructed as it is. Next, consider the case of rules 
with – sign.  When ACR contains rules with + sign (i.e., ACR+) 
and ones with – sign (i.e., ACR-), the overall semantics of output 
query Q’ is (as already shown in the Primitive algorithm): 

Q’= Q INTERSECT (ACR+  EXCEPT ACR-) 
    = (Q INTERSECT ACR+) EXCEPT (Q INTERSECT ACR-)  

548



Now, note that “Q INTERSECT ACR” can be computed by 
QFilter(Q, ACR) with the optional schema S removed for 
simplicity. Therefore, by having two separate QFilters for + and – 
sign rules, one can get the following final formula for Q’: 

 Q’ = QFilter(Q, ACR+) EXCEPT QFilter(Q, ACR-) 

where the algorithm for QFilter is shown below: 

Algorithm: QFilter 
Input: Q, ACR;      Output: Q’ 

NFA := BuildNFA(ACR); 
Switch (Q, NFA): 
        Accpet: Q’ := Q; 
        Deny: Q’ := {}; 
        Rewrite: Q’ := rewrite Q according to Sec 5.3 and 5.5; 

4.6   Security Analysis 
The security of our QFilter approach can be proved using the 
following three theorems.  
Theorem 1: The QFilter execution algorithm always generates the 
correct answer when Q and object parts of ACR are limited to 
XPath expressions without predicates; i.e. 
 Q’ = M(Q) = Q ∩ ACR  (1)  
M(Q) refers to the evaluation of a query Q against the extended 
NFA, M, created by QFilter algorithm. ■ 
Sketch of Proof: 
To prove equation 1, we should have: 
 Q’ ⊆ ( Q ∩ ACR ) (2) 
 and   ( Q ∩ ACR ) ⊆ Q’ (3) 

(2) is amount to: 
 Q’ ⊆ Q (4) 
 Q’ ⊆ ACR (5) 
Since the only case where M behaves different from regular 
automata is for the wildcard matching and query rewriting 
operations, we focus on that.  
Equation (4) can be proved as follows: For the accepted queries, 
the output of QFilter is the original query itself: M(Q) = Q. For the 
rejected queries, the output of M is an empty string or error 
message, where we also have M(Q) = φ ⊆ Q. For the rewritten 
queries, since the rewriting algorithm only changes wildcards into 
more specified path strings, it is obvious that M(Q) ⊆ Q. 
Equation (5) can be proved by constructing an equivalent path 
expression (EPE), which is a subset of the access control automata 
that routes to the query. The construction of EPE is as follows: 

• EPE starts with an empty string. 
• EPE is extended along with the processing of query 

expression, i.e. EPE is extended accordingly at each NFA 
operation.  

By constructing the EPE for all possible cases and show them 
to be contained in one of the ACR rules, one can show EPE ⊆ 
ACR, and in turn since M(Q) ⊆ EPE,  M(Q) ⊆ EPE ⊆ ACR. The 
details of all cases are omitted due to space constraint. 
Equation (3) can be expressed as: 
 (Q ∩ ACR ) - M(Q) = φ  
Which is equivalent to: 
 [ ACR - M(Q)] ∩ [Q - M(Q)]= φ  
 Or  [ ACR - M(Q)] ∩ Q = φ (6) 

Make us of the EPE defined above, (6) is decomposed into: 
  [ (ACR - EPE) ∪ (EPE - M(Q))] ∩ Q = φ  
This is equivalent to: 
 [(ACR - EPE) ∩ Q] ∪ [(EPE - M(Q)) ∩ Q] = φ  
From the construction of EPE, we can see the condition that an 
EPE path is more general than the output query is when the input 
element from query Q is a more specified path while it routes 
through a wildcard path of NFA. Thus: 
  [(EPE - M(Q)) ∩ Q] = φ  
Therefore, we only need to show: 
 [(ACR - EPE) ∩ Q] = φ  
Note that EPE is exactly the state transition route of Q through the 
NFA. At the beginning of NFA execution, EPE is empty that it has 
the probability to go through any state of NFA. Hence the 
maximum size of the EPE is bounded by that of ACR and the set 
(ACR - EPE) is empty. Whenever one does a state transition, a 
token from the query Q enables this state transition thus constrains 
the EPE. In this way, some states of ACR is removed from the 
potential EPE into set (ACR - EPE), because it has conflict with 
the query Q. Hence we have: 
 [(ACR - EPE) ∩ Q] = φ (Q.E.D) 

Theorem 2: The QFilter execution algorithm always generates the 
correct answer, when (1) queries are (arbitrary) XPath 
expressions, and (2) object parts of ACR are limited to XPath 
expressions without predicates. ■ 

Sketch of Proof:  For query Q with predicates, we remove 
predicates to construct Q*, which is XPath expression without 
predicates, and Q ∩ Q* = Q. Let Q*’ be the output of QFilter with 
Q* as input. From theorem 1 we have: 

Q*’ = M(Q*) = Q* ∩ ACR 
The direct predicate processing method in QFilter execution is to 
insert predicates in Q to its corresponding path in Q*’. Thus we 
have: 
 Q’ = Q*’ ∩ Q = Q ∩ Q* ∩ ACR = Q ∩ ACR (Q.E.D.) 

Theorem 3: The post-processing predicate verification algorithm 
of Section 4.4 always generates the correct answer, when object 
parts of ACR are XPath expressions that do not have both “//” 
path and predicate in one rule. ■ 

Sketch of Proof: For rules without predicates, theorem 2 already 
proved the correctness of QFilter approach. For rules with 
predicates, referring to our algorithm, suppose Q’ is 
accepted/rewritten by a rule R which has predicate. Since R do not 
have “//” path, Q’ cannot have “//” path either, thus Q’ and R have 
the same number of path elements. By inserting the predicate in R 
into its counterpart in Q’, we generate Q’’ which is restricted by 
both Q’ and R.   (Q.E.D) 

4.7 Computational Complexity 
Computational complexity of QFilter includes the computation of 
QFilter construction and execution. For QFilter construction, the 
complexity is O(n), where n is the number of path steps in XPath 
expressions of ACR. For QFilter execution, we only provide upper 
bounds on the computational complexity: (1) When there is no 
wildcard in a query, the computation of filtering that query is O(m), 
where m is the number of path steps in a query. The upper limit is 
reached for the cases of accepted or rewritten queries; (2) When 

549



wildcard “*” exists in the query, the complexity is denoted as O(n), 
where n is the size of NFA. The worst case occurs only for input 
“/*/*…/*”, which requires the traversing of entire NFA; (3) For 
queries with “//” paths, the computation is O(m*n1*n2*…*nk), 
where m is the number of path steps in a query, k is the number of 
wildcard “//” in a query and ni is the size of the child QFilter at the 
state which first meets the ith “//” path. This is still quite acceptable 
since: (1) probability of “//” paths in queries are relatively low, and 
(2) this worst case only occurs for a query like “/……//*//*…//*”, 
which seldom appears in real-world XML queries. Overall, QFilter 
is very practical since the worst case for filtering rarely occurs. We 
experimentally verify this claim in the following section.  

5.   EXPERIMENTAL RESULTS 
5.1    Set-up  
We used the well-known XMark schema [18] and its XML 
document generator to generate test XML documents. Since the 
size of test data was not a major factor to determine the 
performance of various methods, here we present only the case of 
test set with 1.5 MB (The types of queries or number of access 
control rules were more important in our experimentation, and thus 
carefully selected and measured.) As an underlying XML database, 
we used Galax 0.3.1 [19] that can evaluate XQuery efficiently. 
Pre-processing approach, QFilter, was implemented in Java (JDK 
1.4.2) and communicated with Galax through its Java-API. For 
post-processing approach, we used the YFilter [8] from UC 
Berkeley as an implementation of AFilter.  

For XPath expressions in Q and ACR, both user-defined (UD) 
as well as synthetic (SN) tests were used. That is, we have four test 

cases by combining two factors in two dimensions; UD-Q/UD-
ACR, UD-Q/SN-ACR, SN-Q/UD-ACR, and SN-Q/SN-ACR. All 
synthetic XPath expressions were generated by YFilter package. 
We also prepared two kinds of access control policies in the 
experiments: (1) user defined and (2) synthetic roles. For instance, 
the following Costumer Advertisement Manager (CAM) is a user-
defined role extended from the example in Section 4; CAM is in 
charge of delivering advertisements to costumers, thus is permitted 
to access users information except for their credit card, profile, and 
item’ basic information. This policy can be captured by the 
following rules (all rules with RC type are already converted to 
equivalent ones with LC type [13]): 

1. (CAM, “/site/regions/*/item/location”, +, LC) 
2. (CAM, “/site/regions/*/item/quantity”, +, LC) 
3. (CAM, “/site/regions/*/item/name”, +, LC) 
4. (CAM, “/site/regions/*/item/description”, +, LC) 
5. (CAM, “/site/categories”, +, LC) 
6. (CAM, “/site/categories//*”, +, LC) 
7. (CAM, “/site/people/person”, +, LC) 
8. (CAM, “/site/people/person//*”, +, LC) 
9. (CAM, “/site/people/person/creditcard”, −, LC) 
10. (CAM, “/site/people/person/profile”, −, LC) 

Then we build two extended NFAs for + and - rules respectively, 
thus construct a QFilter. Since the performance of QFilter is 
dominated by handling such building blocks as “//” paths, and 
since predicates (in either queries or access control rules) have 
almost no impact on the performance of QFilter, in our 

          (a)                           (b) 
Figure 5. Average query execution time of three types of QFilter. 

(a)                             (b) 
Figure 4. QFilter construction performance (QFilter vs. Static Analysis [21]). 

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100
Num ber of acces s  control rules

Q
Fi

lte
r e

xe
cu

tio
n 

tim
e 

(m
s Query  A ccepted

Query  Rejected
Query  Rw w ritten

0

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

0 .0 6

0 .0 7

1 2 3 4 5 6 7
Q u e ry ca tig o ry

Q
u

e
ry

 e
xe

cu
tio

n
 ti

m
e

 (

Query  A c c epted
Query  Den ied
Query  Rew r itten

0.00

0.02

0.04

0.06

0.08

0.10

1 2 3 4 5 6 7 8
A ccess C ontrol R ule ID

Q
F
ilt
e
r 
G
e
n
e
ra

tio
n
 T

im
e
 (

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600
N um ber of A ccess C ontrol R ules

In
it
ia
liz

in
g
 T

im
e
 (
m Q Filter C onstruction

S tatic A nalysis

550



experiments we focus on the other building blocks instead of 
predicates. 

5.2    QFilter vs. Static Analysis 
Note that the static analysis method of [13], which is the only pre-
processing based method like ours,  can handle only two cases; i.e., 
access fully granted (Q⊆R) or access fully denied (Q∩R= φ), 
where Q is an input query and R is ACR+. However, our QFilter 
method is able to process all three cases; i.e., Q⊆R, Q∩R= φ, and 
partial overlap (Q⊄R ^ Q∩R≠ φ). Therefore, QFilter method can 
run on any XML databases whether or not they have security 
support, which is not possible for [13]. 

To validate our claim, we first compared our algorithms against the 
known pre-processing approach, Static Analysis method [13]. 
Since the end-to-end processing time (i.e., from the moment a 
query is submitted to the time “safe answers” are returned) of [13] 
was not available to us, we only compared time to construct and to 
check security policies between QFilter and static analysis methods.  
Filter Construction: In real world applications, QFilter is likely to 
be constructed offline. Once the service starts, we do not need to 
modify or reconstruct the QFilter unless access control rules are 
changed. Thus, the speed of QFilter construction is of less 
importance to users. Nevertheless, experiments show that QFilter 
construction is fast enough to be done in on-line. We first construct 
a separate QFilter for user-defined rules of the CAM role and show 
the times in Figure 4(a). QFilter construction time for different 
rules mainly depends on the complexity of the XPath expression, 
i.e., number of QFilter states to be built. Next, to see the impact of 
the number of rules on QFilter construction, we randomly 
generated 550 XPath expressions and measure the construction 
time by treating those expressions as ACR. Furthermore, to 
directly compare QFilter against [13], all synthetic rules were 
carefully generated according to the XML specification DTD 
(xmlspec-v21.dtd). In each experiment, + and – signs are 50% each. 
Figure 4(b) shows the results. Although BuildNFA algorithm has 
O(n) time complexity, it appears to be “flat”, taking only 17 mille-
seconds for 550 rules. Therefore, the QFilter approach has minimal 
overhead in updating the access control policy. However, the 
initialization of the other pre-processing approach in [13] was very 
sensitive to the number of rules, so that the graph increases sharply. 
Note the initialization time of static analysis mechanism was 
estimated from Figure 7 of [13] where it supports predicates using 
upper-bound and low-bound constrainers.  

Filter Execution: After QFilter is created with ACR, we use it to 
filter the input query Q to yield safe query Q’. Using the CAM role, 
we first tested how the types of user query Q affect the filtering 
speed. That is, we prepared seven different query categories and 
for each category, we generated 100 synthetic queries based on the 
XMark DTD: (1) Queries with deterministic paths only, i.e., no 
wildcard and “//” paths; (2) Queries with one wildcard “*”; (3) 
Queries with two “*” wildcards; (4) Queries with more than two 
“*” wildcards; (5) Queries with one “//” path; (6) Random queries 
with 0.1 wildcard probability and 0.1 “//” probability at each 
location; and (7) Random queries with 0.2 wildcard probability and 
0.2 “//” probability at each location. Using these random XPath 
expressions as input queries to QFilter, and we measured the 
average execution time for each query category and for each output 
type (accept, deny and rewrite) of QFilter. The results are shown in 
Figure 5. From this, we can see that QFilter is generally faster in 
accepting and denying queries, but slower to rewrite queries with 
wildcards, especially with “//” paths. This is because QFilter needs 
to traverse more states to process “*” and “//”. 

Next, we tested how QFilter execution performance degrades 
as the number of ACR increases. We constructed a QFilter using 
20 to 100 synthetic rules based on XMark DTD (SN-ACR) and 
tested with random queries (SN-Q). Figure 5(b) shows the average 
QFilter execution time for each rule set for each output type 
(accept, deny and rewrite). By and large, as the number of ACR 
increases, the QFilter execution time to filter out conflicting parts 
from Q increases too. This is understandable since there are more 
branches to test in QFilter. However, note that the longest time it 
took to rewrite Q, when QFilter has 100 synthetic rules, was still 
negligible with only 1 millisecond. 

To better show the scalability of QFilter, next, QFilter’s 
execution time was compared to that of [13], which essentially 
spend substantial time to check the containment of two automata. 
The result is shown in Figure 6. When 500 synthetic rules were 
used, QFilter was faster than the static analysis method of [13] up 
to 200 times, thanks to the QFilter’s NFA-based query rewriting of 
the partial overlap case: (Q⊄R ^ Q∩R≠ φ).   

5.3   Primitive, Pre- and Post-processing 
Next, we compared the end-to-end processing time among four 
approaches of Figure 1: (1) No security check is made (thus final 
data is un-safe); (2) Primitive approach; (3) AFilter (post-
processing); and (4) QFilter (pre-processing). End-to-end query 
processing time denotes the total time, in logarithmic scale, needed 
to process Q. In Figure 1, (a) indicates the query processing 
without any security check, where the output document UD is un-
safe, the end-to-end time is mainly evaluation time of Q; (b) 
indicates the primitive approach, which generates the safe result D, 
the end-to-end time is mainly the intersect query (Q ∩ ACR) 
evaluation time; (c) shows the QFilter approach, where the end-to-
end time includes the QFilter construction time and filtered query 
(Q’) evaluation time; and (d) indicates the post-processing 
approach, where the end-to-end time includes the original query 
evaluation time and un-safe answer, UD, filtering time. Note that 
we do not count the I/O time of the query input and the answer 
output. Note that for (d), due to the problem described in Section 
3.2, we manually wrote an external script to recover ancestor tags 
when UD is generated, but to be fair, that extra time for running 
script was not counted in. However, it is worthwhile to point out 
that if one uses the recursive function of XQuery to implement this 
in XML databases, the cost would have been even higher. Thus, Figure 6: XPath security check time. 

 

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

N u m b e r o f R u le s  p e r R o le

Q
u
e
ry
 p
ro

c
e
s
s
in
g
 t
im

e
 (
m
s

Q F ilte r A p p ro a ch S ta tic A n a lys is  

551



what we report here for post-processing approach is a significant 
“under-estimate”. 

Figure 7 summarizes the comparison of the four approaches. 
QFilter-based pre-processing approach is a clear winner regardless 
of the query categories, and thus a promising solution for XML 
access controls; it significantly outperforms the primitive approach 
and an (un-safe) query processing which does not enforce XML 
access control. Interesting phenomenon is that QFilter even 
outperforms no security check case even for the queries re-written. 
This implies that when Q is filtered to Q’ by QFilter, as a side-
effect, Q’ was optimized so that Q’ is processed more efficiently 
than Q. That is, when Q’ is processed by Galax, since its query 
constraints have been tightened by additional conditions added by 
QFilter, it is typically much faster than the original query, while 
ensuring returning only safe answers.  

Since the post-processing approach requires a data filtering 
stage after Q is evaluated, thus it is surely slower than the original 
query processing and much slower than QFilter approach. In many 
cases, QFilter can quickly determine whether the query is fully 
“Accepted” or “Denied” where the query filtering time is 
negligible compared to potential save from unnecessary query 
evaluation time.  

 
6.   CONCLUSION AND FUTURE WORK 

As the distribution and sharing of information over the Web 
are getting increasingly important, they mandate efficient yet 
secure access of XML data. It is necessary to tailor information in 
XML documents for various user and application requirements, 
preserving confidentiality and efficiency at the same time. Thus, it 
is critical to specify and enforce access control over XML data to 
ensure that only authorized users have an access to the portion of 
the data they are allowed to. In this paper, we consider several 
practical approaches that support XML access controls without 
relying on security features of underlying XML databases. A pre-
processing based method, called QFilter, has been developed and 
shown to be particularly efficient. QFilter, based on Non-
deterministic Finite Automata (NFA), rewrites user's query to a 
new one that will not return data violating access control rules. We 
prove the security of the QFilter via theoretical analysis and 
demonstrate its performance through extensive experiments. Result 
shows that QFilter is superior to the other state-of-the-art 
techniques.  

7.   ACKNOWLEDGEMENT 
Authors would like to thank Yanlei Diao for providing the YFilter 
software package [6], and Makoto Murata for providing their 
source data of [13] for comparison. Also, the comments of 

anonymous reviewers and S. Sudarshan significantly helped to 
improve the paper. 

REFERENCES 
[1] E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML 

Documents. ACM TISSEC, 5(3):290–331, Aug. 2002. 
[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds). Extensible 

Markup Language (XML) 1.0 (2nd Ed.). W3C Recommendation, Oct. 
2000.. 

[3] S. Cho, S. Amer-Yahia, L. V.S. Lakshmanan, and D. Srivastava. 
Optimizing the Secure Evaluation of Twig Queries. In VLDB, Hong 
Kong, China, Aug. 2002. 

[4]E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. 
A Fine-Grained Access Control System for XML Documents. ACM 
TISSEC, 5(2):169–202, May 2002. 

[5] E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. 
Samarati. Design and Implementation of an Access Control Processor 
for XML Documents. Computer Networks, 33(6):59–75, 2000.  

[6] Y. Diao and M. J. Franklin. High-Performance XML Filtering: An 
Overview of YFilter. IEEE Data Eng. Bulletin, Mar. 2003. 

[7] E. Fernandez, E. Gudes, and H. Song. A Model of Evaluation and 
Administration of Security in Object-Oriented Databases. IEEE TKDE, 
6(2):275–292, 1994. 

[8] S. Godik and T. Moses (Eds). eXtensible Access Control Markup 
Language (XACML) Version 1.0. OASIS Specification Set, Feb. 2003.  

[9] M. Kudo and S. Hada. XML document security based on provisional 
authorization. In ACM CCS, 2000.  

[10] D. Lee, W. C. Lee and P. Liu. Supporting XML Security Models using 
Relational Databases: A Vision. In XML Database Symposium (XSym), 
Berlin, Germany, 2003. 

[11] G. Miklau and D. Suciu. Containment and equivalence for an XPath 
fragment. In 21st ACM PODS, 2002 

[12] J. Moffett, M. Sloman, and K. Twidle. Specifying Discretionary 
Access Control Policy for Distributed Systems, Nov. 1990. 

[13] M. Murata, A. Tozawa, and M. Kudo. XML Access Control using 
Static Analysis. In ACM CCS, Washington D.C., 2003. 

[14] S. Osborn. Mandatory Access Control and Role-Based Access Control 
Revisited. In ACM Workshop on Role Based Access Control, pages 
31–40, Fairfax, VA, 1997. 

[15] F. Rabitti, E. Bertino, W. Kim and D. Woelk. A Model of 
Authorization for Next-Generation Database Systems. ACM Trans. on 
Database Systems (TODS), 16(1):89–131, 1991. 

[16] P. Samarati, E. Bertino, and S. Jajodia. An Authorization Model for a 
Distributed Hypertext System. IEEE Trans. on Knowledge and Data 
Eng. (TKDE), 8(4):555–562, 1996. 

[17] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based 
Access Control Models. IEEE Computer, 29(2), 1996. 

[18] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. 
J. Carey, and R. Busse. The XML Benchmark Project. Technical Report 
INS-R0103, CWI, April 2001. 

[19] J. Simeon and M. Fernandez. Galax V 0.3.5, Jan. 2004. http://db.bell-
labs.com/galax/. 

[20]T. Yu, D. Srivastava, L. V.S. Lakshmanan, and H. V. Jagadish. 
Compressed Accessibility Map: Efficient Access Control for XML. In 
VLDB, Hong Kong, China, Aug. 2002. 

[21] R. Rizvi, A. Mendelzon, S. Sudarshan, P. Roy. Extending Query 
Rewriting Techniques for Fine-Grained Access Control. In ACM 
SIGMOD 2004. 

[22] L. Bouganim, F. D. Ngoc,and P. Pucheral. Client-Based Access 
Control Management for XML documents. In VLDB, Toronto, Canada, 
2004.  

Figure 7. End-to-end query processing time 
comparison of all approaches. 

1

10

100

1000

10000

100000

A ccepted D enied R ew ritten
Q uery C ategory

E
n
d
-t
o
-e
n
d
 p
ro
c
e
s
s
 t
im

e
 (
m

N o A ccess C ontrol Prim itive A pproach
Y Filter A pproach Q Filter A pproach

552


