
Particle Waves and Group Velocity 
  

 
Particles with known energy 

 
Consider a particle with mass m, traveling in the +x direction and known velocity 

vo and energy 
   
Eo =

1
2

mvo .  The wavefunction that represents this particle is: 

 
!(x,t) = Ce jkxe" j#t   [1] 

 
where C is a constant and 
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The envelope 

   
!(x,t)

2
of this wavefunction  is 

 
!(x ,t) 2 = C 2 , 

 
which is a constant.  This means that when a particle’s energy is known exactly, it’s 
position is completely unknown.  This is consistent with the Heisenberg Uncertainty 
principle. 
 

Even though the magnitude of this wave function is a constant with respect to both 
position and time, its phase is not.  As with any type of wavefunction, the phase velocity 
vp of this wavefunction is:  
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 [4] 

 
At first glance, this result seems wrong, since we started with the assumption that the 
particle is moving at velocity vo.  However, only the magnitude of a wavefunction 
contains measurable information, so there is no reason to believe that its phase velocity is 
the same as the particle’s velocity. 



Particles with uncertain energy 
 

A more realistic situation is when there is at least some uncertainly about the 
particle’s energy and momentum.  For real situations, a particle’s energy will be known 
to lie only within some band of uncertainly.  This can be handled by assuming that the 
particle’s wavefunction is the superposition of a range of constant-energy wavefunctions: 

 

!(x,t) = Cn
n
" e jkn xe# j$nt( )   [5] 

 

Here, each value of kn and ωn correspond to energy En, and Cn is the probability that the 
particle has energy En. 

 
Let’s now consider the simplest possible case, there a particle is known to have one 

of two equally probably, closely-spaced energies (and corresponding velocities), given 
by, 

E+ = Eo + !E
E" = Eo " !E

   [6] 

Here, 
   
Eo =

1
2

mvo
2 is the mean energy,  where  vo is the mean velocity.  The corresponding 

particle wavefunction for this particle is 
 

!(x.t) = Cejk+ xe" j#+ t + Cejk" xe" j#" t   [7] 
where, 
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= !o ± "!    [8] 

        
and 
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However, if Δω is small, we can use the binomial theorem to expand k+ and k- as: 
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where 
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  [11] 

 
This allows us to write the wavefunction as: 
 

!(x.t) = Cejk oxe" j# ot e j$kxe" j$# t + e" j$kxe j$# t[ ]   [12] 
 



Using Euler’s identity, the wavefunction becomes 
 
!(x,t) = 2Ce jko xe" j# ot cos $# t " $kx( )   [13] 

 
The envelope of this wavefunction is the density function of the wave packet: 
 

!(x ,t) 2 = 4C 2 cos2 "# t $ "k x( )   [14] 
 

Unlike the constant envelope for a particle with a uniquely known energy, this envelope 
is clearly a function of both time and position, as shown in the figure below. 
 

 
 
As can be seen from this figure, this particle is most likely to be found at positions where 
cos2 !" t # !kx( ) is the largest, and the regions where that occurs move to the right with 
increasing time with a constant velocity.  This velocity is called the group velocity, since 
it’s the velocity of the envelope of a group (in this case, 2) of waves traveling together.  
The velocity of the envelope function given by equation 14 is 
 

vg =
!"
!k

  ,  [15] 
 

which, using equation 11 yields: 
 
vg = vo  
 

This agrees with our starting assumption the particle has a mean velocity of vo. 
 

Even though we derived the above expression for group velocity in terms of a two-
energy state particle, equation 15 is valid for particles with continuous uncertainties of 
energy.  This means that the velocity of a particle is controlled by how its frequency 
varies with its wavenumber.   In the limit as !E" 0 , [15] can be expressed as 
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 [16] 

 
This formula applies to waves of all kinds, including both matter and light 
wavefunctions. 
 



For electromagnetic waves, ω and k in a vacuum are related by: 
 

   k = ! µ"  (electromagnetic waves)  [17] 
 

where µ and ε are the permeability and permittivity of the medium, respectively.  Hence, 
the group velocity of an electromagnetic wave is 
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  (electromagnetic waves) [18] 

 
If µ and ε are independent of frequency, then  

    
v g = 1 / µ! , which means that the group 

velocity equals the phase velocity.  Such media are called nondispersive media. 
 

For deBroglie (mass) waves, the particle frequency is a linear function of the 
particle energy E, so it is typical to write the group velocity in the following form: 
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 (deBroglie waves)  [19] 

  
Hence, the velocity of a particle is governed by how it’s energy changes with respect to 
its wavenumber.    

For a free particle with velocity vo, E =
1
2
mvo

2  and 
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.  From [19], we obtain 
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which is the expected result. 
 

Equation [19]  is valid even when the particle is in a force field, i.e., regions where 
the potential function V(x) varies with position.  In that case, the relationship between E 

and k will not be 
 
k =

1
!
2mE as it is for a particle that is traveling without the influence 

of external forces. 
 


