EECS 360 Lab 4: Discrete Convolution

1. Perform convolution for the following cases using the MATLAB function "conv". For each case, create a figure with 3 subplots: x[n], h[n], and $y[n] = x[n] \otimes h[n]$.

Note: All the plots will be discrete (use stem) and time (n) is on the x-axis.

a)
$$x[n] = 1$$
 $0 \le n \le 4$
 $h[n] = 1$ $-2 \le n \le 2$

b)
$$x[n] = [0.5, 0.5, 0.5]$$
 $0 \le n \le 2$
 $h[n] = [3, 2, 1]$ $0 \le n \le 2$

c)
$$x[n] = 5 - |n|$$
 $-5 \le n \le 5$
 $h[n] = 1$ $-5 \le n \le 5$

d)
$$x[n] = 1$$
 $0 \le n \le 20$
 $h[n] = (1/2)^{n-1}$ $-10 \le n \le 10$

e)
$$x[n] = 1 - 1.3e^{\left(\frac{n}{5}\right)}$$
 $-2 \le n \le 1$
 $h[n] = e^{(-0.7n)}$ $0 \le n \le 4$

2. Write the general summation formula to perform discrete convolution of $y[n] = x[n] \otimes h[n]$

Compute y[0] by substituting n=0 in the above expression and expand the summation series. Explain how you would compute y[0] graphically by looking at this result.

3. Convolve the signals given in part 1 **a** through **c** by hand. Compare the results with the ones obtained by using the conv function.