## EECS 360 Lab 12

## Z-Transform

The bilateral or two-sided Z-transform of a discrete-time signal $x[n]$ is the function $\mathrm{X}(\mathrm{z})$ defined as

$$
X(z)=Z\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Let $x[n]=0.5^{n} u[n]$. Expanding on the interval $(-\infty, \infty)$, it becomes

$$
x[n]=\left\{\ldots, 0.5^{-3}, 0.5^{-2}, 0.5^{-1}, 1,0.5^{1}, 0.5^{2}, 0.5^{3}, \ldots\right\}
$$

Looking at the sum

$$
\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} 0.5^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{0.5}{z}\right)^{n}=\frac{1}{1-0.5 z^{-1}}
$$

Using Matlab function zplane to generate the pole-zero diagram


First, follow the same procedure as lab 11 (Laplace transform) to generate the pole-zero diagram, and then plot the magnitude and phase of the system using freqz function for the following system functions:

1. $H(z)=\frac{z+1}{z^{2}-0.9 z+0.81}$
2. $H(z)=\frac{2 z^{2}+5 z+12}{z^{2}+2 z+10}$
3. $H(z)=\frac{2 z^{2}+5 z+12}{\left(z^{2}+2 z+10\right)(z+2)}$
4. $H(z)=\frac{z^{2}+0.49 z+0.7}{(z+0.4)(z+0.33)(z-0.75)}$

Note: for your lab report, you only have to provide your Matlab code and figures generated for those four system functions (4 pole-zero diagrams and 4 frequency responses).

