EECS 360 Lab 4: Discrete Convolution

1. Perform convolution for the following cases using the Matlab function "conv". For each case, create a figure with 3 subplots: x[n], h[n], and y[n] = x[n] * h[n].

a)
$$x[n] = 1$$
 $0 \le n \le 4$
 $h[n] = 1$ $-2 \le n \le 2$

b)
$$x[n] = 1$$
 $0 \le n \le 20$
 $h[n] = (1/2)^{n-1}$ $-10 \le n \le 10$

c)
$$x[n] = [0.5, 0.5, 0.5]$$
 $0 \le n \le 2$
 $h[n] = [3.0, 2.0, 1.0]$ $0 \le n \le 2$

d)
$$x[n] = 1 - 1.3e^{\left(\frac{n}{5}\right)}$$
 $-2 \ge n \ge 1$
 $h[n] = e^{(-0.7n)}$ $0 \ge n \ge 4$

2. Convolve the signals given in part 1 \mathbf{a} through \mathbf{d} by hand. Compare the results with the ones obtained by using the conv function.