Particle Waves and Group Velocity

Particles with known energy

Consider a particle with mass m, traveling in the +x direction and known velocity
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v, and energy E = Emv0 . The wavefunction that represents this particle is:

Y(x,t)= Ce™e ™ [1]

where C is a constant and
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The envelope ‘\I/(x,t)‘z of this wavefunction is

e, = Il

which is a constant. This means that when a particle’s energy is known exactly, it’s
position is completely unknown. This is consistent with the Heisenberg Uncertainty
principle.

Even though the magnitude of this wave function is a constant with respect to both
position and time, its phase is not. As with any type of wavefunction, the phase velocity
v, of this wavefunction is:
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At first glance, this result seems wrong, since we started with the assumption that the
particle is moving at velocity v,. However, only the magnitude of a wavefunction
contains measurable information, so there is no reason to believe that its phase velocity is
the same as the particle’s velocity.



Particles with uncertain energy

A more realistic situation is when there is at least some uncertainly about the
particle’s energy and momentum. For real situations, a particle’s energy will be known
to lie only within some band of uncertainly. This can be handled by assuming that the
particle’s wavefunction is the superposition of a range of constant-energy wavefunctions:

Y(x,)=.C, (" e ) [5]

Here, each value of k, and @, correspond to energy E,, and C, is the probability that the
particle has energy E,.

Let’s now consider the simplest possible case, there a particle is known to have one
of two equally probably, closely-spaced energies (and corresponding velocities), given
by,

E, =E +AE
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Here, E_ = —mv’ is the mean energy, where v _is the mean velocity. The corresponding
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particle wavefunction for this particle is

W(x1)= Cel e/ 4 Cel e i 7]
where,
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However, if Aw is small, we can use the binomial theorem to expand k, and k_ as:

ky = |20 [ LA pg [10]
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where

A
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This allows us to write the wavefunction as:

Y(x.t)= Cejk"xe*jw"t[ejmeﬁml + eijAkxejAwt] [12]



Using Euler’s identity, the wavefunction becomes
W(x,1)=2Ce" e ™" cos(Awr — Akx) [13]

The envelope of this wavefunction is the density function of the wave packet:
(e, 0| = 4|CT cos® (Awr — Akx) [14]

Unlike the constant envelope for a particle with a uniquely known energy, this envelope
is clearly a function of both time and position, as shown in the figure below.
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As can be seen from this figure, this particle is most likely to be found at positions where
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cos’ (Aa)t - Akx) is the largest, and the regions where that occurs move to the right with

increasing time with a constant velocity. This velocity is called the group velocity, since
it’s the velocity of the envelope of a group (in this case, 2) of waves traveling together.
The velocity of the envelope function given by equation 14 is
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which, using equation 11 yields:

vV, =V,

This agrees with our starting assumption the particle has a mean velocity of v,.

Even though we derived the above expression for group velocity in terms of a two-
energy state particle, equation 15 is valid for particles with continuous uncertainties of
energy. This means that the velocity of a particle is controlled by how its frequency
varies with its wavenumber. In the limit as AE — 0,[15] can be expressed as
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This formula applies to waves of all kinds, including both matter and light
wavefunctions.



For electromagnetic waves, @ and k in a vacuum are related by:

k = w+\Jue  (electromagnetic waves) [17]

where 1 and € are the permeability and permittivity of the medium, respectively. Hence,
the group velocity of an electromagnetic wave is
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If 1 and € are independent of frequency, then v, = 1/ +/pe , which means that the group

velocity equals the phase velocity. Such media are called nondispersive media.

For deBroglie (mass) waves, the particle frequency is a linear function of the
particle energy E, so it is typical to write the group velocity in the following form:

dw  BwIE 18E

VvV =—=——=———(deBroglie waves) [19]
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Hence, the velocity of a particle is governed by how it’s energy changes with respect to
its wavenumber.
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For a free particle with velocity v, E = Emvz and k = 77? = m;" = £\/2mE , SO
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which is the expected result.

Equation [19] is valid even when the particle is in a force field, i.e., regions where
the potential function V(x) varies with position. In that case, the relationship between E

1
and k will notbe k = %\/ 2mkE as it is for a particle that is traveling without the influence

of external forces.



