EECS 360 Signal and System Lab 8. DFT and FFT

March 24, 2008

1. Use equation (1) to to implement Discrete Fourier Transform for the following signal:

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x[n] = \begin{cases} 0, \text{ for } n \in [-128, -65]; \\ 1, \text{ for } n \in [-64, 63]; \\ 0, \text{ for } n \in [64, 127]. \end{cases}$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

$$x_{n} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi kn/N} \quad k = 0, ..., N-1$$

Use the "stem" and "plot" commands to graph the original sequence, the magnitude of the spectrum, and the phase of the spectrum.

2. Use the built-in Matlab *fft* command on the sequence given in problem 1. Compare your results to your DFT results. (hint: They should be the same)

3. Use the tic and toc commands in Matlab to time how long it takes for each of the Discrete Fourier Transform techniques (DFT/FFT) to calculate the frequency response. Be sure to time only the calculating functions, not plots or other unrelated events. Which technique is the fastest?

4. Repeat step 3 for different sequence lengths (very short \sim 10, short \sim 50, medium \sim 200, long \sim 500, very long \sim 1000). Is one technique always faster or slower than the other?