EECS 360 Lab 3: Discrete Convolution

1. Perform convolution for the following cases using the M atlab function "conv". For each case, create a figure with 3 subplots: x[n], h[n], and y[n] = x[n] * h[n].

a)	x[<i>n</i>]	1	0 n 4		
	h[n]	1	2 n 2		
b)	x[<i>n</i>]	1	0 n 20		
	h[n]	$1/2^{n}$	10 <i>n</i> 10		
c)	X[n] = [0.5, 0.5, 0.5]				
	h[<i>n</i>] =	[3.0, 2.0, 1.0]			

2. Convolve the signals given in part 1 \exists through c by hand. Compare the results with the ones obtained by using the conv function.

n

3. Use the following sequences to complete the problem.

$X_1[D_1]$	1	$1.3e^{\frac{n_1}{5}}$	2	D_1	1
$X_{2}[n_{2}]$	е	0.7 n ₂	0	n_2	4

- a. Create a figure containing 8 subplots. Using pairs of subplots, show the first 4 shifts of the discrete convolution of the above sequences. See figure 5-18 in the handout distributed in the class for help. You need to have the "signal" stem plot and the "m ultiplication" stem plot.
- b. Create a new figure and display the results of the convolution of the two sequences using the conv function.
- c. Compare the first four results of the conv solution to your work in part a. Do they match? Comment on the results.

Useful Website:

http://www.eece.unm.edu/signals/Discrete_Convolution/discrete_convolution.html