## EECS 360 <br> Lab 4: Discrete Convolution

1. Perform convolution for the following cases using the MATLAB function "conv". For each case, create a figure with 3 subplots: $x[n], h[n]$, and $y[n]=x[n] \otimes h[n]$.

Note: All the plots will be discrete (use stem) and time ( $n$ ) is on the $x$-axis.
a)

$$
x[n]=1
$$

$$
0 \leq n \leq 4
$$

$$
h[n]=1
$$

$$
-2 \leq n \leq 2
$$

b)

$$
\begin{array}{ll}
x[n]=[0.5,0.5,0.5] & 0 \leq n \leq 2 \\
h[n]=[3,2,1] & 0 \leq n \leq 2
\end{array}
$$

c)

$$
x[n]=5-|n|
$$

$$
-5 \leq n \leq 5
$$

$$
-5 \leq n \leq 5
$$

d)

$$
x[n]=1
$$

$$
0 \leq n \leq 20
$$

$$
h[n]=(1 / 2)^{n-1}
$$

$$
-10 \leq n \leq 10
$$

e) $\quad x[n]=1-1.3 e^{\left(\frac{n}{5}\right)}$
$-2 \leq n \leq 1$
$h[n]=e^{(-0.7 n)}$
$0 \leq n \leq 4$
2. Write the general summation formula to perform discrete convolution of $y[n]=x[n] \otimes h[n]$

Compute $y[0]$ by substituting $n=0$ in the above expression and expand the summation series. Explain how you would compute $y[0]$ graphically by looking at this result.
3. Convolve the signals given in part 1 a through $\mathbf{c}$ by hand. Compare the results with the ones obtained by using the conv function.

